Even Faster LR Parsing

R. NIGEL HORSPOOL AND MI CHAEL WHI TNEY

Department of Conputer Science, University of Victoria,
P.O. Box 1700, Victoria, BC WW 2Y2, Canada

June 1990

SUMMARY

Conventional LR parser generators create tables which are usedto drive astandard parser pro
parsers can be obtained bycompiling the table entries into code that is directly exec
withadirectly executable parser isits largesize. Inthis paper,weintroduce optimi z

the parsing speed evenfurther while simultaneously reducing the size of the parser.

KEY WORDS Parsing LR parsers Compilers

INTRODUCTION

The syntax analysis phase of a compiler can represent asignificant proportion of the entire conpilation
tine. Waite and Cartel gi ve figures showlng that arecursive descent parser consuned 24% of the entire
conpilation tine in a Pascal conpiler that they studied. Of course, this nunber is strongly dependent
on the parsing techni que and on the nature of the conpiler. But it does serve as a warning that parsing
shoul d not be 1 gnored when the goal is to achieve fast conpilationrates.

There are two famlies of parsing nethods in w despread use. (Che famly corresponds to a top-down
approach to parsing, and the class of grammars that are accepted is LI(1). Che nethod of inplenenting
LI(1) parsers is by recursive descent, but a nore efficient techni que is to use atable-driven parser. Infact,
Wite and Carter nanaged to reduce the proportion of time spent parsing in their Pascal conpiler from
24%t 0 T%by substituting a table-driven LI{1) parser coded in assenbl y | anguage.

The second famly of nethods is based on bottomup, shift-reduce, parsing. The classes of grammars
that are normally used are SIR(1), LALR(1) or LR(1) depending on the parser generator enpl oyed. W
wll use the termLRparsing torefer tothis collection of nethods. Until recently, LRparsers have all been
inpl enented using the table-driven approach. 'The parser generator transforns the grammar into tables
whose entries must be interpretively executed by a driver program

Because TALR(1) granmars have nore expressive pover than LI(1) grammars, the syntax rules for
nost progranmng | anguages are presented in LALR(1) forny whereas LI(1) grammars are provided for

only a few 'Therefore, 1t can be argued that a general - purpose parser generator should accept either the

LALR(1) or LR1) grammar class, rather than be restricted to the LI(1) class. Adiscussion of the pros
and cons of the LL and LRnethods can be found in Reference 2, pages 196-200.

There has been considerable research into reducing the storage requirenents of é@rskﬁﬁsthere
has been conparatively little work directed towards increasing parsing speed. Table-driven LR parsers
can be made to execute very much faster through careful coding of the driver program Grbs2thas
followed this approach and can parse Csource code at a rate of approximately 400,000 lines per mnute
on a Motorol a 68020 processor. This 1s approxinately tw ce as fast as a parser generated l%g fdhec
standard parser generator supplied wth UNIX.

An al ternative approach, used by Pennell7c) is to convert table-driven LRparsers intodirectl y-executed
code. Instead of having a driver programaccess a table entry and interpret i1ts actions, each table entry
can be ‘compiled’ intolowlevel statemnents that performthe actions directly. By conpiling LRtables into
assenbl y | anguage, Pennelloincreased the speed of various parsers by afactor of 6.5, achi evinga processing
rate of 240,000 lines per mnute on an Intel 80286 processor with a 8VHz clock rate. Aspeed-up by a
factor of 10 for a COBOL parser on a proprietary architecture was also reported. A mght be expected,
the conversion into code cane at the expense of an increase 1n menory requirenents — a growth factor
of 3.6 was reported. Tt is also possible to conpile the entries of a LI(1) parser into code, %nd Gay
has inplenented such a schene. Gay chose to conpile the LI(1) parser into Ccode, and therefore his
parser generator has the advantage of being portable. (h the other hand, the Clanguage is sonewhat
less flexible than assenbl y | anguage and sone 1 oss of coding effeiency inevitably occurs (especially when
switch statements are used in the Csource code).

W believe that adirectly executable parser generated fromlIL(1) tables will usually be faster than one
generated fromLR(1) tables. If the LI(1) parser is inplenented by recursive-descent or by a table-driven
equ val ent of recursive-descent with anexplicit control stack, it wll performmchless stack nani pul ation
than the LR(1) equivalent. This formof LI{1) parser pushes and pops anitemontoits stack no nore than
once for each application of a productionrule. The nunber of stacking operations is reduced even further
if 1terationis used instead of recursion when recognizing constructs defined by right-recursive production
rules. ALRparser, however, pushes and pops anitemontoits state stack for every synbol that is read as
well as for each application of a production rule.

Inthis paper, we introduce sone optimzationtechni ques that considerably reduce the nunber of stack
operations perforned by directly executable LR parsers, and we will describe a parser generator that
inpl enents these techni ques. Qur parser gemerator is compatible with yacc and generates a parser in
either Csource code formor in the assenbly | anguage of the SUN3 conputer. Retargeting the parser
generator to a different language is straightforward. The stack optimzations have the benefit of reducing
the size of the parser while similtaneousl yincreasingits speed. Wen conbi ned wi th sone other, sinpler,
optimzations, we can generate parsers that are only slightlylarger than their table-driven counterparts,
but execute up to eight tines faster.

The follow ng sections of this paper give an exanple of an unoptimzed directly executable parser, in-
troduce sone optimzations that reduce stack use, explainsone addi tional sinpler optimzations, and gi ve
performance resul ts achieved by our inplenentation. No specific know edge of LRparser generationtech-

ni ques is assuned. The interested reader can refer to texts on LRpallé)icng on conpi | er constructidn

for this i nfornation.

The resul ts reported here represent are-inplenentationof and an extension to sone earlierlwbfk

ANEXAMPLE

Before examning optimzationof directly executable parsers, it woul d be hel pful to beginwith a snall
exanpl e of the parse tables produced by a LRparser generator, and to l ook at howthe tables mght be

translated into Ccode.

A Grammar andi t s LALR(1) Par s e Ta ble s

Here is asnall grammar for arithnetic expressions containinginfix addi tion and mul tiplication operators.

0 S — E
1 E— E+E
2 E— E* E
3 E— (E)
4 E — id

The synbol id represents anidentifier. Wth decl arations tospecify that the + and * operators are left-
associ ative and that * has hi gher precedence than +, the grammar woul d be acceptable to the yacc parser
generator. (Sone grammar transfornations woul d be necessary before the grammar woul d be acceptable to

parser generators that do not support such declarations.) This grammar describes arithnetic expressions

such as
a+b
a+tbx*xc
(a+b) * (c)
and so on.

