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SUMMARY

A new internal array structure, called a double-array, implementing a trie structure is presented. The
double-array combines the fast access of a matrix form with the compactness of a list form. The
algorithms for retrieval, insertion and deletion are introduced through examples. Although insertion is
rather slow, it is still practical, and both the deletion and the retrieval time can be improved from the
list form. From the comparison with the list for various large sets of keys, it is shown that the size of
the double-array can be about 17 per cent smaller than that of the list, and that the retrieval speed of
the double-array can be from 3·1 to 5·1 times faster than that of the list.
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INTRODUCTION

In many information retrieval applications, it is necessary to be able to adopt a trie
search l’2 for looking at the input character by character. Examples include a lexical
analyser of a compiler, a bibliographic search 3,5 a spelling checker, 6 and morphologi-
cal dictionaries 7 in natural language processing, and so on. Each node of the trie is
an array indexed by the next ‘item’. The element indexed is a final-state flag, plus
a pointer to either a new node or a null pointer. Figure 1 gives an example of an
array-structured trie for the set K = {baby, bachelor, badge, jar}. Retrieval, deletion
and insertion on the trie are very fast, but it takes lots of space because the space
complexity is proportional to the product of the number of nodes and the number
of characters. A well-known strategy for compressing the trie is to list the arcs out
of each node, with the null pointer at the end of the list. Figure 2 shows an example
of a list-structured trie for the set K. The list-structured trie enables us to save the
space by use of null pointers of the array-structured trie, but the retrieval becomes
slow if there are many arcs leaving each node.

This paper presents a technique of compressing the trie into two one-dimensional
arrays BASE and CHECK called a double-array. In the double-array, non-empty
locations of node n are mapped, by the array BASE, into the array CHECK such that
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Figure 1. An array-structured trie for bachelor, baby, badge, jar

no two non-empty locations in each node are mapped to the same position in CHECK.
Each arc of the trie can be retrieved from the double-array in 0 (1) time, that is,
the worst-case time complexity for retrieving a key becomes 0 ( k ) for the length k
of that key. The trie has many nodes for a large set of keys, so it is important to
make the double-array compact. In order to implement the trie for a large set of
keys, the double-array stores only as much of the prefix in the trie as is necessary
to disambiguate the key, and the tail of the key not needed for further disambiguation
is stored in a string array, denoted as TAIL.

REPRESENTATION OF A TRIE

A trie is a tree structure in which each path from the root to a leaf corresponds to
one key in the represented set. The paths in the trie correspond to the characters
of the keys in the set. To avoid confusion between words like ‘the’ and ‘then’, a
special endmarker symbol, #, is used at the end of each word in the set.

The following definitions will be used in the explanations that follow. K is the set
of keys represented by the trie. The trie is formed of nodes and arcs. Arc labels
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Figure 2. A list-structured trie for bachelor, baby, badge, jar

consist of symbols, called characters. An arc labeled a from node n to m is rep-
resented by the notation g(n, a)=m.

For a key in K, the node m with g(n,a)=m is a separate node if a is a sufficient
character (or arc label) for distinguishing that key from all others in K. The concat-
enation of the arc labels from separate node m to the terminal node is called a single
string for m, denoted as STR[ m ]. The characters of key K remaining after the single
string is deleted from K are called the tail of K. A tree constructed only of the arcs
from the root to the separate nodes for all keys in K is called the reduced trie.

An example of a reduced trie for the set K= {baby#, bachelor#, badge#, jar#}
is shown in Figure 3. This same reduced trie representation is also shown in Figure
3, using a double-array and an array of characters for tail storage. Question marks
(?) in TAIL indicate garbage; their use will be explaining when analysing the insertion
and deletion algorithms.

The following relations between the reduced trie and the double-array shown in
Figure 3 exist:
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Figure 3. The reduced trie and the double-array for K

1. If there is an arc g(n,a) =m on the reduced trie, then BASE [ n ]  +a=m and
CHECK [ m ]= n. {For the arc labels: ‘#’=1, ‘a’=2, ‘b’=3, ‘c’=4, etc. }

2. If the node m is a separate node such that the tail string STR [ m ] = b 1, b2, . . . .
b h  t h e n 

(a)
(b)

These two

Retrieval

BASE [ m ]< 0
let, p =– BASE [ m ], TAIL [ p ]= b l, TAIL [ p +l]= b 2, . . . . TAIL [ p+h -1]= bh

relations will remain throughout this paper.

Retrieval operations using the double array are straightforward. For example, to
retrieve ‘bachelor#’ from the double-array shown in Figure 3, the following steps
are performed:

Step 1.

Step 2.

Steps 3,4.

Step 5.

Store the root node at position 1 of BASE in the double-array, and
start at that position. The value for the character ‘b’ is 3, so from
relation 1 above

BASE [ n ]+ a =BASE [ l]+ ‘b’= BASE [l]+3=4+3=7

Observe that CHECK [7] = 1
Since the value found for BASE in step 1 is positive, proceed. Use the
value 7 from step 1 as the new index into BASE, and the value 2 for
character ‘a’, so:

BASE [7]+ ‘a’= BASE [7] +2=l+2=3, and CHECK [3]=7

Proceed as above, using 4 for ‘c’:

BASE [3]+ ‘c’= BASE [3]+4=1+4=5, and CHECK [5]=3

The value in BASE [5] is – 1. A negative value indicates that the rest of
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the word is located in TAIL, starting at TAIL [– BASE [5]] = TAIL [l]. The
other words in the list can be retrieved using a similar technique,
always starting at the root node at position 1 in BASE.

Observe that retrieval involves only direct array lookups (no searching is required)
and addition, making retrievals extremely efficient in this implementation.

Insertion

Insertion into a double-array is also straightforward. During insertion, any of the
four cases below arises:

1. Insertion of the new word when the double-array is empty.
2. Insertion of the new word without any collisions.
3. Insertion of the new word with a collision; in this case, additional characters

must be added to the BASE and characters must be removed from the TAIL
array to resolve the collision, but nothing already in the BASE array must be
removed.

