
An Executable Specification and Verifier for
Relaxed Memory Order
Seungjoon Park and David L. Dill, Member, IEEE

AbstractÐThe Mur' description language and verification system for finite-state concurrent systems is applied to the problem of

specifying a family of multiprocessor memory models described in the SPARC Version 9 architecture manual. The description

language allows for a straightforward operational description of the memory model which can be used as a specification for

programmers and machine architects. The automatic verifier can be used to generate all possible outcomes of small assembly

language multiprocessor programs in a given memory model, which is very helpful for understanding the subtleties of the model. The

verifier can also check the correctness of assembly language programs including synchronization routines. This paper describes the

memory models and their encoding in the Mur' description language. We describe how synchronization routines can be verified and

how finite state programs can be analyzed. We also present some interesting findings from the verification and the analysis.

Index TermsÐMultiprocessors, memory models, formal method, executable specification, automatic verification.

æ

1 INTRODUCTION

IN a shared memory multiprocessor architecture, a memory
model specifies the semantics of memory operations when

multiple processors load and store shared memory loca-
tions [1], [2]. The precise details of this model are crucial to
several parties. Obviously, the design of the cache coher-
ence scheme must respect the model. Also, processor
designers must ensure that, for example, out-of-order issue
of memory instructions conforms to the model. Program-
mers must be aware of the model because, for example, it
affects the correctness of synchronization routines. Compi-
ler writers may also have to consider the memory model in
some optimizations.

Several memory models for shared-memory multipro-
cessor architecture have been proposed. An early model,

sequential consistency [3], simply required that multi-
processors simulate atomic reads and writes to a common
global memory. This model is relatively easy to understand
but has strong constraints which hinder high performance
implementations. During the past decade, a lot of effort has

been made to design weaker memory models, such as
processor consistency [4], [5], [6], total store ordering [7],
[8], partial store ordering [7], [8], weak ordering [9], [10],
release consistency [5], [6], relaxed memory order [11],

Digital Equipment Alpha [12], and IBM PowerPC [13].
Weaker memory models are attractive because they

allow better more concurrency in memory system and
processor implementations, resulting in improved perfor-
mance. However, weaker memory models are generally

very subtle because understanding the behavior of highly
concurrent systems is never easy. Even sequential con-

sistency can be counter-intuitive at times [10], [14], [15].
Hence, it is vital to specify a memory model precisely.

Our approach to these problems is to describe the
memory model by giving a maximally general executable
description, using a simple general-purpose description
language for concurrent systems called Mur' [16]. Such a
description provides a precise specification of the machine
architecture, both for implementors and programmers.

It is important to note that the executable description is a
maximally general implementation which could be re-
garded as a formal specification. In other words, all the
execution traces generated by the operational model are
legal under the logical specification and all the legal
execution traces are generated by the operational model.

The major advantage of using Mur' is that it is also an
automatic formal verification system. There is a tool that
supports exhaustive checking of all the reachable states of a
description for deadlocks or violations of user-specified
properties. Since Mur' can only deal with finite-state
processes, various memory structures must be bounded
for automatic verification. Mur' also allows the printing of
the state of a system at user-specified points while
exploring the reachable states; this feature can be used,
for example, to list all of the possible register values that can
occur when an example program terminates.

The approach here is different from that used by Collier
[1], who infers the behavior of programs from a set of
ordering relations, which are not necessarily easy to convert
into an executable form. Gharachorloo et al. [6], [18] and
Sindhu et al. [8] have used methods similar to Collier's. Our
method more closely resembles that of Gibbons et al. [19],
who give I/O automata specifications of memory models.
The primary differences here are the description languages
and, more importantly, our emphasis on support for
automatic processing, while verification with I/O automata
is generally by hand [20].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999 227

. S. Park is with RIACS, NASA Ames Research Center, Moffett Field, CA .
E-mail: park@cs.stanford.edu.

. D.L. Dill is with the Department of Computer Science, Stanford
University, Stanford, CA . E-mail: dill@cs.stanford.edu.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 108227.

