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Topology Preserving Deformable Image Matching
Using Constrained Hierarchical Parametric Models

Oliver Musse, Fabrice Heitz, and Jean-Paul Armspach

Abstract—In this paper, we address the issue of topology
preservation in deformable image matching. A novel constrained
hierarchical parametric approach is presented, that ensures that
the mapping is globally one-to-one and thus preserves topology
in the deformed image. The transformation between the source
and target images is parameterized at different scales, using a
decomposition of the deformation vector field over a sequence of
nested (multiresolution) subspaces. The Jacobian of the mapping
is controlled over the continuous domain of the transformation,
ensuring actual topology preservation on the whole image support.
The resulting fast nonlinear constrained optimization algorithm
enables to track large nonlinear deformations while preserving the
topology. Experimental results are presented both on simulated
data and on real medical images.

Index Terms—Deformable image matching, hierarchical
parametric models, multiresolution deformation field modeling,
topology preservation.

I. INTRODUCTION

I MAGE matching of deformable structures has received
considerable attention during the last decade [1]. Medical

imaging, revealing anatomical structures using a wide variety of
sensors, is probably one of the first application fields. A key re-
search topic is inter-subject or atlas-subject registration, where
the purpose is to estimate long-distance and highly nonlinear
deformations corresponding to anatomical variability between
individuals. Potential applications include image segmentation
and labeling [2], [3], atlas-based multimodal image registration
or fusion [4], motion analysis in three-dimensional (3-D) image
sequences [3], statistical analysis of normal and pathological
anatomical variations [5]–[7], atlas-based follow-up of lesion
evolution over time [8], and atlas-based volume estimation [9],
[10].

The high dimensional transformations involved in de-
formable registration generally make the problem ill-condi-
tioned, so that additional constraints are needed to obtain a
satisfactory result. A common way to do this is to restrict the
space of possible solutions by incorporatinga priori knowledge
in the deformation model. Standard regularization techniques
[11] such as Laplacian [12], bending energy [13], or linear elas-
ticity [2], are a popular choice. A regularizing potential energy,
constraining the deformation, is minimized simultaneously
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with a cost function describing image differences. Often, this is
handled through a Bayesian framework [14], where constraints
are incorporated into the warping model as prior probability
distributions. Fast regularization methods have also been
proposed, relying on an iterative filtering of the discrete vector
field with a Gaussian [3]. Others have investigated parametric
transformations using, for instance, polynomial spline [5], [15],
thin-plate spline [16] or wavelets [17], so that the constraints
are explicitly included in a parametric deformation model.

In most of these approaches, the prior enforces homogeneity
of the deformation field through linear regularization models.
This is related to the “smoothness” of the deformation and
proved to be efficient in many applications when addressing
small deformations problems. The problem is significantly
harder for large nonlinear deformations. Since the constraint
generally increases proportionally to the deformation magni-
tude, it becomes difficult to simultaneously estimate a regular
and satisfactory transformation, even when using coarse to fine
strategies. Furthermore, standard regularization methods do not
preserve the topology in the deformed images.

Topology preservation is a stronger and global constraint, en-
suring that connected structures remain connected and that the
neighborhood relationship between structures is maintained. It
also prevents the disappearance or appearance of existing or
new structures. These properties are related to the continuity
and inversibility of the deformation. Topology-preserving
matching is particularly interesting for inter-subject registration
of medical images, since, in the continuous domain, anatom-
ical structures have the same topology for any individual (at
least for nonpathological cases). By enforcing this constraint,
the space of possible solutions is restricted to deformations
satisfying the real-world property of matter. In particular, it
represents a challenging issue for the construction and use of
anatomical atlases. For instance, when labeling a template by
transferring atlas knowledge through mapping, it is essential to
ensure topology preservation of the atlas structures to get an
anatomically coherent solution.