4. When insertion of the new word with a collision as in case 3 occurs, values in
the BASE array must be moved.

A collision indicates that two different characters have the same index value within
the double-array. These four insertion cases will be demonstrated by adding ‘bach-
elor’ (case 1), ‘jar#’ (case 2), ‘badge#’ (case 3) and ‘baby#’ (case 4) to an empty
double-array structure like the one shown in Figure 4. We define the size denoted
by DA_SIZE, of the double-array as the maximum index of the non-zero entries of
CHECK. Note that the BASE and CHECK entries exceeding the DA_SIZE can be
allocated dynamically as zero entries if needed.

Case 1: the insertion of the new word when the double-array is empty

To insert for example ‘bachelor#’, perform the following steps:

Step 1. Start at position 1 of BASE in the double-array. The value for the character
‘b’ is 3, so:

BASE [1]+‘b’ =BASE [l]+3=l+3=4, and CHECK [4]=0 ≠ l

Step 2. The value 0 in CHECK [4] indicates insertion of the rest of the word. That

Figure 4. The reduced trie and the double-array with no data
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is, ‘b’ is defined on the double-array (by the relation g(l ,‘b’) =4) so store
into TAIL the remaining string, ‘achelor#’.

Step 3. Set

BASE [4] ← – POS =–1

to indicate that the rest of the word is stored into TAIL starting from
position POS. And set

CHECK [4] ← 1

to indicate the node number it comes from, within the double-array.
Step 4. Set the pointer to TAIL

POS ← 9

which is the location for the next insertion.

Figure 5 shows the reduced trie and the double-array after inserting ‘bachelor#’.

Case 2: insertion, when the new word is inserted without collisions

Perform the following steps to insert ‘jar#’:

Step 1. Start at position 1 of BASE in the double-array. The value for the character
‘j’ is 11, so:

BASE [l]+‘j’= BASE [1]+11=1+11=12, and CHECK [12]= 0 ≠ l

Step 2. The value 0 in CHECK [12] indicates insertion of the rest of the word
implying that no collision with ‘bachelor#’ occurred. Store the remaining
string, ‘ar#’, into TAIL from position POS = 9.

Step 3. Set

BASE [12] ← -POS =-9

Figure 5. The reduced trie and the double-array for insertion of ‘bachelor#’
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to indicate that the rest of the word is stored into TAIL starting from
position POS. And set

CHECK [12] ← 1

to indicate the node number it comes from, within the double-array.
Step 4. Set the pointer to TAIL

POS ← 12

which is the location for the next insertion.

As can be observed, there is no difference between case 1 and case 2 insertions so
their classification is only conceptual and not operational. The resulting reduced trie
and double-array after inserting ‘jar#’ are shown in Figure 6.

To study
returns the

Figure 6. The reduced trie and the double-array for insertion of ‘jar#’

the insertion cases 3 and 4, consider the function X_CHECK(LIST) which
minimum integer q such that q> 0 and CHECK [ q+c ] =0 for all c in LIST.

q always starts with the value- 1 and has unitary

Case 3: insertion, when a collision occurs

Perform the following steps for ‘badge#’:

Step 1. Start at position 1 of BASE in the
character ‘b’ is 3, so:

increments at- analysis time.

double-array. The value for the

BASE  [l]+‘b’= BASE [l]+3=l+3=4, and CHECK [4]=1

The non-zero value in CHECK [4] indicates that an arc definition from the
node indicated by the value in CHECK [4], i.e. 1, to node 4 exists.

Step 2.    Since the value found for BASE in step 1 is positive, proceed. The value
4 from step 1 is used as the new index into BASE, but:

BASE [4]=–1
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Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.
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This negative value indicates that searching has finished and string com-
parison is to be performed.
Retrieve from TAIL the string starting at position – BASE [4] = 1, i.e.
‘achelor#’ and compare it with the remaining part of the string to be
inserted, i.e. ‘adge#’. As comparison fails, that is the strings are different
from each other, insert the common prefix into the double-array as
indicated in steps 4, 5, and 6.
Save the current value of – BASE [4] into a temporal variable:

TEMP ← -BASE [4]=1

Calculate X_CHECK [{‘a’}] for the prefix character ‘a’ common to the two
strings ‘adge#’ and ‘achelor#’:

CHECK [ q+a ]= CHECK [ l+‘a’] = CHECK [l+2]= CHECK [3]=0

The value of q, i.e. 1, is the candidate for new value of BASE [4], and
the 0 value of CHECK [3] indicates that node 3 is available, so:
Store the new value for BASE [4]:

BASE [4] ←  q = 1

And the new value of CHECK for the available node 3:

CHECK [ BASE [4]+‘a’] = CHECK [l+2] = CHECK [3] ← 4

This indicates an arc definition from the node value in CHECK [3], i.e. 4,
to node 3.

Note: Due to the common prefix in this example, steps 5 and 6 are
not repeated, but these two steps must be performed as many times as
prefix values exist.
To store the remaining strings ‘chelor#’ and ‘dge#’, calculate the value
to be stored into BASE [3] for two arc labels ‘c’ and ‘d’ according to the
closest neighbour available by X_CHECK ( {‘c’ ,‘d’} ) as follows.

For ‘c’: CHECK [q+‘c’] = CHECK [l +4] = CHECK [5] =0 ⇒  available
For ‘d’: CHECK [q+‘d’] = CHECK [l+5]= CHECK [6] =0 ⇒ available

as q= 1 is the candidate, set

BASE [3] ←  1

Calculate the node number
CHECK taking as parameter

BASE [3]+‘c’=1+4=5

for the reference to ‘chelor#’ in BASE and
the first character of the string:

BASE [5] ← –TEMP= –1 and CHECK [5] ← 3

Establishing the reference to TAIL by means of BASE, and the arc defi-
nition between states 3 and 5 by means of CHECK.
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Step 10.