0018-9340/99/$10.00 ß 1999 IEEE

We developed an executable memory model during the
process of defining the Relaxed Memory Order (RMO)
model of the SPARC Architecture Manual Version 9 [11].
RMO is a generalization of the previous SPARC Version 8
memory models, TSO (Total Store Ordering) and PSO
(Partial Store Ordering). Intuitively, TSO liberalizes sequen-
tial ordering by allowing the performance of stores to be
delayed relative to subsequent loads; PSO additionally
allows stores to be delayed relative to other stores; and
RMO further allows loads to be delayed relative to
subsequent loads and stores. In previous work, we
developed an executable model for TSO and PSO [21];
however, the executable model of RMO is not a simple
generalization of the earlier description.

Developing an executable model of the protocol in Mur'
greatly enhanced our understanding and confidence in the
design for several reasons. First, writing a precise descrip-
tion points out ambiguities and inconsistencies, even if the
description is not executed. Second, we were able to analyze
the possible outcomes of illustrative examples and syn-
chronization programs rapidly and automatically when
there was a question about the implication of a change in
detail of the specification. Third, we could verify the
examples in the SPARC-V9 Architecture Manual, which
increased our confidence that there were no errors in the
code examples associated with the memory models.

2 LOGICAL SPECIFICATION OF THE MEMORY MODEL

Fig. 1 illustrates the intuition behind the SPARC memory
models. Note that this is a fictitious description that bears
no relation to a reasonable implementation of a memory
modelÐit is only intended to capture a programmer-level
view of the possible behaviors of memory operations. There
is a set of processors, P1; P2; :::; Pn, each of which has its own
cache, and an abstract reorder box. Each processor executes
instructions in the natural order specified in the program,
called program order. Instructions may appear to occur in

some order other than program order, due to various
implementation techniques, such as local caching or out-of-
order instruction execution in the processor implementa-
tion. This reordering is modeled in Fig. 1 by attaching a
reorder box to each processor and cache.

Each reorder box is also connected to a common global
memory. The memory arbitrarily chooses one of the reorder
boxes, chooses an instruction from the reorder box subject
to ordering constraints that are specified as part of the
particular memory model. It then executes actions which
depend on the instruction, such as updating memory
locations or processor registers. The actions for each
instruction are executed atomicallyÐother actions in the
system cannot interfere with them. An instruction is said to
be performed when it is executed by the memory.

The following is a condensed description1 of the logical
specification of the memory model in the SPARC Archi-
tecture Version 9 [11]. The logical specification is not
executable. In essence, given an instruction trace from each
processor consisting of the sequence of instructions and the
results of interactions with the memory system, it deter-
mines whether the instruction trace is compatible with the
memory model. This is the style of specification used by
Collier et al. and Frailong [1], [18], [8].

In the remainder of this paper, X;Y , and Z refer to
memory instructions. Xn

A denotes a memory instruction X
on processor n that reads or writes memory address A. The
processor index and memory address are specified only if
needed. Predicates L�X� and S�X� are true if X is a load or
a store instruction, respectively. L�Y � and S�Y � can be true
simultaneously, when Y is an atomic load/store.

A program order is a partial order of instructions that is an
interleaving of total orders, one for each processor:
Instructions associated with the same processor are always
program-ordered, while instructions from different proces-
sors are never program ordered. Program order represents
the sequence of instructions as issued by each processor. We
write A <p B when instruction A precedes instruction B in
program order.

Memory order is a total order of all the memory
instructions from the processors. Each memory model
defines a set of ordering rules which constrain legal memory
orders. Many memory orders may be consistent with a
given program order. This multiplicity of orders reflects
nondeterminism in the memory model and yields non-
deterministic results when multiprocessor programs are
executed. The choice of a particular global memory order
determines the values returned by loads. We write A <m B
when instruction A precedes instruction B in a particular
memory order; also, in this case, we say ªA is performed
before B.º The SPARC-V9 architecture has a special memory
barrier instruction (membar). It explicitly enforces additional
constraints on the memory order of certain types of memory
instructions preceding and following the membar. For
instance, membar{L<S} requires that all the loads preced-
ing the membar in program order precede the stores
following it. The predicate M�X;Y � is used to represent

228 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

Fig. 1. An abstract memory model for multiprocessors.

1. The change we made from the SPARC manual is that we do not
differentiate memory transactions from memory instructions. We believe
that such a distinction is not necessary at this level of specification.

that X <p Y and X and Y are ordered by a membar of the
corresponding type.