ATALR(1) parser generator woul d convert the above grammar into tabl es that encode the actions of a
LRparser for this grammar. The main parser tables are sonetines calledthe Ttable and the Ntable. The
colums of the Ttable are 1 ndexed by termmnal synbols of the gramar, whereas colurms of the Ntable
are 1ndexed by non-termmnal synbols. Figures 1 and 2 showthe tables for our exanple grammar. 'The
ternmnal synbol EOF represents an end-of-input narker. Wnote that a SLR(1) or LR(0) parser generator
voul d generate sinlar tables but containingfewer bl ank entries. ALR 1) parser generator woul d nornally
create larger tables with nore rows. However, all four parsing nethods use the sane kinds of table entries
and process the table entries inexactly the sane way.

Aparser that interprets the actions in these tables muintains a stack of state nunbers. The top state
nunber on this stack represents the current state of the parser. 'The parser selects an action fromthe T
table based on the current state and on the current input synbol. There are five different kinds of entry
used 1n the Ttable.

e Mentrylike ‘s7 indicates that a shift tostate 7 should occur. The newstate nunber, 7, 1s pushed

onto the state stack and a newinput synbol is read.

id + * () EQF S E
0| sr4d s3 0 sl s2
1 acc 1
2 shHh s4 r0 2
3 | sr4 s3 3 s6
4 | sr4 s3 4 sr2
5 | sr4 s3 5 s7
6 shHh s4 srd 6
7 rl s4 rl rl 7

Figure 1: T2 Table Figure 2: NTable

e M entrylike ‘r4’ indicates that a reduction using production nunber 4 should occur. TThere are
three parts to a reduction. First, if there 1s any semantic action associated with rule nunber 4, 1t
shoul d be executed. Second, as many entries are popped off the state stack as there are symbols
on the righthand side of rule nunber 4. Third, the synbol that appears on the lefthand side of the

production rule is used toselect anaction fromthe Ntable (see bel ow).

e Mentrylike ‘srb’ represents a conposite shift-reduce action. It is equivalent to the pair of actions:
‘sk;rb’ where krepresents anarbitrary state nunber. The val ue of k1is immaterial because the reduce
action pops and discards the value immediately after it is pushed. The use of shift-reduce actions

all ows nany states to be elimnated fromthe parser and hence nakes the tabl es considerably smaller.

e Ablank entryindicates that a syntaxerror has been detected. Atable-driven parser woul d nornally
report the error and then attenpt to resune the parsing process after executing a syntactic error

recovery al gorithm
e Tinally, the entry “acc’ (accept) indicates that the parser shoul d halt and report a successful parse.

There are three kinds of entryinthe Ntable. Fntries inthe table are selected by the current state (the

topnost state nunber on the stack) and by a non-termnal synbol .

e Mentrylike ‘s3’ indicates that state nunber 3 1s pushed onto the state stack. Parsing woul d then
contimnue by reverting to use of the Ttable (where the next actionis determmned by the newstate on

top of the stack and by the current input synbol).

e Mentrylike ‘sr2’ againrepresents aconposite shift-reduce action. The effect 1 s the sane as executing
aentry like sk fromthe Ntable 1mmedi ately followed by ‘r2” fromthe Ttable. This inplies that

another Ntable actionis executed immediately after the ‘sr2’ action.
e Ablank entry represents a “don’t care” entry because it can never be accessed, regardl ess of whether
the 1nput token sequence is syntactically correct or not.
Direct]l y-Execut abl e Parser Code

Astraightforward translation of the Tand Ntables into directly executable Ccode 1s easy to acconplish.

If we make only a mninal attenpt to generate good code, the code mght 1ook l1i1ke that shown in Figure

/* Code for T Table Actions */ /* Code for Rule Reductions */

S0: token = scan(); SRO: push(-1);
PO: push(0); RO: pop(1); lhs = S; goto NXT;
if (token == id) goto SR4; SR1: push(-1);
if (token == ’(’) goto S3; R1: pop(3); lhs = E; goto NXT;
goto Error; SR2: push(-1);
S1: token = scan(); R2: pop(3); 1lhs = E; goto NXT;
P1: push(1); SR3: token = scan(); push(-1);
if (token == EOF) return; R3: pop(3); lhs = E; goto NXT;
goto Error; SR4: token = scan(); push(-1);
S2: token = scan(); R4: pop(1); 1lhs = E; goto NXT;
P2: push(2);
if (token == ’+’) goto Sb; /* Code for N Table Actions */
if (token == ’*’) goto S4; NXT: switch(top()) {
goto RO; case 0:
if (lhs == E) goto S1i;
code for states 3-6 omitted goto P2;
case 3:
ST: token = scan(); goto P6;
P7: push(7); case 4:
if (token == ’*’) goto S4; goto SR2;
goto R1; case 5:
goto PT7;

Error:
. report the error

Figure 3: Directly Executable Parser

Fach rowof the Ttable is translated into a standard bl ock of code with two entry points. The rowfor
state nunber nis convertedinto code with the entrylabels Snand Pn. The forner calls the scan function
to read a newtoken whereas the latter does not. The code continues with astatenent to push the current
state nunber onto the stack and then perforns a sequence of tests on the current input synbol. Amnor
optimzation, seen instates 2 and 7, is to elimnate sone conparisons by making a rule reduction into a
default action. The only consequence of this optimzationis to delay detection of a syntax error in the
input until after the rule reduction has been perforned.

Each rowof the Ntable translates intoaclauseinas wi t ¢ h statenent. The rowfor state nunber nis
converted to code wth a label of the formc as e n followed by a sequence of tests. 'The subject of these
tests 1s the synbol that appeared on the lefthand side of the previous rule reduction. Anactionlike ‘s2” is
coded as a transfer tolabel P2 rather thanto S2 because the parser shoul d not read a newsynbol . Since
bl ank entries 1nthe Ntabl e cannot be accessed, enpty rows need not be convertedinto code. For the sane
reason, there need not be anexplicit test for the last possibilityin asequence of tests onthe lefthand-side
synbol .

Fach rule in the grammar is translated into a standard bl ock of code with two entry labels. The 1abel

with the formRn handl es a reduce by rule n (corresponding to an entry of the form‘rn’ inthe Ttable).

The code for areduce first pops k val ues off the state stack, where kis the length of the righthand side of
production rul e nunber n. Thenit sets the lhs variable to the lefthand side synbol of rule n, and transfers
control tothe s wi t ¢ h statement. If a semantic actionis associated with the productionrule, the code for
this action shoul d be included.

The | abel with the formSRr handles a shift-reduce action by rule n (corresponding to an entry of the
form‘srn’ in either the Tor Ntable). If the entry occurs inthe Ttable, a newsynbol st be read. A
fictitious state nunber 1s pushed onto the stack, and then the reduce action code can be executed. The
SRn 1 abel and the push operation may be omtted if there are no actions of the formsrnin either of the
Tor Ntables.