Step 11.
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Store the rest of the string ‘helor#’ into TAIL starting at position
BASE [5] = 1, but TAIL [7] and TAIL [8] become garbage in Figure 7.
For the remaining string ‘dge#’:

BASE [3]+‘d’=l+5=6
BASE [6] ←  – POS = – 12 and CHECK [6]  ←  3
Store ‘ge#’ into TAIL starting at POS .

Finally set POS to the new insertion position, at the end of the used part
of TAIL.

POS  ← 12+length[‘ge# ’]=12+3=15

In summary, when a collision occurs the prefix common to the collisioned strings
is extracted from TAIL and inserted into the double-array. The values within the
double-array for the collisioned strings, including the new string, are moved to
the nearest neighbour position available and adjusted to such new positions (see
Figure 7 ).

Case 4: insertion, when a new word is inserted with a collision

As in case 3, values in the BASE array must be moved; perform the following
steps for ‘baby #’:

Step 1. The root node is stored at position 1 of BASE in the double-array, so
start at position 1. For the first three characters the values for BASE and
CHECK are:

BASE [l]+‘b’= BASE [ l]+3=l+3=4, and CHECK [4]=1
BASE [4]+‘a’= BASE [4] +2=l+2=3, and CHECK [3]=4
BASE [3]+‘b’= BASE [3 ]+3=l+3=4, and CHECK [4]=l ≠ 3

The inconsistency in CHECK [4] indicates an undefined status, this means

Figure 7. The reduced trie and the double-array for insertion of ‘badge#’
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that the values for nodes 1 and 3 should be modified to allow the new
insertion, thus proceed as follows.

Step 2. Set a temporal variable TEMP_NODE1 to

TEMP_NODE1 ← BASE [ 3]+ ‘b’=1+3=4

If CHECK [4] were equal to 0 then this will imply availability, so the case
would be a straightforward insertion of the string into TAIL at POS. As
this is not the case, do the following.

Step 3. Store in a list, having as index number the node number where the
inconsistency was found, the characters that correspond to the arcs
leaving that node.

LlST [3] ← [‘c’,‘d’]

And in another list, having as index the last CHECK value, the charac-
ters that correspond to the arcs leaving that node.

LIST [l] ← [‘b’,‘j’]

Step 4. As the purpose here is to associate the new string with node 3, compare
the length of the two lists incrementing the length of LIST [3] by 1. This
increment is necessary to consider the new character to be added to node
3.

compare (length [ LlST [3]]+ 1, length [ LIST [l]])= compare (3,2)

If length [ LlST [3]]+ 1 < length [ LIST [l]] the current node, 3, would be
modified. But as length [ LlST [3]] + 1  ≥  length [ LIST [l]] modify the alterna-
tive node, i.e. node 1, as follows.

Step 5. Set a temporal variable for the node referenced by BASE.

TEMP_BASE ← BASE [l]=l

and calculate a new BASE using LIST [l] according to the closest neighbour
available as follows:

X_CHECK [‘b’]: CHECK [q+‘b’]
= CHECK [1+3] =CHECK [4]=l ≠ 0

CHECK [2+3] =CHECK [5]=–l ≠ 0
CHECK [3+3] =CHECK [6]=–14 ≠ 0
CHECK [4+3] =CHECK [7]=0 ⇒ available

and

X_CHECK [‘j’]: CHECK [q+‘j’] = CHECK [4+11]=CHECK [15]
=0 ⇒ available

as q = 4 is the candidate, set
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BASE [1] ← 4

Step 6. For ‘b’, store the value for the states to be modified in temporal variables:

TEMP_NODE1 ← TEMP_BASE+ ‘b’ =1+3=4
TEMP_NODE2 ← BASE[1]+ ‘b’=4+3=7

Copy the BASE value from the original status to the new status:

BASE[TEMP_NODE2] ← BASE[TEMP_NODE1]

i.e.

BASE [7] ← BASE [4] = 1

And set the CHECK value for the new node:

CHECK [ TEMP_NODE2 ] =CHECK  [7]  ← CHECK [4]=1

Step 7. As

BASE[TEMP_NODE1] = BASE [4]=1>0

That is, the BASE value for the original status is an internal pointer
instead of a pointer to TAIL, calculate the offset ω to obtain the node
value to be modified to point to the new node.

CHECK [ BASE ] TEMP_ NODE1 ]+ ω ] =TEMP_NODE1

i.e.

CHECK [ BASE [4]+ ω ]=4; CHECK [1+ ω ] = 4 ⇒ ω =2

and modify CHECK to point to the new status:

CHECK [ BASE [4]+2] = CHECK [l+2]= CHECK [3] ←  TEMP_NODE2 =7

Step 8. Initialize the old BASE and CHECK:

BASE [ TEMP_NODE1 ] = BASE [4] ←  0
CHECK [ TEMP_NODE1 ] = CHECK [4] ← 0

Step 9. For ‘j’, store the value for the states to be modified in temporal variables:

TEMP_NODE1 ← TEMP_BASE + ‘j’ =1+11=12
TEMP_NODE2 ← BASE [1]+ ‘j’ =4+11=15

Copy the BASE value from the original status to the new status:
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BASE [ TEMP_NODE2 ← BASE [ TEMP_NODE1 ]

i.e.

BASE [15] ← BASE [12]=-9

And set the CHECK value for the new node:

CHECK [ TEMP_NODE2 ] = CHECK [15] ← CHECK [12]=1

Step 10. As

BASE [ TEMP_NODE1 ] =BASE [12]=–9<0

That is, the BASE value for the original status is a pointer to TAIL, so
only initialize the old BASE and CHECK:

BASE [ TEMP_NODE1 ] = BASE [12] ← 0
CHECK [ TEMP_NODE1 ] = CHECK [12 ] ← 0 

Now the conflict generated by the collision of ‘b’ from ba b y has been solved. Finally,
insert the remaining part of the new string ‘by#’ into TAIL.