Topology-preserving mapping has already been considered
with success in a few works. In [18], Christensen introduced vis-
cous fluid material deformation models, in an Eulerian frame-
work, by using the Navier–Stokes partial derivative equations
(PDEs). This allows large displacement estimation compared to
elastic Lagrangian approaches, while ensuring topology preser-
vation. An interesting discussion on the topological properties
of this model can be found in [19]. Important drawbacks are the
computational cost and the necessity to track the discrete Jaco-
bian in order to avoid numerical divergence when solving the
PDE. In [20], Trouvé restricted the space of solutions to a sub-
group of invertible mappings by exploiting Lie group theory.
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The problem was expressed as a regularization scheme or using
PDE, shown to be linked to the fluid model of Christensen. The
proposed numerical scheme was more stable so that no discrete
Jacobian tracking was needed. Ashburner [21] solved the issue
in a Bayesian framework, where the Gibbs potential associated
to the prior distribution is a function of the Jacobian. By penal-
izing noninvertible solutions through low probabilities, the map-
ping is ensured to preserve almost surely the topology. Finally,
some authors have addressed the topological issue by consid-
ering simultaneously backward and forward maps, constraining
a posteriorithe composite of both to reduce to identity [3]. Such
an approach is fast and simple but does not mathematically en-
sure the preservation of the topology.

In this paper, we propose an alternative approach, based on
a hierarchical continuous parametric model of the deformation
map, described in [17]. The proposed topology preserving
method allows to enforce the positivity of the Jacobianof
the continuous transformation, within a specified interval of
values. Instead of expressing the topology preserving con-
straints through PDE or Bayesian approaches, the continuous
deformation model is strictly constrained. We establish the
possibility to control the positivity of the Jacobian over the
whole (continuous) image domain, by applying only a limited
(discrete) set of linear constraints on the parameters of the
deformation model. An energy function describing the interac-
tions between the two images is then minimized under this set
of constraints, ensuring that the transformation maintains the
topology in the deformed image. Thanks to the limited number
of linear constraints and to the hierarchical modeling approach,
the constrained optimization algorithm enables fast estimation
of long range, nonlinear deformation fields (cpu times are about
1 min on a standard workstation for 256images).

The remainder of the paper is organized as follows. Section II
presents an overview of the mathematical issues related to
topology preservation, in which the conditions needed to ensure
topology preservation are recalled. In Section III, the multires-
olution parametric matching method is briefly described. The
extension of this model in order to preserve topology is then
detailed in Section IV. Finally, results on both simulated and
real-world data are discussed in Section V.

II. TOPOLOGYPRESERVINGMAPPINGS

The purpose of deformable matching is to estimate the trans-
formation between two different images (the source and the
target) so that, after registration, the corresponding structures
are superimposed in the target image and in the deformed ver-
sion of the source image. Let us denote the contin-
uous transformation, where is the domain on which the im-
ages are defined. To be a topology-preserving mapping,must
be homeomorphic, which means that it must be (a) continuous,
(b) bijective (one-to-one and onto) with (c) a continuous inverse.
The continuity of the deformation is related to the local neigh-
borhood relationship between structures, and maintains their ad-
jacency, while global bijectivity ensures that each point in the
source image has one and only one corresponding point in the
target and conversely.

Even though the continuity and onto properties may be di-
rectly and easily imposed through the definition of the defor-

mation model (see Section IV-A), the other conditions are not
straightforward. First, as stated in the following theorem [22],
when working on a closed bounded set, the continuity condition
(c) for the inverse transformation is a consequence of the other
properties.

Theorem 1: Let be a continuous transformation which is
one-to-one in a closed bounded set. Then, the corresponding
inverse transformation is continuous, and maps back
onto .

As a consequence, the major issue is now to ensure the global
injectivity of . A common solution consists of forcing the Ja-
cobian of the deformation to be positive [22].

Theorem 2: Let be a transformation from into (
is the space defined as the cross product of

spaces ) which is of class in an open subset of ,
and suppose that the Jacobian for each . Then,

is locally one-to-one in .
However, the positivity constraint on the Jacobian only en-

sures local injectivity of , which means that for each point
there exists a neighborhood in whichis injective (or

one-to-one). To infer global injectivity from local injectivity, ad-
ditional conditions are needed (see [22]–[25]).

Theorem 3: Let be a continuous locally
one-to-one transformation. If and are convex then is
globally one-to-one.

From all these theorems, we can now state that if the mapping
is continuous, onto, and locally one-to-one over the convex

set and if is convex, then is a global homeomorphism
from into . To get a topology-preserving transformation
from into and therefore enforce , a sufficient con-
dition is to ensure that maps the boundary of exactly onto
itself. Under this additional condition, the convexity of
directly derives from the convexity of . As a consequence, it
finally follows that if is acontinuous, onto, locally injective
transformation over theconvex set and if maps exactly
the boundary of on itself, then is a topology-preserving
mapping from into . These properties will be exploited, to
ensure topology preservation over the whole (continuous) do-
main , in the case of the hierarchical parametric deformation
model described now.