No doubt the reader will have noticed that the code in Figure 3 can be considerably inproved. Che
observationis that states 3, 4 and 5 in the T table produce nearly identical code (differing only in the
state nunber that is pushed onto the stack). Asecond point is that not all the labels defined in the code
are referenced — inpl ying that these labels and several lines of code nmay be deleted. 'The use of Cas a
target language is also a source of sone mnor 1neffei encies. For exanple, i1f the target 1 anguage permtted
statenent labels to be used as first-class objects (as in Fortran, PL/T or assenbly |l anguage), we could
inplenent the state stack by a stack of statenent 1abels and thus replace the s wi t ¢ h statenent labelled
NXTbyanindirect branch. Pennello’s directl y-executable %ansed this approach.

W will return to issues of code qualitylater. First, we wll consider optimzations that reduce usage

of the state stack.

STAK ACCESS OPITM Z AT ONS

Miny of the push and pop actions perforned during a LR parse are redundant. W present, bel ow,
the “Mnimal Push” optimzation techni que that elimmnates these redundant actions. In addition, we
present two additional optimzations that have the effect of increasing the applicability of mninal push

optimzation.

Minimal Push Optimization

Suppose that the grammar contains a production rule
4L —abcd

where a, b, c and drepresent termmnal synbols. Further suppose that there are no alternative productions
for Athat beginwth a. If the LRparser begins recognizing aninstance of Ain a context where there are
no possibilities other than A the parser shoul d contain a sequence of states like those shownin Figure 4.
(If state 5 has been elimnated by shift-reduce optinization, the argunent gi ven bel owrequires only mnor
changes.)

Wile recognizing Afromstate 1, the parser reads the synbols a, b, ¢, dand follows the sequence of
state transitions 1 — 2 — 3 —4 — 5 in the figure. The nunbers of each of these states are successively
pushed onto the state stack. At state 5, the parser perforns a reduction action using the rule A — a b
¢ d. The action causes state nunbers 2, 3, 4 and 5 to be popped off the stack and discarded w thout

ever having been used! The state nunber that is uncovered by the four pop operations (state 1) is used,

c d
—>—>

A\ Reduce:

A —-abcd
State 6

etc.

Figure 4: State Structure for A — a b ¢ d

hovever. It and the 1 efthand-side synbol, A are needed to determmne that atransitiontostate 6is required
after the rule reduction.

W nake the observationthat only states withnon-termnal transitions (like state 1inthe figure) need
be pushed onto the stack. These state nunbers are the only ones which mght be consulted after a rule
reduction. For the parser whose tables are givenin Figures 2 and 3, the states which need to be pushed
are 0, 3, 4 and 5. These are the only states whi ch have non-enpty rows in the Ntable.

The obvious optimzation to make to a directly executabl e parser, therefore, 1s to generate statenents
for pushing the state nunber only instates that have non-termmnal transitions. Inthe code generated for a
rule reduction, we also need to nodify the nunber of itens to be popped off the state stack. For exanple,
the rule reduction code for A — a b ¢ dinState b woul d have to be changed frompoppi ng four itens to
popping zero itens. Determmnation of the correct nunber of itens to pop at a reductionis not diffeult.
However, we will provide a noderately fornal expl anation.

W use the notation S X, S; to indicate that the LRparser has a transition fromstatd¢cSstate
S; onsynbol X. For astate § where areduction X— X1 X5... X is perforned, we define the reduction
path set as:

{5152...,5‘51— LG S Xg s, i“—hsl}

(A ven a particul ar reduction path;Ss. .., the nunber of itens to popis equal to the nunber of states
w th non-termnal transitions anongs$ S...,.5 (Note that §is not includedinthe list.)

Two probl ens arise. The first problemis that two diflerent states nay performa reduction by the sane
production, and the count of itens to pop in one state nmay disagree with the nunber of itens to popin
the other state. The second probl emis that a particul ar reduction insone state nay have nore than one
reduction path, and sone of these paths may require differi ng nunbers of i1tens to be popped.

The first problem where there is a conflict betvween reduction actions in two different states, can be

resol ved by replicating the rule reduction code in the directly executable parser. Fach replica can be

a
E—— State 3
b
c
State b —_— State 6
a b Reduce:
State 2 —_— State 4 A —abec

Figure 5: A “Pop- Count” Confli ct

nodi fied to pop a different nunber of itens off the stack. It is then an easy natter to transfer control to
the appropriate version of the rule reduction code.

The second probl em where areductioninasingle state does not have an unanbi guous nunber of itens
topop, is illustratedin Figure 5. Inthe figure, states 1, 2 and 4 have non-termnal transitions and cause
itens to be pushed onto the stack. If state 6 is entered by the path 1 — 3 — 5 — 6, the rule reduction
shoul d not pop any itens off the stack. But if state 6 is entered by the path2 — 4 — 5 — 6, one item
(state nunber 4) needs to be popped. Wcall this situation a “pop-count” confli ct.

There are at least two possible solutions to sucha conflict. Che possibilityis toinsert sone extra stack
pushes into the reduction paths which have fever pushes. Asolution al ong these lines must exist because,
at vorst, we can cause every state to push its state nunber on entry — reverting to the behaviour of the
unoptimzed LRparser. An alternative solution, and the one actuallyinpl enentedinour parser generator,
1s to duplicate the states involved in the conflict. For exanple, the configuration of Figure 5 would be
transforned intothe configurati on shownin Figure 6. By this neans, the states 6 andré gi ven di stinct
nunbers of itens to pop fromthe stack when a reduction by the rule A — a b cis to be perforned. In
other words, the second problemw th pop counts is reduced to an instance of the first probl em

In practice, we have found pop count conflicts to be rare. (hly avery fewstates need to be duplicated
toelimnate the conflicts. Sone figures appear towards the end of this paper inthe section on experinental
resul ts.

For a typical grammar, the proportion of stack pushes that are elimmnated by the mninal push op-
timzation alone is not very high. W observed that only about 30%of pushes are elimnated, and this
figure does not appear hi gh enough to nake the optimzation worthwhile. As one referee of this paper
observed, two or more adjacent termmnal synbols in the righthand side of a rule are necessary for the
optimzationto be applicable. Typically, termnal synbols are used to separate non-termnal synbols and

they do not often appear 1n adjacent positions. However, the optimzation becones hi ghly effective when

A

a b c

Reduce:
A —abc pop(0)

a b c

Reduce:

N B A —abc pop(l)

Figure 6: The Pop- Count Confli ct Resol ved

used 1n conjunction mth the “direct goto” optimzation, described next.

An al ternative nethod of elimnatingsone redundant stacking operations fromthe parser woul d be to
inpl enent 1eft-corner parsiSHg Wth this techni que, LRparsing is used for parsing the righthand-sides
productionrules until it becones unanbi guous as to whichrighthand-sideis involved. A this point, LI(1)
parsing is used to recognize the renainder of the rule. Since we caninplenent LI(1) parsing with fever

stacking operations than for the LRnethods, sone savings should occur.