Step 11. Considering the original BASE node number, i.e. 3, where the inconsist-
ency was generated (see step 3) as pivot, store in a temporal variable
the node number for the reference to the new string:

TEMP_NODE ← BASE [3]+ ‘b’= 1+3=4

Step 12. Store in the new BASE node the pointer to TAIL for the new string:

BASE [ TEMP_NODE ] =BASE [4] ← – POS =–15

and in CHECK the internal pointer to the referencing node

CHECK [ TEMP_NODE ] =CHECK [4] ← 3

Step 13. Insert the new string in TAIL:

TAlL [ POS ] =TAlL [15] +‘y#’

Step 14. To finish set the pointer to TAIL to its new value:

POS ← POS+ length [’y#’] = 15+2= 17

In summary, when a collision occurs the values in the double-array must be moved
since there is no room for the specification of the new word, the node that collided,
or the previous node, as indicated by CHECK. The node with fewer branches is then
moved to another place within the double-array to give space for the specification
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of more nodes to the node that collided. The connecting node numbers are modified
to point to the new place within the double-array where the node specification was
moved. Finally, the new string is inserted (see Figure 3 ).

Deletion

Deletion of words from a double-array is also straightforward. Deletion has the
same scanning process as in case 2 insertion. In fact, the only difference consists of
resetting, for the word to be deleted, the necessary pointers to TAIL within the
double-array.

For example, to delete the word ‘badge#’ perform the following:

Step 1. The root node is stored at position 1 of BASE in the double-array, so start
at position 1. For the first three characters the values for BASE and CHECK
are

The

BASE [1]+‘b’= BASE [1]+3=4+3=7, and CHECK [7]=1
BASE [7]+‘a’= BASE [7]+2=l+2=3, and CHECK [3]=7
BASE [3]+‘d’=BASE [3]+5=l+5=6, and CHECK [6]=3
BASE [6] = – 12<0  ⇒ separate node

separate node is the pointer to TAIL.
Step 2. Compare the remaining part of the string, i.e. ‘ge#’ with the string in

TAIL at –BASE [6]=12

compare (‘ge#’,’ge#’)

Step 3. As both strings are equal, reset the corresponding pointers to TAIL within
the double-array.

BASE [6] ← 0
CHECK [6] ← 0

Since the pointers to TAIL
‘ge#’ becomes garbage as

for ‘ge#’ do not exist any
in Figure 8, so that space

EVALUATION

Comparison with list structures

A well-known representation of the trie is to use a

more, the portion of TAIL for
is available for future usage.

list form .2-4 Although the list
can efficiently compress and update the trie, its access is slow. Suppose that each
node number of the reduced trie is implemented by two bytes. Each node occupies
four bytes in the double-array and five bytes in the list form (based on the components
arc label, pointer, next node ). A reasonable compromise is to store the most frequently
used nodes (such as the root node) as direct access tables in which the next node
can be determined by directly indexing into the table with the current input symbol,
and store the other nodes in the list form. In the simulation, and within this paper
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Figure 8. The reduced trie and the double-array for deletion of ‘badge#’

too, this revised list form is used for the reduced trie and the single strings were
stored into TAIL.

The following five kinds of sets of keys were used for the experimental
vations.

KW1,
KW3:
KW4:
KW5 :
KW6:
KW7:

KW2: The reserved words for Pascal and COBOL, respectively.
Commands in UNIX 4.2BSD.
Main city names in the world.
Katakana for a Japanese word dictionary.
Words for an English dictionary.
Kanji for a Japanese word dictionary.

Table I. The results of storage

obser-

Numbers and length
KEY_NUM
TOTAL_NUM
NODE_NUM
KEY_LEN

Storages (kilo-bytes)
SPACE_DOUBLE
SPACE_LIST
SPACE_TAIL
SPACE_DOUBLE_TAIL
SPACE_LIST_TAIL
SPACE_SOURCE

Rate(%)
RED_RATE

KW1 KW2 KW3 KW4 KW5

35
161

52
5·1

0·63
0·26
0·11
0·74
0·37
0·28

67·7

310
1558
611

7·5

2·78
3·06
0·95
3·64
4·01
2·33

12·2

657
2781
1051

6·9

4·68
5·23
173
6·41
696
4·54

11·3

1480
9742
2461

9·5

10·12
12·31
7·28

17·40
19·59
14·08

2·7

23,976
100,235
40,498

8·2

161
202

60
221
262
197

0·1

KW6 KW7

32,344 65,857
88,801 259,324
45,383 98,713

5·6 6·8

182 396
227 494

44 161
226 557
271 655
182 671

0·1 0·1
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Note that the double-array for KW5–KW7 is divided into several blocks in order to
keep two-byte entries of the double-array and the list form.

Space efficiency

In Table I, KEY_NUM is the number of keys; TOTAL_NUM is the number of nodes
in the unreduced trie; NODE_NUM is the number of nodes for the reduced trie; and
KEY_LEN is the average length of keys. SPACE_DOUBLE stands for storage of the
double-array for the reduced trie; SPACE_LIST for storage of the list form for the
reduced trie; SPACE_TAlL for storage of TAIL; SPACE_DOUBLE_TAIL for storage of
SPACE_DOUBLE plus SPACE_TAIL; SPACE_LIST_TAIL for storage of SPACE_LIST plus
SPACE_TAIL; and SPACE_SOURCE for storage of a source file of all keys with a
delimiter between keys. Note that TAIL is reorganized to remove the redundant
characters. RED_RATE represents the percentage of the number of redundant indexes
to NODE_NUM for the final double-array, that is to say, it shows the space efficiency
of the compression method presented.

From the results in Table I, for all sets except KW1, it can be seen that storage
in SPACE_DOUBLE_TAIL of the double-array is about 8 to 17 per cent less than
storage in SPACE_LIST_TAlL of the list form. In particular, the result of the storage
shows that SPACE_DOUBLE_TAIL is just from 1.1 to 1.2 times larger than SPACE_-
SOURCE for large sets. This depends on the extremely small RED_RATE of the
double-array for large sets.