III. H IERARCHICAL DEFORMABLE IMAGE MATCHING

In [17], we have introduced a hierarchical parametric mod-
eling framework to perform fast nonrigid image matching. The
present work is based on an extension of the model and algo-
rithms described in [17]. In particular, the optimization algo-
rithms have been modified to increase their efficiency (by ex-
ploiting the local decomposition properties of the model) and
to take into account topology preservation. Before detailing this
extension, the following section provides the basis of our hier-
archical deformable matching approach. For greater detail and
more results about the method, the reader is referred to [17].

A. General Approach

The deformable matching method uses the common frame-
work [18], [20] of estimating a displacement field, by min-
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imizing the following nonlinear distance measure (or energy
function) between the target image and the source image

(1)

where
bounded domain defined by the images;
floating (source) image to be mapped onto the target
image ;
pixel position over .

, denoting the deformation vector field, belongs to an adequate
Hilbert space of finite energy deformation fields. The contin-
uous mapping between the two images is then defined as

(2)

Instead of estimating directly the vector fieldwithin , suc-
cessive approximations of are considered over a sequence of
nested subspaces of the original configuration space. This se-
quence of subspaces defines a sequence of multiresolution ap-
proximations [26] of vector field , as explained below.

B. Deformation Model

The transformation between the two images is parameterized
at different scales, using a decomposition of the deformation
vector field over a sequence of nested subspaces

, defining a multiresolution
approximation of [26]. Space defines the coarsest scale
representation and is a subset of the finer scale representations

. Mallat [26], [27] has shown that nonorthog-
onal (Riesz) basis of these spaces may be generated from dilated
and translated versions of a single compactly supported scaling
function [27].1 In one dimension, a Riesz basis of is con-
structed by the set of functions

(3)

To represent two-dimensional (2-D) signals, a separable
scaling function is considered, so that
the Riesz basis of becomes

(4)

Then, in order to handle a deformation field (i.e., to modelize
vectors instead of scalars), two multiresolution decompositions
are considered, one for each component of the displacement. At
resolution (in space ) the parameterization of is therefore
defined as

trace

trace

(5)

1To define a Riesz basis, function� must verify some technical conditions,
which may be found in [27].

Fig. 1. Polynomial spline scaling functions� (6) for d = 0; 1; 2; and3.

where is a matrix formed with the
basis functions of and and

are the matrices of parameters for each compo-
nent of the deformation vector. Note that the sum is limited to

and where and is the
size of the support of the scaling function. Indeed, since is
a bounded set and is compactly supported, we only consider
the basis functions, the support of which is partly included in.

In the remainder of the paper,(resp. ) will
denote the deformation field (resp. transformation) in general,
for example, to express the conditions it should satisfy to ensure
topology preservation and (resp. ) will de-
note the parametric deformation field (resp. transformation) at
resolution , this notation being used as soon as the considera-
tions are specific to the parametric model.

The hierarchical parametric representation (5) is valid for any
scaling function defining a Riesz basis. For this implementa-
tion, we have used a nonorthogonal Riesz basis of polynomial
splines, constructed withbox splines[27]. The variable order
polynomial spline functions (Fig. 1) are defined as follows:

for
otherwise

(6)

where denotes the order of the representation. corre-
sponds to the classical piecewise constant Haar basis.
defines continuous and piecewise linear functions in 1-D (but
a nonlinear representation for the 2-D separable case). These
functions have the advantage of being explicitly defined and
compactly supported. Nonorthogonal representations have been
preferred to orthogonalized Riesz bases because the resulting
orthogonal bases have infinite support [27].2

Another interest of this model, which derives directly from
the causality property , is that the approximation of
the deformation at resolutionmay be expanded over the finer

2Orthogonality is not important in our case, since we are modeling an un-
known signal rather than analysing a known signal.
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Fig. 2. Hierarchical optimization procedure in the case of the 2-D Haar basis.

resolution space without any interpolation nor approxima-
tion. It can be shown that the parameter matrices and
of the decomposition over , are simply derived from and

, according to [26]

(7)

where is an operator which puts one zero between each el-
ement of a matrix, and is a numerical convolution filter de-
pending on the scaling function[26].