A program in a weak memory model can be made to
behave like the same program in a stronger model by
inserting membars between appropriate instructions. To
simulate PSO under RMO, we may put membar{L<L,L<S}
immediately following every load, disabling the freedom of
RMO to delay the execution of loads until after the
following memory instructions.

2.1 Ordering Rules

There are some times when ordering constraints from a
processor must necessarily constrain the memory order. For
example, an instruction loading a register cannot be
performed after an instruction storing the resulting register
value back to memory. The SPARC-V9 memory model
defines a dependence order (denoted by <d) which captures
the data dependence relations among instructions, as one
step in the specification of the constraints on memory order.
Dependence order is determined from program order as
follows:
A <d B, if A <p B and at least one of the following is

true:

. (d1) A and B are control dependent and S�B�

. (d2) A writes a register read by B

. (d3) A stores a memory location loaded by B

We do not define the three kinds of dependence in detail
here to avoid dissecting the SPARC instruction set. Precise
rules can be defined so that each dependence can be
determined between every pair of instructions in a
sequence by inspecting the sequence.

Caution is required in the definition of dependence order
because it constrains memory order. If dependence order is
too strict, it may unnecessarily constrain the range of legal
processor implementations. There are two specification
issues that should be mentioned. First, the definition (d2)
does not define a dependence when two instructions write
the same register or when an instruction reads a register
then another writes it in order to allow register renaming in
the processor implementation. Second, rule (d1) is defined
so that there is a control dependence when an instruction
affects a branch which is followed by a store, but not when
the following instruction is a load. This ensures that the
processor is allowed speculative execution of loads after a
branch before the branch has been decided. Both of these
decisions affect the executable description, which must
include register renaming and speculative execution of
loads if it is to be maximally general.

A particular memory total order <m is legal if XA <m YB
whenever one or more of the following conditions holds:

. (m1) XA <d YB and L�XA�

. (m2) M�XA; YB�

. (m3) A � B and XA <p YB and S�YB�
Rule (m1) says that if two instructions are data

dependent (<d) and the first is a load, then they should
be performed in order (<m). Preceding stores may be
delayed even if they are data dependent to following
instructions. Rule (m2) describes the ordering constraint
imposed by membars. Rule (m3) requires that stores to the

same address be performed in program order. The rule also
orders a load and a following store to the same address
which is not captured by dependence order. This is
necessary for processor self-consistency.

2.2 Value Axiom

While the ordering rules constrain the performance order of
memory instructions, the following axiom defines the value
returned by a load, Value (LA), to be

Value �SA j SA � Max under <m

from the set of fSA <m LAg [fSA <p LAg�:
Given a particular memory order, it implies that the value
returned by a load is that of the latest store with respect to
the memory order that is performed by the shared memory
before the load (fSA <m LAg)or that precedes the load in
program order (fSA <p LAg). Note that the store in the
latter case should be the one issued by the same processor
which issued the load, since <p does not order instructions
from different processors.

3 The EXECUTABLE MEMORY MODEL

The executable specification is intended to be maximally
generalÐnot only should it conform to the logical specifica-
tion, it should generate every possible result that is allowed
under the specification. Hence, it is more difficult in some
sense to write the executable specification than to describe a
particular multiprocessor, because a multiprocessor does
not have to take advantage of every degree of freedom
allowed by the logical specification. On the other hand, the
executable model does not have to represent an efficient or
practical solution, so it is much easier to design in that
sense.

3.1 Mur' Description Language and Verifier System

Mur' is a description language for modeling finite-state
asynchronous concurrent systems. There is an automatic
verifier for Mur' which generates all of the reachable states
of the system while checking for deadlock and other error
conditions. Mur' can also check liveness and fairness
properties (e.g., progress). The syntax of Mur' is derived
from various standard programming languages, especially
Pascal and C.

Mur' allows the declaration of familiar data types,
including subranges of integers, arrays, records, and user-
defined enumerations. A state of the described concurrent
machine is an assignment to each global variable with a
value in the range of the declared type. A Mur' program
consists of a collection of rules. Each rule has a condition,
which is Boolean expression referring to the global
variables, and an action, which is a statement that modifies
the values of the variables, yielding a new state.