Time efficiency

The key concept in the algorithm presented is that during case 4 insertion, only
one part of the trie (the part of the trie at the collision, having fewer arcs) has to
be moved to the first available blank location in BASE which is big enough to hold
that piece. This makes the insertion operation expensive, but the fact that only one
part is moved is the reason why the cost of insertion does not become O ( n 2) for n
states. The worst-case time complexity of the presented insertion algorithm depends
on the function X_CHECK(LIST) invoked at case 4 insertion because it travels along
all the indexes of the double-array to search available positions for each symbol in
LIST. The insertion can keep a practical speed for small sets of keys whose number
is less than several hundred, but it becomes slow for large sets of keys. In order to
avoid the overhead, the double-array with bidirectional links connecting the avail-
able, or redundant, indexes is introduced as follows.

Let r l, r 2, . . . . rm be the increasing order of the available indexes on the double-
array:

CHECK [ ri ] = –r(i+ l), CHECK [ rm ] = –1;
BASE [ r1 ] = –1, BASE [ r(i+ 1)] = – ri for l ≤  m –1

where the value – 1 represents each end of both links. Each head of both links is
represented by global variables. Note that the available entries in the CHECK array
must be confirmed by negative integers instead of zeros and that the initializing
entries of the double-array require appending those entries into the links. This
revision is simple and independent of the space occupied by the double-array, so
the revised double-array is used in the following evaluation.



710 J.-I. AOE, K. MORIMOTO AND T. SATO

Let DOUBLE and LIST stand for the double-array and the list form, respectively.
All evaluations are demonstrated by the average and worst-case times for one key,
denoted as DOUBLE -Average, DOUBLE -Worst, LIST -Average and LIST -Worst. Note
that all times were counted under the condition that each set of keys and the retrieval
table were in the main memory. Figure 9 shows the comparison of DOUBLE and LIST
for the insertion under the condition that the double-array and the list are built
incrementally. The results show that the insertion of the double-array spends from
5 to 9 times more than the insertion of the list, but it is still a practical speed. The
number of redundant indexes in the double-array closely reaches a very small
constant value for large sets KW4–KW7, so the insertion time is also constant.

Figure 10 shows the comparison of DOUBLE and LIST for the deletion under the
condition that one key is removed from the double-array and the list. From the
results it can be observed that the deletion of the double-array is from 1·2 to 1·5
times in the average case, from 1·5 to 2·5 times in the worst case, faster than that
of the list. This efficiency directly depends on the retrieval time because the deletion
requires, the search to determine whether the key has been registered in the

Figure 9. The results of insertion time
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Figure 10. The results of deletion time

dictionary or not. The number of keys to be stored is restricted to keep two-byte
entries, so LIST -worst for KW4–KW7 becomes constant as shown in Figure 10.

Figure 11 represents the comparison of DOUBLE and LIST for the retrieval time.
Observe from the results that search within the double-array is from 1·2 to 3·1 times
faster in the average case, and from 1·5 to 5·2 times faster in the worst case, than
that of the list. The gap of the retrieval time between DOUBLE and LIST for
KW5-KW7 grows along with the increasing of the number of keys to be stored in
both the divided double-array and the list. This is because the retrieval time of
DOUBLE is constant and that of LIST is proportional to the number of arcs leaving
the node for the reduced trie.

There are other ways  8’9 to compress tries. However, the ‘double-offset indexing’
approach 8 of trie-gen in the GNU, using both the compression algorithm of a sparse
matrix as well as compressed tries 9 are just tools for static sets of keys.
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Figure 11. The results of retrieval time

CONCLUSION

A double-array structure representing a trie structure has been presented. For a
variety of keys, the space ‘and time- efficiencies of the double-array have been
evaluated by comparing the list form. The double-array can build a fast and compact
dictionary, but the insertion is slower than the list form when many keys are stored
into the double-array. In the actual implementation for a large set of keys, the
double-array should be divided into appropriate blocks and stored into auxiliary
memory. This division is useful for application software limited to a work area in
main memory, and enables the realization of fast insertion because each divided
double-array keeps a reasonable number of keys.

It is important that a dictionary for natural language processing be built incremen-
tally, because it might be necessary to append additional words to the established
basic vocabulary from time to time. The algorithm presented here is suitable for
information retrieval systems in which the frequency of appending keys is higher
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than that of deleting keys, allowing the redundant space created by the deletion to
be exhausted by the subsequent insertion.

The presented double-array has been used in about 40 sets of dynamic keys (i.e.
dynamic command interpreters, a bibliographic search 3’4’5 Japanese and English
morphological dictionaries for a machine translation system, 7 filtering of highly
frequent English words 6 and a spelling checker 6 emitting correction candidates, etc.).
The double-array can efficiently manipulate the longest applicable match based on
the trie, so it is well suited for the analysis of Japanese sentences without a delimiter
between words.

It would be a very interesting study to apply the algorithm presented here for
updating the double-array to a pattern matching machine with failure, function; 5 the
reduction of static sparse matrices  9,10 by using a row displacement; a finite state
machine associated with a parsing table; and so on.

APPENDIX: CODE IN C LANGUAGE FOR RETRIEVAL, INSERTION,
AND DELETION

The trie based on the double-array structure is implemented using about 300 lines
of C on a Sun-Microsystems Sun/4, IBM6100RT-PC, and various personal computers.

Global variables

The following is constant values and global variables to be used.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

INSERT_MODE 1 /* Indicate the insertion mode */
SEARCH_MODE 2 /* Indicate the search, or retrieval, mode */
DELETE_MODE 3 / * Indicate the deletion mode */
DUMP_MODE 4 /* Indicate the dump mode */
END_MODE 5 /* Indicate the end of program */
MIN_CODE 1 /* Minimum numerical code */
MAX_CODE 255 /* Maximum numerical code */
BC_INC 10 /* Increment of the double-array */
TAIL_INC 10 /* Increment of TAIL */
KEY_INC 5 /* Increment of the double-array */
TEMP_INC 5 /* Increment of TAIL */
TRUE -1
FALSE 0
NILL -1