C. Matching Procedure

1) Hierarchical Optimization Strategy:In order to make use
of the previously defined hierarchical decomposition, instead of
minimizing the original energy function (1) over the full, con-
tinuous Hilbert space , we consider a coarse-to-fine sequence
of optimization problems, obtained by successively restricting
the vector field to subspaces [28]. The energy
function (1) is minimized over each space
with respect to parameters , using as an initializa-
tion the estimation obtained at the previous scale. The tracking
of the solution between two successive scalesand is
performed, without any interpolation (thanks to the causality
property), using (7). The procedure is repeated until the desired
scale is reached, this scale being a compromise between the
computational cost, the desired resolution, and the desired reg-
ularization of the vector field. As shown in [28], this hierar-
chical coarse-to-fine procedure exhibits fast convergence prop-
erties when applied to high-dimensional nonlinear optimization
problems (with many local minima). Indeed, the energy function
becomessmootherat coarse scales, and thus local deterministic
optimization algorithms may be used to track the solution from
coarse to fine scales.

Fig. 2 illustrates the algorithm for the scaling function
(corresponding to the Haar basis). The Haar basis representation
amounts to constraining the deformation field to be blockwise
constant over cells of decreasing size. The Haar basis is not used
in the present application since it does not yield a continuous
deformation, as required (see Section IV-A).

2) Separable Minimization Procedure:At each scale, the
energy function (1) is minimized, as a function of the model
parameters . To this end, the local representation
of the deformation and the possible decomposition of the energy

(1) are exploited. Since the scaling functionis compactly
supported, the model parameters and , associated to
the basis function , have a local impact on the deformation
field . Instead of considering the simultaneous optimization of
all the parameters , the matching is performed by iteratively
solving a sequence of local subproblems

(8)

where is the support of the basis function .
This scheme is akin to the classical Gauss–Seidel optimiza-

tion method which consists of minimizing in turn the objective
function along all the directions of the parameters space, using
a one-dimensional (1-D) minimization technique. Here, instead
of considering one parameter at the same time, the two parame-
ters and are estimated simultaneously. The optimiza-
tion procedure is described in detail in Appendix D. This local
minimization scheme significantly decreases the computational
time (the number of parameters reaches 32 258 at the resolution
level ).

IV. TOPOLOGYPRESERVINGHIERARCHICAL DEFORMABLE

MATCHING

The hierarchical parametric mapping introduced in the pre-
vious section isnot topology preserving, since, as may easily be
verified, the Jacobian of the transformation may take negative
values over domain . In this section, we describe an exten-
sion of the matching procedure, which ensures topology preser-
vation over the whole (continuous) domain. Using the gen-
eral results on topology preserving mappings (see Section II),
we show that topology preserving constraints may easily be ex-
pressed through a limited set of linear inequalities on the de-
formation model parameters. A fast constrained minimization
algorithm, relying on these constraints, is then devised.

A. Continuity and Boundary Conditions

The continuity of transformation , is en-
sured by using the general properties of the parametric model.
Since, is expressed as a linear combination of basis functions
derived from a single scaling function(5) and (4), , and
inherit the continuity and differentiability properties of. As a
consequence, the continuity of transformationis simply ob-
tained, by considering a continuous function. For the polyno-
mial spline functions (6), this property is satisfied for .

To ensure that , the transformation must satisfy
some Dirichlet boundary conditions corresponding to the nul-
lity of on the boundary of . To this end, only the basis
functions that have their support entirely included inare
retained. This principle is illustrated in Fig. 3, for the 1-D case
and a degree 1 polynomial spline function.
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Fig. 3. Deformation fieldu is enforced to be null on the boundary of
 by
considering only the basis functions, the support of which is entirely included
in 
. In this figure, the 1D case (
 = [0; 1]) and the polynomial spline function
of degree 1 are considered. The basis functions represented with solid lines are
kept, while those represented with dashed lines are excluded from the model.