Execution of a Mur' program begins with one of a set of
initial states specified by the user. Then, the following loop
is executed forever: Some rule whose condition is satisfied
by the current state is chosen and its action evaluated,
yielding a new current state. If there are no rules whose
conditions are true, the execution halts. Although the action

PARK AND DILL: AN EXECUTABLE SPECIFICATION AND VERIFIER FOR RELAXED MEMORY ORDER 229

may be a compound statement consisting of a sequences of

smaller statements, conditionals, and loops, it is executed

atomicallyÐno other rule can be executed before the action

completes.
When several rule conditions are true at the same time, a

choice is made arbitrarily, resulting in several possible

executions. The Mur' verifier tries them exhaustively by

depth-first or breadth-first search.
One essential construct in Mur' is the ruleset, which is

used to describe a collection of rules that vary over a

parameter. A ruleset can be thought of as nondeterminis-

tically selecting a value for the parameter from a set.
Several types of errors can be detected in a Mur'

description. There is an error statement that can appear in

an action. Invariant Boolean expressions may also be

specified; if the invariant is false in any reachable state, an

error is reported. The system can detect deadlock states,

which are states that have no other states as successors.

Finally, Mur' can check many common liveness and

fairness properties using a subset of linear-time temporal

logic.
If a problem of any type is detected, the verifier prints

out a diagnostic trace, which is a sequence of states that leads

to a state exhibiting the problem. In addition to the error

traces, it is possible to print out the values of specified

variables using put commands. This capability is used to

obtain all the possible results of test programs.

3.2 RMO Description in Mur'

The executable specification follows the intuition of Fig. 1. It

describes reordering boxes, global memory with nondeter-

ministic switch, and necessary part of processors. There are

shared variables for all of the state of the system, including

the processor registers, the memory, and the contents of the

reorder boxes. Here, we provide excerpts from the descrip-

tion.

In the first part of Fig. 2, constants are declared for the
number of processors, size of reorder box, size of memory,
number of registers, and so on. For verification, these
constants should be kept very small in order to bound the
size of the state space that must be explored.

The first variable, Memory, models the global memory by
an array of value indexed by Address type, which is
declared to be a subrange of the integers. This description is
based on a register renaming scheme, so the registers are a
per processor array of temporary indices, which are
pointers to temporaries in a register pool. The processor
state is modeled using global variables: registers, program
counter (PC), and condition code register (CCR). For
simplicity, the variables used for speculation on branches
are not shown here.

Each processor has a reorder box ReorderBoxType,
which is an array of records. Each entry of the record keeps
information about an instruction: the instruction type,
memory address operand, temporary indices of register
operands, and constant operand. The reorder box queues
up every instruction from its processor in program order.

There are individual processes for the processors in the
figure and for the memory. Only one process may execute
at a time. The processes modeling the processors issue
individual instructions by inserting them at the tail of a
reorder box queue, so that instructions in a reorder box are
always in program order.

For each instruction type, there is a procedure in the
Mur' description that issues the instruction by inserting it
in the reorder box. For example, Load_init(proc,

addr, reg) inserts a load instruction with its operands
after all previously issued instructions in the reorder box.
The issuing function also handles register renaming, so that
the instructions in the reorder box refer to temporary
registers, not register names. When branch instructions are
issued, a nondeterministic prediction of the branch direc-
tion is made. Instructions are then issued based on this

230 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

Fig. 2. Global variables and type declarations for RMO description.

prediction. If the prediction turns out to be incorrect when
the branch instruction is performed, the state of the registers
and program counter is restored to what it was when the
branch was issued, and the speculative instructions are
cancelled. Since the logical specification allows speculative
execution and ignores antidependences from register usage,
these considerations are necessary to ensure that the
executable specification generates every legal program
result.

There is also a procedure to perform each type of
instruction. These procedures are executed by the global
memory and do most of the work of the instructions. For
instance, the procedure Store_perf()performs a store
instruction by writing the contents of the register into the
memory location.

The description attempts to provide the most direct
possible translation from the ordering rules given in the
logical description. We show the Mur' rule implementing
the memory order, after explaining some of the low-level
predicates that it uses.

The function Membared() returns a Boolean value true
if the two memory instructions at entry i and j are ordered
through a membar. Function Is_load(p,i) checks
whether the instruction at position i in the reorder box for
processor p is a load instruction. Each or'ed expression
checks if there is a memory barrier of the corresponding
type in between the two instructions. The Alias command
is used to define an abbreviation.