FILE
char
char
char
int
int

int
int

*KEY FILE; /* Key dictionary file */
*KEY; /* Key */
*TAIL; /* TAIL */
*TEMP ; /* Buffer */
*BC; / * BASE and CHECK*/
MODE ; /* Flag indicating insertion, search,

deletion, dump and end */
BC_POS ; /* Current maximum index of the double-array */
TAIL_POS; /* The current maximum index of TAIL */

int BC_MAX ; /* Maximum size of BASE and CHECK */
int TAIL_MAX; /* Maximum size of TAIL */
int KEY_MAX; /* Maximum size of KEY */
int TEMP_MAX; /* Maximum size of TEMP */
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void

char

A
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BC_INSERT(), TAIL_INSERT(),
W_BASE() W_CHECK();
*MEM_STR() ;
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SEPARATE() , WRITE_TAIL() ,

one-dimensional array BC represents the arrays BASE and CHECK, so the
following functions BASE(n) and CHECK(n) enable the description of the double-
array access. In the following context, the notations of BASE[ n ] and CHECK[ n ] are
conventionally used too:

int BASE (n) /* BASE[n] */
int n;

if (n > BC_POS) return(0) ;
else return (BC[2*n] ) ;

}
int CHECK (n) /* CHECK[n] */
int n;

if (n > BC_POS) return (0) ;
else return (BC[2*n+1]) ;

}

/* W_BASE (n, node) and W_CHECK (n, node) store node into BASE [n] and CHECK [n]
r e s p e c t i v e l y * /

void W  BASE (n, node) /* BASE [n] <= node*/—
int n, node;

while(n >= BC_MAX) REALLOC_BC() ;
if(n > BC_POS) BC_POS = n;
BC[2*n] = node;

}
void W_CHECK(nr node) /*CHECK[n] <= node */
int n, node;

while(n >= BC_MAX) REALLOC_BC() ;
if(n > BC_POS) BC_POS = n;
BC(2*n + 1] = node;

}

char * MEM_STR(area_name, max, int)
char *area_name; 
int *max, int;

char *area;

*max= int;
if( (area = (char *)malloc (sizeof(char) * *max)) == NULL)
{

printf("%s malloc error! !\n", area_name) ;
}
memset(area, sizeof(area), '\0');
return(area) ;

}

void REALLOC_BC()
{

i n t  i, pre_bc;
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pre_bc = BC_MAX;
BC_MAX += BC_INC;
if((BC = (int *)realloc(BC, sizeof(int) *2*BC_MAX) ) == NULL) {

fprintf(stderr, "BC reallot error! !");
exit(-1);

}
for(i = 2*pret_bc: i < 2*BC_NAX; i++) BC[i] = 0;
fprintf(stderr, "*** BC realloc ***\n");

}

char *REALLOC_STR(area_name, area, max, int)
char *area_name, *area;
int *max, inc;
{

int i,pre_size;

pre_size=*max;
*max+=int;
if( (area= (char*) realloc(area, sizeof(char) * *max))==NULL) {

printf("%s reallot error! !\n",area_name);
exit(-1) ;

}
for(i=pre_size; i<*max; i++) area[i]=='\0';
fprintf(stderr, "***%S realloc ***\n", area name) ;
return(area) ;

/* READ_TAIL() copies the requested single-string from TAIL*/

void READ_TAIL(p)
i n t  p ;
{

int i = 0 ;

while(TAIL[p] != '#') TEMP[i++] = TAIL[P++];
temp[i++l = '#'; TEMP[i] = '/0';

}

/* WRITE_ TAIL() stores the single-string into the requested address p of TAIL*/
void WRITE_TAIL(temp, p)
char *temp;
int p;
{

int i = 0, tail index;

tail_index = p;
while((p + strlen(temp)) >= TAIL_MAX-1)

TAIL = REALLOC_STR("TAIL", TAIL, &TAIL_INC) ;
while(*(temp+i) != '\0')

TAIL [tail_index++] = *(temp+i++);
if( (p + i + 1) > TAIL_POS) TAIL_POS = p + i;

}

715

Selection of modes
main()
{
int c, i, count;



INITIALIZE() ;
for(;;)
{
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SELECTION() ;
count = 1; i=0
while( (c = getc(KEY_FILE) ) !=EOF) {

if(c !='\n'){
while(i >= KEY_MAX-2) {

KEY = REALLOC_STR("KEY",KEY, &KEY_MAX, KEY_INC);
TEMP = REALLOC_STR("TEMP", TEMP, &TEMP_MAX, TEMP_INC);

(
KEY[i++] = c;
continue;

1
KEY[i] = '\0'; i = 0;

switch(MODE) {
case INSERT_MODE:

if(SEARCH() == FALSE)
printf("%d:%s is inserted\n", count++, KEY);
else printf("%d:%s is already in your dictionary\n",

count++, KEY) ;
break;

case SEARCH_MODE:
if(SEARCH() == TRUE)
printf("%d:%s is searched\n", count++, KEY);
else printf("%d:%s is mismatch\n", count++, KEY) ;
break;
case DELETE MODE:

if(SEARCH() == TRUE)
printf("%d:%s is deleted\n", count++, KEY);
else printf("%d:%s is not in your dictionary\n",

count++, KEY) ;
break;

case DUMP_MODE: break;
default: exit(0);

}/switch*/
}/*while*/

INFO(count) ;
fclose(KEY_FILE) ;

}/*for*/
}
void SELECTION()
{
char key_name[30];

printf(" 1. Insert 2. Search 3. Delete 4. Dump 5. End \n");
scanf("%d%*c", &MODE) ;
if(MODE == END_MODE) exit(0) ;
if(MODE != DUMP_MODE) {

printf("key_file = ");
scanf("%s%*c", key_name) ;
KEY_FILE = fopen(key_name, "r") ;
if(KEY FILE == NULL){

printf("\nkey_dic can’t open\n");
exit(0);

}
}

}

/* INITIALIZE() initializes the entries of BASE and CHECK by zero, and TAIL by '\0',
but, particularly, BASE[l] is initialized by 1. Note that BASE[0], CHECK[0], CHECK[l]
and TAIL[0] are not used in this implementation*/
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void INITIALIZE()
{
int i;