B. Local One-to-One Property

As stated in Section II, topology preservation requires local
injectivity of the deformation, which, under the right conditions,
may lead to global injectivity. According to Theorem 2 (Sec-
tion II), for a transformation, local injectivity is obtained
by enforcing the Jacobian to be positive for each point

, where is the Jacobian of at point . Taking
advantage of the local minimization scheme presented in (8),
and ensuring the adequate boundary conditions, as explained in
Section IV-A, a topology preserving version of the matching
method may thus be expressed as

(9)

This constrained minimization is performed while keeping
the hierarchical strategy introduced in Section III-C.I. In each
space , the solution obtained at the previous scale is tracked
and used as an initialization. According to the causality property

, each scale transition step preserves the deformation
field so that the positivity property is also
propagated through the scale spaces. The hierarchical strategy
and the constrained minimization are therefore associated in a
mathematical coherent way.

The principal issue thus consists in ensuring condition
for all the points in . The Jacobian may

be easily expressed as a function of the scaling functionand
of the model parameters. In Appendix A, it is shown that, for
any scaling function , is linear with respect to parameters

and . As a consequence, the positivity constraint on
the Jacobian may be expressed as a set oflinear inequalities on
the model parameters. This is an appealing feature, since linear
inequalities are easily handled in constrained minimization
methods. The number of inequalities to be considered is
however equal to the number of points in . For a control
of positivity over the whole continuous domain, this yields
an infinite set of constraints. A solution often used in other
approaches, is to compute the Jacobian (or finite difference
approximations of the Jacobian) on the discrete image lattice
only. The set of constraints is then reduced to the number of
pixels in . However, this approach does not ensure Jacobian
positivity for all points on the continuous domain, so that

topology preservation can no longer be guaranteed by the
theorems in Section II, which are valid only for continuous
transformations. The method proposed in this paper enforces
local injectivity over the whole continuous domain and not
only on the discrete lattice, as explained now.

To overcome this key problem, we have considered the degree
1 polynomial spline scaling function . By using this scaling
function, we show that the Jacobian is piecewise linear
with respect to and (see Appendix B). More precisely, at res-
olution , is linear with respect to and over each square
domain ,

, . To enforce Jacobian positivity
over domain , it is therefore sufficient to impose this condi-
tion at the four corners of , which corresponds to only four
linear inequality constraints. The support being the union
of the four square domains , , , and ,
the condition , is easily obtained
with a set of only 16 inequality constraints. The matching pro-
cedure then becomes

(10)

where and are, respectively, a matrix and a vector re-
lated to the 16 necessary and sufficient control points over
(the expressions of and are given in Appendix B).

A finalproblemcomesfromthestrongassumptionofTheorem
2, that should be a transformation. With the scaling func-
tion, this assumption is not verified: is only piecewise . As
a consequence, local injectivity cannot be directly inferred from
Theorem2.Fortunately, thepropertystill holds inourcase:anex-
tension ofTheorem2 isdemonstrated inAppendixC.

Practically, the constrained optimization problem (10) may
be addressed with any existing approach, using the linearity of
the constraint [29], [30]. For our implementation, we have de-
veloped a fast method, close to sequential linear programming
[30]. The algorithm is described in Appendix D.

Finally, let us notice that, beside topology preservation, the
Jacobian is also related to the compression and dilation prop-
erties of matter. In some applications, it might be interesting to
enforce the Jacobian between user-defined values

. This may be achieved with few modifications of
the method. The number of inequality constraints is simply in-
creased to 32 (16 for each inequality)

(11)
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Fig. 4. Deformable matching of (a) a circle on (b) a square. For each method, the transformation is applied to a regular grid of lines, to visualize the underlying
deformation field. Deformable matching is performed: (c) and (d) without any constraint; (e) and (f) with a positivity constraintJ > 0; and (g) and (h) with the
constraintJ > 0:5.