Dir_Depend() checks whether two instructions are
dependence ordered, as defined in Section 2. At first, it
ensures the instruction at i precedes the one at j in program
order (X <p Y). The rest of the Boolean expressions
correspond to the rules (d1) through (d3). The expression
for the rule (d2) calls Dep_Reg(), which returns true if the
preceding instruction is writing the same register that is
read by the following instruction (strictly speaking, the
same temporary location in the register renaming scheme).
Note that the dependence through the condition code
register is checked separately, since branch instructions
read the condition code register, which is modified by such
instructions as test or compare. The third Boolean expres-
sion directly translates the rule (d3).

The global memory process nondeterministically selects
a processor and an instruction in the processor, which is
executed if it is legal to do so. The ordering rules are
implemented in a function in the memory process that
decides whether an instruction is legal to perform. An
instruction is legal to perform only if the ordering rules
allow the existence of a memory order in which the
instruction is the minimum of all the instructions currently
in the reorder box. Each ordering rule from the logical
description is translated as directly as possible to a Mur'
function, which checks whether the ordering rule is
satisfied. For example, there is a recursive function
(Depend() in Fig. 3) which, given a reorder box and the
indices of instructions in it, returns true only if the

PARK AND DILL: AN EXECUTABLE SPECIFICATION AND VERIFIER FOR RELAXED MEMORY ORDER 231

Fig. 3. RMO ordering constraints rule in Mur'.

instructions at those indices are dependence-ordered (this
requires inspecting all of the instructions between the two
indices).

When an instruction is legal, the memory performs it,
which involves doing all of the computation associated with
the instruction, including ALU operations and updating
registers and/or memory. Then, it is removed from the
reorder box.

In essence, a particular memory order is gradually
constructed as the specification executes (the instructions
that have been performed are memory ordered and those
remaining in the reorder boxes have not yet been ordered).
The constraints on nondeterministic choices involved in
selecting the next instruction ensure that every legal
memory order can be generated.

The main rule for the memory order constraints is in
Fig. 3. This rule can also be thought of as implementing
the behavior of the memory. The rule is embedded in
parameterized rulesets that nondeterministically choose a
reorder box and an instruction index. It performs the
instruction at that reorder box index only if that
instruction is allowed to appear first among all the
instructions in the ordering box, according to the memory
ordering rules.

The condition of the rule is a conjunction of several
Boolean expressions. The first Boolean condition ensures
that the chosen index of the reorder box is not an empty
slot. The second condition requires every membar instruc-
tion to remain in the reorder box until all the previous
instructions are executed and removed from the box.

The rest of the three Boolean expressions correspond to
<m ordering rules (m1), (m2), and (m3), respectively. Note
that the predicate L�X� in the rule (m1) is replaced by the
function checking if the instruction is writing to a register,
because reorder boxes deal with all kinds of instructions,
while the axioms in the previous section are aimed at
enforcing orders among memory instructions only. The
conditions are not direct translation of the rules, but they
ensure that there is no preceding memory instruction which
is <m ordered to the one at entry i. If the condition is true,
then the chosen instruction is performed calling the
corresponding procedure (e.g., Read() for a load and
Ldstore_perf() for a load-store) according to the
instruction type, and the instruction is removed from the
reorder box.

One subtle point is the avoidance of starvation: The
logical description requires that the memory order include
every instruction. This implies that the memory must
eventually perform every instruction in every reorder box.
This requirement is handled in Mur' by requiring, in an
infinite computation, that the oldest instruction in every
reorder box be performed infinitely often (instructions not
satisfying this requirement can be performed an arbitrary
finite number of times between oldest instructions).

Since Mur' can only deal with finite-state processes,
various memory structures must be bounded. Furthermore,
the number of states grows exponentially with many
parameters, so even quantities that are bounded in all
implementations, such as the number of registers in a
processor, are bounded much more sharply in the Mur'

description. Bounded quantities include: the number
processors, memory values, memory locations, registers,
and reorder boxes.

If the Mur' program is considered without the bounds,
it is equivalent to the logical specification. The executable
specification in Mur' not only conforms to the logical
specification but also generates all the possible behaviors
allowed under the specification. We have proven this
equivalence using a theorem prover. With the bounds,
however, the executions of the Mur' program may be a
subset of the executions allowed by the logical specification.
For some programs, it is often easy to see that small bounds
on all parameters allow sufficient resources to enumerate all
of the possibilities. For larger descriptions, we must trade
generality for the ability to verify automatically a bounded
description.