BC_MAX = BC_INC; BC_POS = 1; TAIL_POS = 1;
if(BC = (int *)malloc (sizeof (int) *2*BC_MAX) ) == NULL) {

fprint(stderr, "BC malloc error!!") ;
exit(-1);

}
memset(BC, sizeof(BC), 0);
W_BASE(1,1); BC_POS = 1;

TAIL = MEM STR("TAIL", &TAIL_MAX, TAIL_INC);
TAIL_POS =–1; TAIL[0] = '#';

TEMP = MEM_STR("TEMP", &TEMP_MAX, TEMP_INC);
KEY = MEM_STR("KEY", &KEY_MAX, KEY_INC) ;

}

/* INFO() displays the sizes of the doubIe-array and TAIL, and all values of the double-
array and TAIL are included if DUMP_MODE is selected.*/.

void INFO(count)
int count;
{

int it bc_empty = 0;

for(i=0; i <= BC POS; ++i){
if(BASE(i) == 0 && CHECK(i) ==0) bc_empty++;

}
if(MODE == DUMP_MODE) {

printf("\n");
printf("Index | BASE | CHECK\n");

for(i=0; i <= BC_POS; ++i)
printf("%7d |%7d | %7d|\n", i, BASE(i), CHECK(i));

for(i=0; i <= TAIL_POS; ++i) printf("%d%c|”, i, TAIL[i]);
print("\n");

}

printf("Total number of keys=%d\n",count-1);
printf("BC_POS=%d\n", BC_POS);
printf("bc_empty+%d\n", bc_empty);
printf("TAIL_POS=%d\n", TAIL_POS);

}

Search routine

Suppose that MODE is SEARCH_MODE. The following function SEARCH() continues
the do-while loop manipulating traversal on the reduced trie until BASE(t) becomes
negative at line (s-4), that is to say, t is a separate node number. Then, the remaining
input string (KEY+ h+ 1 )  is compared with temp (the single-string STR[t] ) computed by
READTAIL() in order to determine whether KEY is registered or not. But only if
*( KEY+h) is equal to ‘#’, then TRUE is immediately returned without accessing TAIL
because STR[t] is the empty, or the null string. If KEY is not registered in the
dictionary, then line (s-1) detects the mismatch of KEY on the double-array, and line
(s-6) detects the mismatch on TAIL. Then, BC_lNSERT() and TAIL_lNSERT() are invoked
for these detections, respectively, so each FALSE of lines (s-3, s-11) indicates that KEY
was registered and TRUE of line (s-9) indicates that KEY has been already registered.
Suppose that KEY is in the dictionary and that MODE is DELETE_MODE. The deletion
of KEY is performed at line (s-8) after confirming the existence of KEY at line (s-6).
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Suppose that MODE is DELETE_MODE and that KEY has been registered in the
dictionary. Then, lines (s-7, s-8) deletes the arc prior to a separate node t. The entries
initialized by the deletion are available for the next insertion.

int SEARCH ()
{

unsigned char ch;
int h=-1, s=1, t;

strcat (KEY, "#") ;
do {

++h ;
ch = KEY[h];
t = BASE(s) + ch;

/*(s-1)*/ if (CHECK(t) != s) (
/*(s-2)*/ if(MODE == INSERT_MODE) BC_INSERT(s, KEY+h) ;
/*(s-3)*/ return(FALSE) ;

}
/*(s-4)*/ if(BASE(t) < 0) break;

s = t ;
}while(TRUE);

/*(s-5)*/ if(*(KEY+h) != '#') READ_TAIL ((-1) *BASE(t)) ;
/*(s-6)*/ if(*(KEY+h) == '#' || !strcmp(TEMP, (KEY+h+1))) {
/*(s-7)*/ if(MODE == DELETE_MODE) {
/*(s-8)*/ W_BASE(t, 0); W_CHECK(t, 0);

}
/*(s-9)*/ return(TRUE) ;

}else{
/*(s-10)*/ if(MODE == INSERT_MODE && BASE(t) != 0)

TAIL INSERT(t, TEMP, KEY+h+1);
/*(s=11)*/

}
}

Insertion routine

As mentioned
BC_INSERT() and

return(FALSE) ;

in the above search routine, there are two kinds of the functions
TAIL_lNSERT() to be invoked in the INSERT_MODE. Consider first

the following function BC_INSERT():

void BC_INSERT(s, b)
int s;
char * b;

{
int t;
char list_s[MAX_CODE-MIN_CODE+1], list_t[MAX_CODE-MIN_CODE+1 ],

*SET_LIST() ;

t = BASE(s) + (unsigned char) *b;
/*(b-1)*/ if(CHECK(t) != 0) {
/*(b-2)*/ strcpy(list_s, SET_LIST(s));
/*(b-3)*/ strcpy(list t, SET_LIST (CHECK(t))) ;
/*(b-4)*/ if(strlen(list_s) +1<strlen(list_t))
/*(b-5)*/ s = CHANGE_BC(s, s, list_s, *b) ;
/*(b-6)*/ else s = CHANGE_BC(s, CHECK(t), list_t, '\0');

}
/*(b-7)*/ SEPARATE(s, b, TAIL_POS);

}



AN EFFICIENT IMPLEMENTATION OF TRIE STRUCTURES 719

BC_INSERT(s, b) defines arc g(s, b[0]) on the double-array by invoking the function
SEPARATE() at line (b-7) if CHECK(t) = 0 at line (b-1). SEPARATE(s, b, tail_pos) shown
below defines arc g(s, b[0]) = t in CHECK[t] at line (e-1); stores position tail_pos of the
single-string and minus sign indicating the separate node in BASE[t] at line (e-2); and
stores the single-string into TAIL at line (e-3).

void SEPARATE (s, b, tail_pos)
char *b ;
int s, tail_pos;
{
int t;

t = BASE(S) + (unsigned char) *b; b++;
/*(e-1)*/ W_CHECK (t , s ) ;
/*(e-2)*/ W_BASE (t, (-1) *tail_pos) ;
/*(e-3)*/ WRITE_TAIL (b, tail_pos) ;