Direct Goto Determination

Atable-driven LRparser uses the Ntable to determne howto continue after arule reduction. The state
stack 1s popped and the top state on the stack is used to select arowin the table. The lefthand side
of the rule determmnes the col unm, and thus the appropriate shift or shift-reduce actionis selected. 'The
equi valent actions inthe directly executable parser (as seenin Figure 3) are toselect sone code toexecute
based on the top state on the stack. Then a series of tests onthe lefthand side synbol is perforned.

If arule reduction in sone state al ways causes the parse to be continued in exactly the sane way, all
the work of selecting a clause inthe s wi t ¢ h statenent and the tests on the lefthand side synbol can be
suppressed. The rule reduction can be inpl enented by poppi ng the stack, 1f required, and then naking a
direct transfer of control to the appropriate continuation code.

W will nowgive a more formal explanation of mninal push optimzation and of the direct goto
optimzationintroduced in this section. Inorder to sinplify the fornal expl anation, we w1l assune that
the parser does not contain any conbined shift-reduce actions. (It is straightforward, but not instructive,
to renove this assunption.)

First, ve will introduce sone nore termnol ogy. let States be the set of parser states and Rul es be the
set of production rul es which nay be used inreduction actions. If astate S may performa reduction using

the rule R= X — X1 X5... X ve define an origin state for this reduction as being a statesush that

S155...,951s areduction path for rule Rin state 5. W also define the destination state associated wth
S1, Rand Sas being the state, D, reached by the non-terminal transitiononsynbol X (the lefthand-side
synbol of rule B fromstate S In other words, Drepresents one of the possible states in which parsing
resunes after areduction by rule Rinstate S.

For the entire parser, we can define the set of Rductionsas { < @, O R S >} where Qis anorigin
state associated with eachrule reduction Rperforned in each state S, and @Q— Dis a transitionlabelled
by the lefthand-side synbol of R

W can optimze the reduction by rule Rinstate Sif the set of possible goto destinations
{ d|<q, d, B S>€ Rductions, q € States, d€ States}

contains exactly one element. In this situation, the parser need not consult the state stack after the
rule reduction and can sinply transfer control to the uni que destination state. W call this particul ar
optimzation direct goto optimzation.

Since direct gotooptimzations el imnate sone accesses tothe state stack, the mninal push optimzation
can be extended. It is frequently the case that direct goto optimzation elimnates the need for pushing
nany nore states.

The exact conditions under which a state should nowbe pushed are the followmng. State QQmst be
pushed onto the stack in a parser to which both mininal push and direct goto optimzation are applied

onlyif

(1) IR S D <@ D R S>€ Rductions, and

(2) ARS D Re HRules, S€ States,
<@ D R S>€ FReductions,
{ d| <q,d, RS> Rductions, ¢, d¢c St%tbi}

The first of the two conditions requires that state Qhas at least one non-termmnal transition. The second
condition requires that at least one use of the non-termmnal transition after a rule reduction cannot be
elimnated by direct goto optimzation.

If we were to apply mninal push optimzation and direct goto optimzation to the parser shown in
Figure 3, the follow ng changes woul d be nade. First, stack push operations woul d be suppressed instates
0, 2, 6 and 7. Second, reductions byrules 0 and 4 woul d be inpl enented by direct control transfers. Third,
reductions byrules 1, 2 and 3 woul drequire only one itento be popped (instead of the three itens required

by a conventional LRparser).

Ri ght - Recursive Rule Optimization

(bnsider howlists of identifiers separated by commas may be described by grammati cal productions. Che

possibilityis touse righi-recursive production rules, as follows.

L — id LL

10

LL —
LL — , id LL

An al ternate possibilityis by using left-recursive productionrules, as follows.

L — id
L — L, id

The left-recursive formnulation canmot be used with non-backtracking, LI(1)-based parsing nethods.
The parser is unable determmne which of the two rules to use when it begins to match the symbols on
the righthand side. 'The right-recursive formul ation, however, works very well wth recursive-descent or
tabl e- driven LI{1) parsers. It is particularly effective if the tail-recursioninpliedby the third production
rule is optimzedinto aniterative loop.

Aparser based on one of the IRnethods can be used with either formulation. (This is one of the
reasons why the LRnethods are often preferred to the LLnethods.) But the left-recursive fornul ationis
much preferable to the right-recursive form ATLRparser, constructed by the standard nethod fromthe
right-recursive grammar, will performashift action for everyidentifier and comma in the list that 1s being
parsed. It wll not performany reductions until a shift action has been perforned for the final identifier in
the 1ist. Thus, if the list contains nidentifiers, 2n— 1 states will be pushed onto the state stack w thout
any intervening pop operations. 'The unfortunate inmplicationis that the amount of storage allocated to
the stack restricts the maxi numl ength of alist that can be parsed by a normal shift-reduce parser using
aright-recursive grammar. In contrast, if the left-recursive formilationis used, alist of indefinite length
can be parsed wth a stack that has space for just three itens.

The mnimal push optimzation, introduced above, reduces stack use for the right-recursive grammar
somevhat . For exanple, alist containing nidentifiers wouldrequire only nstack pushes, because pushes
of the state where the comma separator 1s recognized are suppressed. However, i1t would definitely be
advant ageous to reduce stack use even further.

As the followingexanple wll illustrate, the push operations occurring during recognitionof aconstruct
defined by a right-recursive rule nayindeed be unnecessary. Tosinplify the expl anation, we use aslightly

sinpler grammar than the one gi ven above. (Cbnsider a grammar that includes the foll owing three rules.

1. S — ... L ...
2. L—a, L
3. L — b

The dots indicate that sone synbol s in the first rul e are not shown. The non-termmnal L generates lists of a
synbol s termnated by a b synbol and separated by commas. If the grammar contains no other references
to the non-termnal L, the LRparser wll include the states shown in Figure 7.

Inthis parser, the mninal push optimzationtechni que will determmne that only states 1 and 5 (both
w th non-termmnal transitions on L) need to be pushed. However, state 5is located in a two-state cycle

that 1s traversed once for each occurrence of the synbol a.

11

b
State 1 —_— State 2
Reduce:
L—b

Reduce:

L\ & State 6
L—b

/
R
a
\ J State 7 Reduce:
L —a, L

Figure 7: Parser with R ght- Recursive Rul es

Anal ysis performed for direct goto optimzation reveals that the set of reduce tuples for the parser

contains the follow ng three elenents:

<States, State, L — b, State >
<Statey, Statg, L — a,L, State >

<States, State, L — a,L, State >

Wnote that the reduction bytherule L — binstate 6i1s acandidate for direct reduction opti mzation.
Hovever, the critical observation to nake is the followng. If areduction by the ruleL — a , Linstate
7 uncovers state nunber 5 on the stack, control is immedi atel y passed back to state 7 again. That is, the
destination state and reduction state 1n the reduction quadruple are the sane. If there are no semantic
actions associated wth a reduction by this rule, such a reduction has no nore effect than popping one
el enent off the stack.