V. RESULTS

To illustrate the contribution of topology preservation, we
first present an example showing the mapping of two simple
binary shapes [a circle and a square, as shown in Fig. 4(a) and
(b)]. The deformation field that maps the circle on the square is
nonlinear and long-range (in the sense that it may not be esti-
mated with local differential methods [31], [32]). Fig. 4(d)–(h)
displays the deformed images of the circle, obtained with dif-
ferent constraints. We simultaneously apply the same transfor-
mations to a regular grid, to visualize the underlying deforma-
tion field [Fig. 4(c)–(g)]. As expected, the unconstrained de-
formable matching method [Fig. 4(c) and (d)] does not pre-
serve topology and yields singularities in the deformation field,
which may be detrimental in most applications. These singu-
larities appear clearly as folds or line crossings on the deformed
grid [Fig. 4(c)]. This is not the case for the constrained matching
algorithm, which clearly ensures the bijectivity of the transfor-
mation [see Fig. 4(e) and (f)], while providing a satisfactory
mapping. This shows that, in the space of possible solutions
that warp the circle onto the square, the constrained method is
able to retrieve a topology preserving transformation. On the
other hand, when the minimal value of the Jacobian is unduly
increased , the deformation field becomes smoother,
but is unable to match exactly the target shape [see Fig. 4(g)
and (h)].

In the previous example, the singularities in the uncon-
strained approach are only visible on the regular grid and have
no consequences on the appearance of the resulting deformed
shape [Fig. 4(c) and (d)]. In Fig. 5, we show a second, more

involved example, with larger, nonlinear deformations. This
example is somewhat beyond the representation capabilities
of our model, since it is not possible to obtain an exact match
in this case. Fluid deformation models [18], [20] are neces-
sary to cope with such intricate cases, but their additional
modeling power is obtained at the expense of computational
efficiency. For this second example, the unconstrained ap-
proach [Fig. 5(c) and (d)] clearly yields singularities in the
deformation field, making holes appear in the deformed
image and therefore changing the topology of the source
image. The constrained method [Fig. 5(e) and (f)] produces
a topology preserving result, without any hole appearing,
neither during the registration process nor in the final result
(see our web site

in the section on topology pre-
serving deformable matching, for animated deformations).
When the constraint increases , the method is
completely unable to retrieve the large displacements, since
they are outside the space of feasible solutions.

As an example of application, the inter-subject registration
of 2-D MR images has been considered. Inter-subject registra-
tion is a key issue in medical imaging applications involving
individualized or probabilistic atlases [18], [33]. Extensive ex-
periments with the previous unconstrained version of our de-
formable matching algorithm [17], have shown that the hierar-
chical model was able to provide accurate maps between 2-D (or
3-D) inter-subject MRI’s, which shows that the modeling power
of the representation is adequate in this application (in many
cases of course, the mappings were not topology preserving, as
expected).
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Fig. 5. Deformable matching of (a) a capital “C” on (b) a square: (c) and (d) without any constraint; (e) and (f) with a positivity constraintJ > 0; and (g) and
(h) with the constraintJ > 0:5.

In order to get 2-D images of two different patients, corre-
sponding to the same part of the head, we consider two slices
extracted at the same position in two 3-D MR images (256),
after having put them in the same coordinate system, through
rigid registration [34]. Fig. 6 displays the results obtained by
matching the two images with different constraints. In each
case, the registration was performed up to scale , which
corresponds to exactly 32 258 parameters. The result obtained
without the topology-preserving constraints [Fig. 6(d), (h), and
(l)] is quite noisy, both for the deformed image and on the
regular grid. When computing the Jacobian of the deformation,
we notice that the local injectivity condition is violated over
a large part of the image. With the constrained approach, the
resulting deformation preserves topology, thus providing an
anatomically coherent deformation. As the minimal value of
is increased, the deformation field becomes smoother, but the
matching remains very satisfactory [see Fig. 6(g), (k), and (o)].
To illustrate the actual contribution of topology preservation,
we have manually segmented the left ventricle in the source
image [Fig. 7(a)]. By applying the estimated deformation
on this segmentation map, we directly get a segmentation of
the left ventricle in the target image. An interesting point is
that a part of the left ventricle in the target image presents a
contraction, reducing it to a thin line [Fig. 7(d)]. When using
the unconstrained approach, the connected component formed
by the source ventricle is separated into two different con-
nected regions [Fig. 7(b)], thus modifying the topology of this
structure. When the topology-preserving method is used, the
structure remains connected so that the region corresponding
to the thin line is well segmented [Fig. 7(c)], ensuring the
anatomical coherence of the segmentation.