}

If CHECK(t) has been already occupied at line (b-1) in BC_insert(), the BASE entries
must be modified. In this situation, since an insertion of g(s, b[0]) is blocked by an
arc of another node k = CHECK(t), an insertion algorithm solves the conflict by
redefining BASE [s] or BASE[k]. In this selection of an s or k node, priority is given
to the one with the fewest arcs, in order to reduce space and time. This operation
uses the following functions SET_ LIST(), CHANGE_BC() and X_ CHECK() at lines from
(b-2) to (b-6).

char *SET_LIST (s)
int s;
{
char list [MAX_CODE-MIN_CODE+1 ] ;
int i , j = 0 , t ;

for (i = MIN_CODE; i < MAX_CODE-1; i++) {
t = BASE (s)+i;
if (CHECK(t) == s) list [j++] = (char)i;

}
list [j] = '\0';
return (list) ;

}

CHANGE_BC (current, s, list, ch)
int current, s;
char *list, ch;
{

int i, k, old node, new_node, old_base;
char a_list [MAX_CODE-MIN_CODE ] ;

/*(c-1)*/ old_base = BASE(s);
/*(c-2)*/ if(ch != '\0'){

strcpy(a_list, list) ; i = strlen (a_list) ;
a_list [i] = ch; a_list[i+1] = '\0';

}
/* (c-3) */ W_BASE (s, X_CHECK(a list) ) ;

i = 0 ;
do {
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/*(c-5)*/
/*(c-6)*/
/*(c-7)*/
/*(c-8)*/

/*(c-9)*/
/*(c-10)*/

/*(c-11)*/
/*(c-12)*/
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old_node = old_base + (unsigned char) (*list) ;
new_node = BASE(s) + (unsigned char) (*list) ;
W_BASE(new_node, BASE(old_node));
W_CHECK(new_node, s) ;
if(BASE(old_node) > 0) {

k = BASE(old_node)+1;
while (k-BASE(old_node) <MAX_CODE-MIN_CODE||k<BC_POS) {

if(CHECK(k) == old_node) W_CHECK(k, new_node) ;
++k ;

}
}

if(current != s && old_node == current) current = new_node;
W_BASE(old node, 0); W_CHECK(old_node, 0) ; list++;

}while(*list != '\0'); 
/*(c-13)*/ return(current);

}

CHANGE_BC(current, s, list, ch) modifies BASE[s] by calling the following function
X_CHECK(list) at line (c-3). X_CHECK() determines
base_pos> 1 and CHECK(base_pos + ′ c ′ )=0 for all

the minimum index -

entries  ′ c ′� in list.
such that

int X_CHECK(list)
char *list;
{

int i, base_pos = 1, check_pos;
unsigned char sch;

i = 0 ;
do{

ch = list[i++];
/*(x-1)*/ check_pos = base_pos + sch;
/*(x-2)*/ if (CHECK(check_pos) != 0) {

base_pos++; i= 0;
continue;

}while(list[i] != '\0');
return(base_pos) ;

}

Modifying BASE[s] in CHANGE_BC() involves the modification of the following arcs
g(s, ′ a ′ ) = old_node for ¢‘a ′ in list and the arcs leaving old_node as follows. -

1. For arcs leaving node s, the BASE and CHECK entries concerning old_node are
replaced by using new_node at lines from (c-4) to (c-7).

2. For arcs leaving node old_node, the entries such that CHECK(k) = old_node are
replaced by new_node at lines form (c-8) to (c-10).

3. As a special case of (2), replacing old_node by new_node involves the modifi-
cation of current node s in BC_lNSERT() when CHANGE_BC() has been invoked
at line (b-6), so line (c-11) checks this situation and line (c-13) returns the modified
current node.

Another function TAIL_INSERT() for the insertion is shown below. For the current
node number s and for the remaining input string b, the function TAIL_lNSERT(s, a,
b) defines arc g(s, b[0] = t on the double-array and stores the single-string
STR[t]=b[1]b[2]... in TAIL. The while-loop at lines from (t-3) to (t-6) appends a sequence
of arcs for the longest prefix a[0]a[1 ]. .a[length-1] of strings a and b. Lines (t-8, t-9)
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defines arcs labelled a[length] and b[length] are stored in the double-array. The
function SEPARATE() invoked at line (t-8, t-9) defines arcs such that g(s,a[length] = t
and g(s,b[length]) = t ′ on the double-array, and stores the both remaining strings
a+length+ 1 and b+length+ 1 for separate nodes t and t ′ into TAIL.

void TAIL_INSERT (s, a, b)
char *at *b;
int s;
{
char list [3];
unsigned char ch;
int i = 0, length = 0, t, old_tail_pos;

/*(t-1)*/ old_tail_pos = (-1) *BASE(s) ;
/*(t-2)*/ while (a [length] == b [length] ) length++;
/*(t -3)*/ while (i < length) (

ch = a[i++];
list [0] = ch; list [l] = '\ 0';

/*(t -4)*/ W_BASE (s, X_CHECK (list, '\0'));
/*(t-5)*/ t–= BASE(s) + ch;
/*(t-6)*/ W_CHECK (t, S) ;

s = t ;
}

/*(t-7)*/ list [0= a [length]; list [1= b[length]; list [2] = ‘\ O’;
/*(t-8)*/ W_BASE (s X_CHECK(list, '\0';
/*(t-9)*/ SEPARATE (s a+length, old_tail_pos) ;
/*(t-10/ SEPARATE(S, b+length, TAIL_POS);

}

The number of redundant entries of the double-array grows for small sets of keys,
but the number for large sets can keep an extremely small value. In order to build
a more compact dictionary for small sets of keys, the remapping of characters on
the basis of their frequency, statistically, becomes necessary. In this implementation,
other kinds of characters (Katakana, Chinese, etc.) can be used. Nevertheless, it is
better to treat a multi-byte character as one-byte by one-byte due to an offset based
on a large numerical value makes the size of the double-array grow, that is to say,
the double-array has many available, or redundant, entries.
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