Wien parsing the list a,a,4a,a,b, the parser wll push state 1 followed by four occurrences of state b
onto the stack. Then the top four itens will be popped off the stack (as four reductions by rule nunber 2
occur) and control will be transferred tostate 3. If state 51is sinply popped off the stack without having
any other effect on the parse and is not accessed in any state other than state 7, it need not have been
pushed in the first place.

The mmnimal push optimzation techni que can be extended to elimnate the push of state 5 in the
exanple. W call this extension right-recursive rul e opti mzation.

The anended specification of when a state should be pushed onto the state stack in a parser that
inpl enents mninal push optimzation, direct goto optimzation, and right-recursive rule optimzationis

the followmng. Astate Ineed be pushed only if

(1) 3 RS, D: Re Rules, S, DE States,
<@ D R S>€ Rductions, and

(2 /3RS D RE Rules, S, De States,

12

<@ D R S>€ FReductions,
{ <¢,d, RS>| q,d€ States, d /=Sor Rhas ser%nj}il:s}

The only change frombefore is that we ignore a reduce tuple in the second condition 1f the destination

state 1s 1dentical to the reduction state and if the production rule has no associated senantic actions.

Unit Rule Elimination

G amnars typi cal l y cont ai n nany productionrul es of the formA — X, where Xrepresents either atermnal
or non-termnal synbol. Such a productionis called a unit rule.

LRparsers generated fromgrammars containingunit rules usually have nany states 11ke statien$he
foll owing scenario. (bnsider stafewhich has an outgoing transitionlabelled by synbol X which can be
either atermmnal or non-termnal synbol. Wen state dccepts X control is passed to statevwhere a
reduction by rule A — X takes place. This causes a goto action, corresponding to a transition away from
state § tostate §onsynbol A to take place.

If there are no senantic actions associated withthe unit rule, there is no reason why stladd @ not
sinpl y have atransition togd abelled by X And the transitiontae $abelled by Xshoul d be del eted. This
transformationis known as unit-rule elimnationor chainrule elimnation andis a standard optimzation
techni que for LRparserlsOV 13, 14 Wnentionit here because it is an optimzationthat eli mnates nany
push and pop operations fromthe parser. 'The effect ona directly executable parser is toreduce both space
and execution tine requirenents.

Al though we have specifically inpl enented unit rule el imnationinour generator for directly executable

parsers, branch-chaining optimzation (described bel ow) of ten achieves the sane result.

LOW-LEVEL OPTT M ZATT N5

(Chreful attentionto the code patterns 1s necessary i1f we wish to maxi mze speed while naintai ni ng an
acceptabl e size for the parser. Agood peephol e optilgzz@]ul dperformsone of the code transfornations
described bel ow. But, since these transfornations are inportant for obtaining good perfornance, they are

explicitly 1npl enented by our generator for directly executable parsers.

Code Sharing

Miny states inthe parser have 1dentical or nearlyidentical sets of outgoingtransitions. For exanple, states
0, 3, 4 and 5 of the parser shown in Figure 1 have identical T Table actions. Very significant reductions
in parser size can be achievedwthlittle or no penalty interns of increased execution tine if the code for
such states is shared.

W have found it convenient to categorize state simlarity into four different classes, and associate
different code transfornations wtheach. Note that for the purposes of finding simlar states, we consider
T Tabl e actions and N-Table actions 1 ndependently.

The first category occurs when tvwo states have i dentical sets of actions. The obvious transfornationin

this case is toreplace one copy of the code by a branch to the other copy.

13

The second category covers the case when the actions in one state forma subset of the actions in
another state. In this case, the obvious transformationis for the two states to share the code for their
comon actions. For exanple, the state which has nore actions could containjust the code for the actions
which are peculiar toit and this code is folloved by a branch to the other state. W note, however, that
the code sharing transfornation appliedto asequence of conditional tests mayincrease the execution tine
if the sequences are subsequently convertedinto binary searches (see below).

The third category occurs when two states have simlar, but not i1dentical, actions and neither set of
actions is a subset of the other. Asmall-scale exanple appears in Figure 1 mth states 2 and 6. Again,
the obvious transformation is for both states to contain code for the actions which they do not have in
common fol l owed by a branch to sone shared code. ('The second category can be seen as a special case of
the third category.) In the case of states 2 and 6 in Figure 1, the benefit of themsharing code is snall.
Inpractice, 1t is desirable to require that two states must have a mni numnunber of actions in conmon
before a code sharing transfornmationis applied.

The fourth category occurs when several (nore than two) states have simlar, but not quite identical,
actions. As a very snall scale exanple, suppose that state SI includes actions { A2, A3 } |, which are
perforned when the input synbol is t7or t2 respectively. Simlarly, state S2includes actions { Al, A3} |
perforned when the i nput synbol is {7or 13, andstate S3includes actions { Al, A2} | perforned vhen the
input synbol is {7 or t2. Any two of these states can share code using the techni que described above, but
a different strategy must be used if all three states are to share code effeiently. This situationfrequently
arises with practical grammars, but on a larger scale. For exanple, there are many states associated
wi th recognition of expressionstructure. They are differentiated only by the precedences of the expression
operators that have been recognm zed so far. These states accept simlar, but not identical, sets of termnal
tokens and have simlar actions associated mth the tokens. Therefore, 1t is worthwhile to performa code
transfornation that allows the code to be shared. Qur solutionis to group the common actions together
and to test a vector elenent in each state to determmne if control shoul d be passed to the conbined action

group. 'The code for the small-scal e exanpl e mght have the form

S1:1if (bvectori[token] == 1) goto G;
other actions for state 1

S2:1if (bvector2[token] == 1) goto G;
other actions for state 2

S3:1if (bvector3[token] == 1) goto G;
other actions for state 3

G: switch(token) {
code for actions Al, A2 and A3

1

The data storage required for the vectors and the execution tine cost of performng the indexed vector
test make this transfornation vorthwhile only if a relativelylarge nunber of each state’s actions can be
included in the group. In practice, the same vector may be tested inseveral states and this reduces the

storage cost somewhat.

14

Conditional Sequences

The T-tabl e actions for eachstate nornally require the current input tokento be conpared against several
possible values. Simlarly, the Ntable actions for eachstate require conparisons of the non-termnal synbol
that appeared on the lefthand-side of a reduced production rul e against various possible val ues. Wen the
nurber of possibilities is snall, say 7 or fewer, a series of conparison tests, as used in the sanple code of
Figure 3, is reasonably effeient. However, when the nunber of possibilities is larger, nore effeient code
shoul d be used. (Wth the Cgrammar that was used in our experiments, one state has 30 possibilities for
the next termmnal synbol and several states allow29 possibilities.)