VI. CONCLUSION

We presented a parametric approach for topology-preserving
deformable image registration. The method is based on a contin-
uous hierarchical modeling of the deformation field, relying on
the multiresolution approximation theory for finite energy sig-
nals. The deformation field is expanded on a set of scaling func-
tions corresponding to Riesz bases of polynomial splines. These
bases enable to handle topological constraints as a limited set of
linear constraints on the model parameters. The method is devel-
oped in two dimensions but the 3-D extension is planned.3 The
choiceofotherscaling functions in2-Dandin3-D,aswellas their
influence on the accuracy of the matching, is also under study.

The major contribution of the proposed constrained hier-
archical approach is to enforce Jacobian positivity over the
whole continuous domain on which the deformable mapping
is defined. Contrary to existing approaches that track discrete
approximations of the Jacobian on the discrete image lattice,
topology preservation is thus mathematically guaranteed over
the image support, at all scales. The hierarchical estimation
scheme also exhibits low sensitivity to local minima, and
enables large, nonlinear deformation estimation with moderate
computational burden [typical computational time for matching
256 images is less than 1 min on a standard single processor
workstation (HP C3000 360 MHz)].

Inter-patient registration of medical images, presented in Sec-
tion V, is one of the potential applications of the method. Let us

3The linearity of the Jacobian with respect to the model parameters (Ap-
pendix A) has been established for 3-D vector fields, but the linearity with
respect to the spatial coordinates, is no longer verified. This issue is currently
under study.
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Fig. 6. Nonrigid matching of MR images from two different individuals: (a) source (reference) image; (b) target image (patient data); (c) differencebetween the
source and the target image; (d) result of the deformable matching without constraint; (e) result of the matching with the positivity constraintJ > 0; (f) deformable
matching with the constraintJ > 0:3; (g) with the constraintJ > 0:5. For each case, the difference between the deformed image and the target image is computed
(h)–(k) and a superimposed regular grid of lines is also deformed to visualize the smoothness and coherence of the deformation (l)–(o).

however notice that the framework described here is also suited
to many other pattern matching problems in which the topology
of the underlying structures have to be preserved. In the current
implementation of the method, the constraints are spatially in-
variant, but the method may be extended to handle spatially in-
homogeneous constraints. For inter-patient registration of med-
ical images, this represents an interesting extension since the

variability in shapes among a population is not the same for all
anatomical structures. A description of these variations for each
structure may be very useful for instance, to perform or analyze
the mapping of an atlas on a template. In other applications, one
could enforce local injectivity in some part of the image while
allowing singularities in other parts, in order to deal with local
changes in topology.
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(a) (b) (c) (d)

Fig. 7. Effect of the topology-preserving constraint on atlas-based segmentation using registration: (a) source image with the contour of a manual segmentation
of the left ventricle superimposed (d) target image. The results of the matching of (a) on (d) are displayed: (b) using the unconstrained approached and (c) with the
positivity constraintJ > 0. By ensuring topology preservation, the constrained approach provides a connected region while the unconstrained approach separates
it into two different components.

APPENDIX A
LINEARITY OF THE JACOBIAN WITH RESPECT TO THEMODEL

PARAMETERS

As stated in Section IV-B, we show in this Appendix that, for
an arbitrary scaling function, the Jacobian of map is
linear with respect to the parameters and .

From (5), we can write

(12)

where and
are the terms of and cor-

responding to the basis functions, the subscripts of which are
different from . The Jacobian is then given by

(13)

where

The Jacobian is therefore linear with respect to and
, for all .

APPENDIX B
POSITIVITY CONSTRAINTS ON THEJACOBIAN

To enforce the positivity of the Jacobian over domain, we
take advantage of the linearity of with respect to the spatial
coordinates, in the case of the scaling function.

From (6), with , we have

for
for
otherwise

(14)

From (3) and the parametric deformation model (5), it comes
that over each square domain

, , ,

the deformation field is given by (for the sake of simplification,
the square domain is assumed to be )

(15)

The expression of the partial derivatives of on be-
comes

where

The Jacobian is therefore given by

(16)

where

This expression shows that is linear with respect to and
. As a consequence, to enforce the constraint

for all , we simply need to force
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at the four “control” points
. The values of the Jacobian at these

points are

(17)

Let us now consider the optimization problem expressed in
(10) or (11). The support of basis function is simply
the union of the four square domains , , and

. To enforce the constraint over , we therefore need
16 inequalities corresponding to the 16 control points. These in-
equalities derive from (17) for the four couples ,