4 ANALYZING TEST PROGRAMS WITH AN

AUTOMATIC VERIFIER

When developing the RMO model, it was very helpful to be
able to find all of the possible outcomes of small example
multiprocessor programs. The automatic verifier Mur'
finds all of the reachable states of the system, so it can list
all results very easily. When ordering rules are changed, it
is simple to change the executable specification (since the
translation is so direct) and run the test programs through
the verifier to find out the consequences.

Running test examples in Mur' is different from running
them on a real machine. An actual machine may not
exercise all possible orderings, either because it does not
implement a memory model in full generality or because
the orderings are possible but happen not to occur in a
particular run.

To make the operational description fully executable, we
need to model programs running on the processors. This
can be accomplished by adding rules to the processor
description which specify which instruction to issue, as a
function of the current PC value [21]. We have implemented
a simple program that translates assembly-language pro-
grams into the appropriate rules for each processor, which
are then combined with the executable specification to yield
a Mur' description of that particular program running in
the memory model.

Suppose we test the program at the top of Fig. 4. This
program can be automatically translated to the rules in
Fig. 5. The first rule corresponds to the first load of P0 and
the next rule to the last store of P1. For readability, we have
given symbolic names to memory locations and registers by
defining them as constants. Note that the register V3_1 of
P1 contains a constant value 3.

We have added another rule, shown in Fig. 5, which
prints out the state of the registers and shared memory
when the program terminates after executing all the
instructions. Since Mur' does exhaustive searching, each
result through every possible interleaved performance
ordering is caught by the printing rule and printed out.
Indeed, each possible result is printed many times (because
it occurs in many different executions), but the results are
then postprocessed to eliminate duplicates.

232 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

Fig. 4 shows the results obtained by running the verifier
on the example program under the various SPARC memory
models (this is actual program output). We assume an
initial value of zero in every memory location and register.
Each line lists the contents of the relevant memory locations
and registers for a different terminating state of the
program. Since all the memory operations of P1 are ordered
by membar instructions, they should be performed in the
program order. However, the memory operations in P0 can
be reordered as far as they satisfy the ordering constraints
of each memory model. The result shows that PSO allows
more program behaviors than TSO and RMO allows more
than those two, as expected.

When a user obtains an unexpected outcome of a test
program, a trace can be generated which shows how the
outcome can occur using a simple trick. An invariant can be
added which asserts that the unexpected state does not
occur. When the verifier finds the state, a counterexample
trace will be generated automatically that gives the
sequence of rules and intermediate states leading from an
initial state to the state in question.

5 VERIFYING ILLUSTRATED EXAMPLES IN THE

ARCHITECTURE MANUAL

In many large-scale concurrent programs, the low-level
synchronization code (which may even be generated by a
compiler) is the only part that depends on the details of the
memory model; this code can be carefully crafted to work in
a particular memory model, then used elsewhere by
programmers who need not be deeply familiar with its
internals [22].

The SPARC architecture manual gives several assembly
language routines for standard synchronization paradigms,
including spin locks (two versions: one using load-store and
one using swap), produce-consumer with a bounded buffer,

and Dekker's algorithm. There are corresponding memory
model versions for each algorithm. Fig. 6 shows the
assembly language code for a spin lock using a load-store
instruction. This is taken verbatim from the SPARC
Architecture Manual, except that two instructions have
been inserted (at the label crit:), to improve error
detection.

In Fig. 6, the ªlock heldº condition is kept in a specific
memory location lock. A nonzero value of the lock
represents that the lock is held by some process, while a
zero value means that the lock is free. An instruction
ldstub loads a specified memory location and stores a
nonzero value to the memory, atomically. The conditional
branch be is taken if the special register CCR set by tst is
zero. The following instruction (in this case, nop) is
executed even if the branch is taken because the SPARC
has delayed branching. Note that the membars enforce
ordering between memory instructions in the critical section
and others in the synchronization routine.

As shown in the spin lock code, we added two store
instructions in critical region; one stores a constant value 1
to a critical memory location and the other also stores 0 in
the location. The invariant below is used to check the
mutual exclusion property of the spin lock when there are
two processors.