As Pennello observeg, a faster approach is to organize the tests as a binary search. An alternative
nethod, suitabl e when the nunber of tests is large and the range of possible values is reasonably conpact,
is touse ajunp table, corresponding to the usual inpl enentationof as wi t ¢ h statenent inCor ac as e
statenent 1n Pascal. Ikpending on the nunber of possible values, our parser generator selects whichever
of these schenes appears to be nost appropriate.

dven information about the dynamc¢ behaviour of the parser, it would also be possible to order
the tests so as to mnimze expected execution tine. However, this possibilityis ignoredin our current

inpl enent ation of the parser generator.

Branch Chaining

Wien the target of a branch statenent i1s another branch statenent, the first branch can be re-targetted

to transfer control to the destination of the second. This particul ar transfornationis commonly included

inthe repertoire of peephol e optim%éysand shoul d therefore be perforned by an optimzing conpiler.
Hvever, we stress the inportance of the branch-chaining opti mzation because 1t can have a siml ar

effect to other, apparently nore sophisticated optimzations, when applied to a directl y-executabl e parser.

For exanpl e, consider the follow ng grammar for arithnetic expressions.

0 S — E
1 E— E +
2 E— E -
3 E—-T
4 T — T *
5 T—-T/F
6 T— F
7 F— (E)
8 F — id

There are states in the parser for this grammar where the follow ng sequence of umt rule reductions can
occur: F — id, T — F, E — T. These are unit reductions, as discussed earlier. If there are no semantic
actions associated with these unit rules, then after direct goto optimzation, the code for one of these
states should be sinmlar to the following. (W assune, for sake of exanple, that this state happens to be
nunbered 7.)

15

S7: token = scan();
PT7: push(7);
if (token == id) goto SRS8;
. omtted code
SR3: goto P27;
. omtted code
SR6: goto SR3;
. omtted code

SR8: goto SR6;
If branch chainoptimzationis applied, the test instate 7 woul d be sinplified to
if (token == id) goto P27;

This is simlar to what one woul dexpect 1f unit rule elimnationoptimzationhad been appliedto the parse

tables.

I MPLEMENTAIT ON AND EXPERI MENTAL RESULTS

Structure oft he Parser Generator

Agenerator for directly executabl e parsers has been inpl enented in four phases:
1. TALR(1) parse table generation.
2. Stack use optimzations and PMcode generation.
3. PMcode peephol e optimzation.
4. PMcode totarget 1 anguage translation.

The first phase reads a grammar specification givenin the sane notation as supported by ygccEvery
construct of yacc except for the senantic stack (the stack whose elenents are accessed by ‘$$°, ‘$1°, ...
notation) and support for error recovery are provided. The senantic stack is not supported because the
mm nal push optimzation causes positions inthe state stack tolose their one-to-one correspondence wth
positions in the semantic stack. The user can, of course, use explicitly declared stacks in the senmantic
action code. The lack of support for error recovery nmay be a nore serious deficiency, depending on the
applicationinwhichthe parser will be used. Adiscussion of howerror recovery coul d be supported appears
at the end of this paper.

The second phase of the parser generator reads the parse table into nenory and applies the optimza-
tions described in third section of this paper. The inplenentation does not assune that the tables are
generated by a LALR(1) al gorithny thus it would be relativelystraightforward to substitute a SLR(1) or
LR(1) generation al gorithmfor the first phase. The output of the second phase is a directly executable
parser, describedinanidealizedand very conpact notationthat we call PM-code (short for parser nuchine

code). PMcode canbe viewed as the assenbl y | anguage for a hypothetical nachi ne whi chhas astate stack,

16

aregister naned 7whichhol ds the 1 ast 1nput token and a register naned L whi ch hol ds the a non-termmnal
synbol . The nachine has instructions for testing the Tregister, Lregister or the top of stack, for reading
anewtokenintothe Tregister, for storing a value inthe Lregister, pushing and popping the state stack,
and so on.

The third phase applies the optimzations described infourthsectionof this paper. Eventhough branch
chain optimzationis perforned by nany conpilers (and thus woul d be applied to the generated parser),
we performthi s optimzation because it reduces the vol une of PMcode and because it nakes code sharing
optimzations easier to apply. The output fromthe third phase is in the PMcode format, except that a
greater variety of instructions is used. For exanple, after this phase, the PMcode nay contain bit-vector
tests, whereas none woul d have been present in the input.

The fourth phase 1s constructed as asnall, sinple, programso that retargeting to different 1 anguages is
relativel y easy. Wcurrently have two inpl ementations. Che perforns a sinple translationfromPMcode
to the Clanguage, the other translates to SUN3 assenbly | anguage. (The SUN 3 conputer series use the
Mtorola 68020 and 68030 CPls.) (bnparing parsers generated by the two versions allows us to estinate
the extra overhead i ntroduced by the use of C

The Cversion of the translator generates Ccode as described in this paper. The assenbly |l anguage
version attenpts to generate the best possible code. It inplenents the stack of states as astack of labels,
and uses the systemstack for this purpose. There are three benefits of using the systemstack instead of
a separate stack. The first is that the (PUprovides efftient instructions for pushing label addresses onto
the systemstack, both ‘jsr’ and ‘pea’ can be used for this purpose on the MB8020. 'The second benefit
1s that the stack size is limted only by the maxi numstack size of the Unix process. The third benefit is
that stack overflowchecks are inplicitly perforned by the nachine.

Experimental Dat a

Grammars for the Cand Pascal languages were used to generate directly executable parsers, and tim
ing experinents vere perforned on these parsers. (bnparisons wth parsers created by the yacc parser
generatOI6 were also perforned, but 1t shoul d be realized that yacc was not designed with fast parsingin
m nd.

Two grammars for Cwere used. The first grammar was a slightly nodified version of a published
gr anmmar 16, The minor changes to the grammar conprised, for the nost part, the inclusion of senantic
actions to process declarations of type identifiers. The Clanguage separates the expression operators into
15 different precedence level s and the first grammar uses a di flerent non-termmnal synbol to represent each
precedence level. 'The second C grammar is based on the first, except that the precedence levels of the
operators are not defined by the grammar rules. Instead, precedence decl arations are suppliedto the parser
generator and are used by the al gori thmthat constructs the LR0) states. The second grammar elimnates
alnost all umt rule reductions that occur when expressions are parsed. Parsers based on the second
grammar woul d usual 1y execute faster than parsers created for the first grammar. The two grammars are
naned C'and (Jprec, bel ow.

Simlarly, two Pascal grammars were used. Again, the first grammar is simlar to one that has been

17

C Cfprec Pasc Pasc/prec
Rul es 238 214 172 167
Non-Téermnal s 93 69 71 66
Termmnal s 84 84 61 61
LR0) States 345 342 305 312
LR0) States (after SRopt. 172 216 163 181
Push States 74 96 79 91
Pop Count Confli cts 9 10 0 0

Table 1: Characteristics of the Test Gammars

publishecw. (Sone minor nani pul ation was required to expand extended BNF notation into production
rules suitable for use witha LRparser.) The first grammar enbodied the operator precedence levels inthe
production rules. For conparison purposes, a second grammar where the precedence levels are declared
separatel y was also created. The two grammars are naned Pasc and Pasc/prec, bel ow.