, , and
. The Jacobian being linear with respect to and

, the constraints can be expressed in matrix form as follows:

(18)

where

and

Due to the simplifying assumption that , pre-
vious equations are only valid for resolution level . To
deal with resolution it is easy to show that all terms of order

, with respect to and , simply need to be multi-
plied by in (16)–(18)

APPENDIX C
LOCAL ONE-TO-ONE PROPERTY OF THEPIECEWISE

DEFORMATION MAP

Theorem 2 states that the local one-to-one property, necessary
to get a global homeomorphism, may be obtained, fortrans-
formations, by ensuring the positivity of the Jacobian. However,
when using the polynomial spline scaling function, is only
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a piecewise transformation (see Appendix B). We show here
that this condition is sufficient to ensure the local one-to-one
property of .

As already established in Appendix B, with the scaling
function, is linear with respect to and on each square
domain (16). Let us denote the extension of ,

to the whole plane. The Jacobian of is
linear with respect to and over and strictly positive on
the closed bounded set . From the uniform continuity of

it follows that there exists an open set, containing ,
over which is strictly positive. Applying Theorem 2 to ,
we obtain that is locally one-to-one on and then on .
Since on , is locally one-to-one on the closed
bounded set . However, this does not imply the local in-
jectivity of on the boundary between two square domains
( and for instance) since the neighborhood of a
point on this boundary lies simultaneously over two (or four)
different squares. To address this issue, we use some elementary
geometric properties related to the constrained mapping. From
(15), it is easy to see that the boundaries of domain are
linearly mapped to line segments. The image of the boundary
of the square domain is thus a quadrilateral joining the
following points:

(19)

(20)

(21)

(22)

Let , , denote the four
vectors corresponding to the edges of the deformed square. The
vector products are nothing else but the Jacobian
of on the four corners of (17). For instance [using (16)]
we have

(23)

The positivity constraint on the Jacobian, when applied on
the four corners of each square domain , thus amounts to
enforcing the four angles formed by the edges of the deformed
shape to remain positive. By considering domain
and the eight surrounding squares, it follows that, after con-
strained deformation, these nine squares are transformed into a
set of nine closed, bounded, simply connected and mutually dis-
joint regions [see Fig. 8]. Using Theorem 3, the restriction of
on this nine square domains is thus a global homeomorphism,
which implies the desired local injectivity on the boundary of

. As a consequence, the positivity constraints enforced on
the Jacobian ensure that transformationis locally one-to-one
for all the points in .

Fig. 8. Geometric properties of the parametric deformation: under the con-
strained approach, each square domainS is deformed toward a quadrilateral,
the angles of which are all positive. This property ensures local injectivity of the
map even at points of discontinuous derivative.

APPENDIX D
CONSTRAINED MINIMIZATION METHOD

The linearity of the constraints enables to adapt standard con-
strained minimization methods. Let us consider a minimization
problem under linear constraints: ,

, where are the parameters to be estimated
and and are the coefficients associated to thelinear
constraints to be satisfied. Given one point
in the feasible region (the region for which the constraints are
not violated) and a direction of minimization ,
we can directly compute the maximum step length , along
this direction, so that the new solution does not violate the con-
straints

(24)

Many minimization methods, with linear constraints, can be
found in [29] and [30]. For our current implementation, we have
used a minimization approach close to sequential linear pro-
gramming [30]. The purpose is to minimize, under constraints,
the local energy function (11) according to the two parameters

and associated to basis function . To avoid te-
dious iterative schemes, the problem is linearized with respect
to the residual displacement, associated to a variation of the two
coefficients and . A Taylor approximation of the de-
formed intensity image is given by

(25)

where

From this linearization, the two parameters and
are estimated in one step by solving the corresponding least
square system

(26)
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where

...
...

...

where are the pixels in . The two parameters
and can be interpreted as the search direction of

the current iteration. To address the constrained minimization
we then use the following scheme:

• If the new point is in the
feasible region, this point is accepted as a new value for
the two parameters and .

• If one or more constraints are not satisfied, the maximum
step length is computed using (24). The point

thus obtained,
lies in the feasible region.

— If it minimizes the energy it is directly accepted.
— If not, a 1-D minimization method (Brent’s method

[35]) is used to find in the step length
that minimizes the energy along the direction

.
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