Invariant ºMutual Exclusion of Memory Accessº

! (Memory[CM0] = 1 & Memory[CM1] = 1);

Extending this to more processors is straightforward. It
also ensures that a lock is not released too early, before the
writes to the lock-protected location are completed. The
verifier also checks for deadlocks.

The spin lock example described was computationally
the most difficult, although all examples required the same
order-of-magnitude time and space. When the spin lock
example was modeled with three processors and a reorder
box size of 10, the verifier explored 55,499 states in 12
minutes on SGI Indy using symmetry reduction method.
The time is not proportional to the number of states because
a state may be visited several times (depending on the
number of incoming edges in the state graph) and because
the amount of time for each rule varies with the complexity
of the rules.

This spin lock is subject to starvation. It is possible for P0

to be denied the lock forever even when P1 releases the lock

PARK AND DILL: AN EXECUTABLE SPECIFICATION AND VERIFIER FOR RELAXED MEMORY ORDER 233

Fig. 4. An example test program and the corresponding set of possible
results generated by the automatic verifier.

Fig. 5. Mur' rule for assembly language programs.

infinitely often, because P1 happens to be holding the lock
whenever P0 tests it. For this reason, Mur' reports a
violation of the property Eventually Memory[CM0]=1,
even though each process is assumed in the description to
release its lock infinitely often. However, Mur' finds no
violation of the weaker property that ªat least one process gets
the lock infinitely often,º Eventually (Memory[CM0]=1 |
Memory[CM1]=1).

Ultimately, no unexpected behavior was found in the
synchronization routines when combined with the appro-
priate models. Also, as expected, the TSO routine failed
when combined with the PSO and RMO memory models.

The state explosion problem, which is a central problem in
finite-state verification, has not been an issue in this effort
because of the small size of the assembly language routines.
However, it would become a problem for verification of
larger programs.

6 CONCLUSION

We believe that this type of operational description strikes
an appropriate balance between formality and understand-
ability by programmers and machine architects. Moreover,
the availability of formal verification tools allows users to
experiment with the effects of the memory model on small
assembly-language routines. Also, as we have learned in
this experiment, developing an operational description and
running the verifier can be very effective at clarifying the
subtle details of the models and synchronization routines.

ACKNOWLEDGMENTS

Most of the detailed definition of the RMO model was done
by a group consisting of Dennis Allison, Kourosh Ghar-
achorloo, Paul Loewenstein, Andreas Nowatzyk, and the
authors. Feedback from these individuals was essential in
developing the Mur' model.

REFERENCES

[1] W.W. Collier, Reasoning About Parallel Architectures. Prentice Hall,
1992.

[2] J. Proti�c, M. Toma�sevi�c, and V. Milutinovi�c, eds., Distributed
Shared Memory: Concepts and Systems. IEEE CS, 1998,

[3] L Lamport, ªHow to Make a Multiprocessor Computer that
Correctly Executes Multiprocessor Programs,º IEEE Trans. Com-
puters, vol. 28, no. 9, pp. 690-691, Sept. 1979.

[4] J.R. Goodman, ªCache Consistency and Sequential Consistency,º
Technical Report 61, SCI Committee, Mar. 1989.

[5] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy, ªMemory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors,º Proc. 17th Ann. Int'l
Symp. Computer Architecture, pp. 15-26, May 1990.

[6] K. Gharachorloo, ªMemory Consistency Models for Shared-
Memory Multiprocessors,º PhD thesis, Stanford Univ., 1996.

[7] SPARC International, The SPARC Architecture Manual Version 8.
Prentice Hall, 1992.

[8] P.S. Sindhu, J.-M. Frailong, and M. Cekleov, ªFormal Specification
of Memory Models,º Technical Report CSL-91-11, Xerox Palo Alto
Research Center, Dec. 1991.

[9] M. Dubois, C. Scheurich, and F. Briggs, ªMemory Access
Buffering in Multiprocessors,º Proc. 13th Ann. Int'l Symp. Compu-
ter Architecture, pp. 434-442, June 1986.

[10] S. Adve and M. Hill, ªWeak OrderingÐNew Definition and Some
Implications,º Proc. 17th Ann. Int'l Symp. Computer Architecture,
pp. 2-14, 1990.

[11] D. Weaver and T. Germond, eds., The SPARC Architecture Manual
Version 9. Prentice Hall, 1994.