The overall characteristics of the four grammars and of their LRparse tables are summarized in Table
1. 'The fifth line in the table shows hownany LR(0) states remain after shift-reduce optimzation is
applied. The sixth line shows the nunber of states whichneed to be stacked after the mmninal - push and
direct-gotooptimzations describedinthis paper have been perforned. The 1 ast 1ine inthe tabl e shows how
nany states needed to be duplicated to elimnate pop count confli cts associated with the mnimnal-push
optimzation techni que.

For each of the four grammars, three parsers were generated. QOur own parser generator was used to
create two of the parsers —one created as a Cprogramand the other as an assenbly | anguage program
The third parser was created by yat@.

The Csource code file used for timng the three Cparsers conprised 1395 lines containing 38561
characters. (The fil e was the source code for the suntools programincluded with version 3.5 of the Sun(h
UN Xoperating system) But sone of these lines were directives tothe Cpreprocessor that caused several
thousand nore lines of Ccode to be included. The file size after preprocessing was 10193 lines, contai ning
122880 characters or 26738 1 exical el enents. However, alarge proportion of the lines inthe output fromthe
preprocessor were enpty (because they were enpty in the original source fil es or containedonly comments
or contained preprocessor directives inthe original files). If enptylines andlines containing fil e- nane /11 ne-
nunber directives (used by the Cconpiler to correlate error nessages with positions inthe original input
files) are stripped fromthe file, the size is reduced to 3169 lines or 105197 characters. Since it is unclear
whi ch fil e size shoul d be used when conputing the speed of a Cparser, we avoidstressing speeds neasured
inunits of source lines or source characters per mnute.

The Pascal source fil e used for timngthe Pascal parsers conprised 4462 11nes containi ng 100684 charac-
ters or 18526l exical el enents. (This large Pascal programis the source code for alexical anal yzer generator
called aardvark.) Since standard Pasddl does not have a preprocessor, these figures are unanbi guous.
Stripping all comments and bl ank 11 nes fromthe fil e woul d reduce 1ts size to 3934 1ines or 89241 characters.

The sizes and the execution tines for each of the 12 parsers are givenin Table 2. The execution tines

do not include lexical analysis (or preprocessing tine for the Csource files). Towever, the C parsing

18

C (fprec Pasc Pasc/prec

C Parser

Source code size (lines)| 1704 1872 1173 1305

(hject code size (bytes)| 8256 8400 6032 6928

Fxecution tine (seconds)| 0.54 0.28 0.13 0.13
As sembler Parse|r

Source code size (lines)| 2614 2759 1848 2171

(bhject code size (bytes)| 7688 8240 5408 6248

Fxecution tine (seconds)| 0.44 0.23 0.13 0.14
Yacc Parser

Source code size (lines) 601 632 417 500

(hject code size (bytes)| 5832 6536 4184 4840

Fxecution tine (seconds)| 2.95 1.54 0.91 0. 87

Table 2: Sizes and Speeds of the Parsers

ptimzations Applied

Mninmal Push no no yes yes
Orect Goto no ves no yes
Push States 168 168 98 74

Size of Parser (lines) 2004 1937 1805 1704
(hject (bde Size (bytes) | 9472 9264 8616 8256
Fxecution Tine (seconds) | 0.66 0.66 0.62 0.54

Table 3: Hfect of Stack (ptimzations

times do include sonme overhead entailed in recognizing declarations of type identifiers and entering these
identifiers into atable that is accessed by the lexical anal yzer. GGher than the code needed to handle type
1dentifier declarations, no senmantic actions were perforned. Fach tine givenin the table is an average
over ten neasurenents. If the parsing rates are convertedintolines per mnute, the figures for the directly
executabl e parsers range from800,000 lines per mnute to over 2 mllion lines per mnute, depending on
howthe file size is determned.

The directly executable parsers are five to ei ght tines faster than the equi val ent parsers generated by
yacc6, at the expense of a nodest increase in menory requirenents. Unfortunately, 1t 1s not possible to
conpare the parsing speeds wth those observed by Pennel o (Tk used a different grammar, gave his
tinings for a different (CPUand gave no conparisons wth parsers generated by yacc.)

How effective were the different optimzations in reducing the space and tine requirenents of the
parsers? Table 3 shows the effect of disabling the mmninal push and direct goto optimzations on the
parser generated for grammar C' R ght-recursion optimzationis not included in the table because our
sanpl e grammars contain very fewright-recursive production rules. Al the sinpler optimzations were

still perforned. The inportance of the sinpler optimzations is hard to quantify because sone of these

19

optimzations nmay or nay not be autonatically perforned when the parser is assenbled or conpiled.
Wthout question, they are inportant for reducing the storage requirenents to a size conparable to that
of atable-drivenparser. A anillustrationof their inportance, we generated an assenbl y | anguage parser
for the Cgrammar, above, where execution of the third phase of the parser generator was suppressed.
This caused every sequence of conditional tests to be inplenented by a junp table and no code sharing
optimzations were perforned. The size of the generated parser was 13291 lines of SUN 3 assenbl er source
code, which assenbl ed into 28144 bytes of object code — more than three tines larger than the optimzed
parser. 'The execution speed was al nost 1dentical to that observed for the optimzed assenbl y 1 anguage
parser generated for the sane grammar. 'That is, the average tine needed to parse the sanple file was
0.44 seconds. W can conclude fromthis that the optimzations perforned in the third phase of the parser
generator are neutral in their effect on execution speed.

A question whichis sure to arise 1s ‘ Fbowrmmch longer does it take to generate a directly executable
parser than to generate a table-driven parser?’. Hre is apartial ansver tothe question. The tine required
by our parser generator when processing the Cgrammar is 27.3 (PUseconds on a SUN3/280 system
vwhile the corresponding tine required by the yacc tool on the sane computer i1s 15.4 (PUseconds. For
the smaller Pascal grammar, there 1s muchless difference. Qur parser generator requires 6.7 (PUseconds

and yaccrequires 5.3 (PUseconds.

SUMVARY AND I URIHER WRK

W have described three different optimzation techni ques for directly executable parsers wh ch simul -
taneousl y increase their speed while decreasing their storage requirenents. VMen used in conjunction with
other, sinpler, storage optimzations, the resulting parsers can recognize their input at anincredibly fast
rate. The parsers are five toeight tines faster than the equi val ent table-driven parsers generated by yacc,
vwhile requiring only a nodest amount of extra nenory.

Apossible application area for hi gh-speed parsing is in code generation. Sone code generation neth-
ods!8 19 yse a parser to performpattern matching against internediate code. Typically, each pattern
represents a machine instruction of the target conputer that is emtted when the pattern is recognized.
Hovever, a standard parser is not quite powerful enough to performthe job. It is necessary to attach
semantic predicates to some production rules that have the effect of disallow ng use of the rule unless
the predicate evaluates to true. Agenerator of directly executable parsers woul d need to be extended to
provide support for semantic predicates. Asinple techni que to provide such support for the yacc parser
generator has been describ@d and there is no reason why simlar approach should not be used with
directly executabl e parsers.