[12] R. Sites and R. Witek, eds., Alpha AXP Architecture Reference
Manual, second ed.. Digital Press, 1995.

[13] C. May, E. Silha, R. Simpson, and H. Warren, eds., The PowerPC
Architecture: A Specification for a New Family of RISC Processors.
Morgan Kaufmann, 1994.

[14] S. Adve and M. Hill, ªImplementing Sequential Consistency in
Cache-Based Systems,º Proc. Ninth Int'l Symp. Parallel Processing,
pp. 47-50, Aug. 1990.

[15] C. Scheurich and M. Dubois, ªCorrect Memory Operation of
Cache-Based Multiprocessors,º Proc. 14th Ann. Int'l Symp. Com-
puter Architecture, pp. 234-243, 1987.

[16] D.L. Dill, ªThe Mur' Verification System,º Proc. Computer Aided
Verification, Eighth Int'l Conf., CAV '96, pp. 390-393. Springer-
Verlag, July 1996.

[17] S. Owre, J. Rushby, N. Shankar, and F. von Henke, ªFormal
Verification for Fault-Tolerant Architectures: Prolegomena to the
Design of PVS,º IEEE Trans. Software Eng., vol. 21, no. 2, pp. 107-
125, Feb. 1995.

[18] K. Gharachorloo, S. Adve, A. Gupta, J. Hennessy, and M. Hill,
ªProgramming for Different Memory Consistency Models,º J.
Parallel and Distributed Computing, vol. 15, no. 4, pp. 399-407, Aug.
1992.

[19] P. Gibbons, M. Merritt, and K. Gharachorloo, ªProving Sequential
Consistency of High-Performance Shared Memories,º Proc. Third
ACM Symp. Parallel Algorithms and Architectures, pp. 292-303, July
1991.

[20] N. Lynch, ªI/O Automata: A Model for Discrete Event
Systems,º Proc. 22nd Ann. Conf. Information Science and Systems,
Princeton Univ., Mar. 1988.

[21] D.L. Dill, S. Park, and A. Nowatzyk, ªFormal Specification of
Abstract Memory Models,º Research on Integrated Systems: Proc.
1993 Symp., pp. 38-52. MIT Press, Mar. 1993.

[22] M. Ben-Ari, Principles of Concurrent and Distributed Programming.
Prentice Hall, 1990.

234 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 2, FEBRUARY 1999

Fig. 6. Assembly language program for spin lock synchronization.

Seungjoon Park received the BS degree with
honors and the MS degree in electronics
engineering from Seoul National University,
and the PhD degree in electrical engineering
with minor in computer science from Stanford
University. From 1996 to 1998, he was an
engineering research associate in the Depart-
ment of Computer Science, Stanford University.
Since 1998, he has been a research scientist of
RIACS, working in the automated software

engineering group of NASA Ames Research Center, California. His
research interests include hardware and software verification, formal
methods, computer architecture, and computer-aided digital systems
design.

David L. Dill received the SB in electrical engineering and computer
science from the Massachusetts Institute of Technology in 1979 and the
MS and PhD from Carnegie Mellon University in 1982 and 1987,
respectively. He is an associate professor of computer science and, by
courtesy, electrical engineering at Stanford University. He has been on
the faculty at Stanford since 1987. His primary research interests relate
to the theory and application of formal verification techniques to system
designs, including hardware, protocols, and software. He has also done
research in asynchronous circuit verification and synthesis and in
verification methods for hard real-time systems. He was the chair of the
Computer-Aided Verification Conference held at Stanford University in
1994. From July 1995 to September 1996, he was Chief Scientist at 0-In
Design Automation. Prof. Dill's PhD thesis, ªTrace Theory for Automatic
Hierarchical Verification of Speed Independent Circuitsº was named as
a Distinguished Dissertation by the ACM and published as such by MIT
Press in 1988. He was the recipient of a Presidential Young Investigator
award from the U.S. National Science Foundation in 1988 and a Young
Investigator award from the Office of Naval Research in 1991. He has
received Best Paper awards at the International Conference on
Computer Design in 1991 and the Design Automation Conference in
1993 and 1998.

PARK AND DILL: AN EXECUTABLE SPECIFICATION AND VERIFIER FOR RELAXED MEMORY ORDER 235