W have definitel y not reached the ul timate in parsing speed. Qur directly executable parsers sinply
represent a reasonable conpromse between storage and tine efftiency. It is possible to generate a parser
with nore states that perforns fewer rule reductions. For exanple, the grammar coul d be preprocessed
by substituting the righthand sides of productions for occurrences of the lefthand sides. An alternative
approach with a simlar effect is tounroll cycles in the LRparser by duplicating states. If carried toits
ul tinate conclusion, the parser woul d approxinate a (very large) finite state autonmaton. Such a parser

woul d rarel y need to push or pop the stack.

20

There are at least two possibilities for inproving the parsing speed without significantlyincreasing the
storage cost. (he approach would be to optimze the order in which equality tests on the current input
synbol are perforned. 'The tests shoul d be ordered according to the actual frequencies wth which the
synbol s are encountered in the various states of the LRparser. However, some prelimnary experinents
indicate that the effect on parsing speed is not verylarge. Asecond way (suggested by one of the referees)
in whi ch parsing speed mght be increasedis to borrowan idea fromReference 21. After arule reduction,
only a subset of the non-termnal transitions used in the goto action are possible. Wth sone anal ysis of
the LRitens that generate each state, it should be possible tosplit the non-termnal transitions into the
appropriate subsets, so that the nunber of tests needed to find the correct transitionis mnimzed. Cn
the other hand, the splitting process is likely to interfere with code sharing optimzations and lead to an
increase in total nenory requi rnents.

The current i1mplenentation of our parser generator provides no support for error recovery. In an
interactive environnent where the conpiler invokes a source editor at the position of the first syntaxerror,
no automatic recovery schene is necessary. Nor would error recovery be needed if the parser is used in
the code generation phase of a conpiler. However, if the parser generator is to becone useful in other
situations, sone recoveryschene shoul d be i npl enented. Pennello observed that a stack of standard LR(0)
state nunbers can be re-created and with a table that contains the standard LRparsing actions, the usual
LRrecovery techni ques can be applied. The sane observationis true of our parsers too, although alittle
nore conputation would be needed to re-create the state stack (due to our mninal push optimzation
techni que). Ware investigating the feasibility of including Rohrich’s recover;z%eitrh@ithe directly
executabl e parsers without incurring a large storage cost for extra tables. The 1nmportant observation to
make 1s that two consecutive itens on the stack of the directly executable parser define a path through
the recognizer’s states. Fomthe path through the parser’s states to the state in which a syntax error
1s detected, 1t is possible to construct the mmninumcost continuation for the error state. If the parser
and the lexical anal yzer interact appropriately, it woul d be possible toinsert tokens fromthe continuation

sequence into the input stream and thus 1npl enent Rohrich’s recovery schene.

ACKNOW.EDG EMENIS

Sorne val uable suggestions were received fromthe two referees of this paper. Financial support from

the Natural Sciences and Engineering Research (buncil of Canadais gratefully acknowl edged.

REFFRENCES
1. WM Wite and L. R Carter, ‘'The (bst of a (enerated Parser’, Software — Practice and Fzperience,
15, (3), 221-237 (1985).

2. CN Fischer and RJ. TeBanc Jr., Gafting a Gonpiler, Benjamn/Cainmngs, Mnlo Park, Calif.,
1988.

3. P Ikncker, K. Durre, and J. Heuft, ‘ptimzation of Parser Tables for Portable (bmpilers’, AM
Tans. on Prog. Lang. and Systens, 6, (4), 546-572 (1984).

4. J. Gosch, ‘LALR- ACenerator for Hitient Parsers’, Tch. Report 10, QYD) Universityof Karlsruhe,
Qct. 1988.

21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Gosch, ‘Cenerators for H gh-Speed Front knds’, 7ch. Report 11, (M) University of Karlsruhe,
Sept. 1988.

. S5.C Johnson, ‘ YAXU- Yet Another Conpiler Conpiler’, UNX Programmer’s Minual, 7th Fiition,
2B, (1979).
T J. Pennello, “ Very Fast LRParsing’, Proc. 1986 Synposiumon Conpiler Construction, ACMSIG-

PLAN Notices 2 1, (7), 145-151 (1986).

AJ. Drrners, ‘Ceneralized Left (brner Parsing’, Proc. Fourth Anmnual ACMSynposiumon Principles
of Programming Languages, 170-182 (1977).

R W Gay, ‘Automatic Frror Recovery in a Fast Parser’ | PBroc. 1987 Summer USENX (onference,
337-346, (1987).

N P Chaprnan, LR Farsing: ‘Theory and Practice, Canbridge University Press, Chnbridge, UK,
1987.

MJ. Wi tney, Optemzation of Directly Frecutable LR Parsers, MSc. thesis, Dept. of Conputer Sci-
ence, Un versityof Victoria, 1988.

MJ. Witney and RN Horspool, ‘Extrenely Rapid LR Parsing’, Proc. Workshop on Conpiler-
Chnpil er and High-Speed Conpilation, Berlin, GD R, 248-257 (1988).

D Pager, ‘Himnating Uhit Productions fromIRParsers’, Ata Informtica, 9, 31-59 (1979).

L. Schmtz, ‘Ch the Correct Himmnation of Chain Productions fromlLRParsers’, Intl. J. of Conputer
Mthenatics, 15, 99-116 (1984).

J. W Ihvidson and C W B aser, ‘The Iksign and Application of a Retargetabl e Peephole (btimzer’,
ACMTFans. on Prog. Lang. and Systems 2, (2), 191-202 (1980).

S.P. Harbison and G L. Steele Jr., C ARference Mnual. Prentice-Hall, Fngl ewood Qifls, N J., 1984.
D Cooper, Standard Pascal: User Reference Mnual, Norton, New York, 1983.

RS. danville and S. L. Graham ‘ ANew Mthod for Conpiler (bde CGeneration’, Proc. Fifth Awnual
ACMSynposi umon Principles of Programming Languages, 231-240 (1978).

M Ganapathi and C N Fischer, ‘ Afk G ammar- I¥i ver Code CGeneration’ , ACMFans. on Prog. Lang.
and Systens, 4, (7), 560-599 (1985).

M Ganapathi, ‘Senantic Predicates in Parser Generators’, Chmput. Lang., 1 4, (1) 25-33 (1989).

G H Foberts, ‘Recursive Ascent: An LR Anal og to Recursive Descent’ ;| AGMSIGPLAN Notices 2 3,
(8), 23-29 (1988).

J. Fohrich, ‘Mthods for the Automatic (onstruction of Frror Correcting Parsers’, Ata Informatica,
13, (2), 115-139 (1980).

22

