(© 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 7, JULY 2001 1081

Topology Preserving Deformable Image Matching
Using Constrained Hierarchical Parametric Models

Oliver Musse, Fabrice Heitz, and Jean-Paul Armspach

Abstract—in this paper, we address the issue of topology with a cost function describing image differences. Often, this is
preservation in deformable image matching. A novel constrained handled through a Bayesian framework [14], where constraints
hierarchical parametric approach is presented, that ensures that 5. incorporated into the warping model as prior probability

the mapping is globally one-to-one and thus preserves topology . . .. .. N
in the deformed image. The transformation between the source distributions. Fast regularization methods have also been

and target images is parameterized at different scales, using a Proposed, relying on an iterative filtering of the discrete vector
decomposition of the deformation vector field over a sequence of field with a Gaussian [3]. Others have investigated parametric
nested (multiresolution) subspaces. The Jacobian of the mapping transformations using, for instance, polynomial spline [5], [15],

is controlled over the continuous domain of the transformation,  thin-plate spline [16] or wavelets [17], so that the constraints

ensuring actual topology preservation on the whole image Support. e ey plicitly included in a parametric deformation model.
The resulting fast nonlinear constrained optimization algorithm

enables to track large nonlinear deformations while preservingthe [N most of these approaches, the prior enforces homogeneity
topology. Experimental results are presented both on simulated Of the deformation field through linear regularization models.
data and on real medical images. This is related to the “smoothness” of the deformation and
Index Terms—bDeformable image matching, hierarchical Proved to be efficient in many applications when addressing
parametric models, multiresolution deformation field modeling, small deformations problems. The problem is significantly
topology preservation. harder for large nonlinear deformations. Since the constraint
generally increases proportionally to the deformation magni-
tude, it becomes difficult to simultaneously estimate a regular
) _ and satisfactory transformation, even when using coarse to fine
I MAGE matching of deformable structures has receivegrategies. Furthermore, standard regularization methods do not
considerable attention during the last decade [1]. Medlo‘g;\,leser\,e the topology in the deformed images.
imaging, revealing anatomical structures using a wide variety of1qn010gy preservation is a stronger and global constraint, en-
sensors, is probably one of the first application fields. A key rgyring that connected structures remain connected and that the
search topic is inter-subject or atlas-subject registration, whefgghhorhood relationship between structures is maintained. It
the purpose is to estimate long-distance and highly nonlinegg, prevents the disappearance or appearance of existing or
deformations corresponding to anatomical variability betweep,y, siructures. These properties are related to the continuity
|nd|V|duaI_s. Potential applications mc_lude image segm_enta'q%d inversibility of the deformation. Topology-preserving
and labeling [2], [3], atlas-based multimodal image registratiqatching is particularly interesting for inter-subject registration
or fusion [4], motion analysis in three-dimensional (3-D) imaggs medical images, since, in the continuous domain, anatom-
sequences [3], statistical analysis of normal and pathologi¢al| structures have the same topology for any individual (at
anatomical variations [5]-{7], atlas-based follow-up of lesiopast for nonpathological cases). By enforcing this constraint,
evolution over time [8], and atlas-based volume estimation [§he space of possible solutions is restricted to deformations
(10]. ] ) ) ) ) ] satisfying the real-world property of matter. In particular, it
The high dimensional transformations involved in derpresents a challenging issue for the construction and use of
formable registration generally make the problem ill-condisnatomical atlases. For instance, when labeling a template by
tioned, so that additional constraints are needed to obtaif,g,sferring atlas knowledge through mapping, it is essential to
satisfactory result. A common way to do this is to restrict thengyre topology preservation of the atlas structures to get an
space of possible solutions by incorporatangriori knowledge anatomically coherent solution.
in the deformation _model. Stand_ard regularization _teChniqueSTopology-preserving mapping has already been considered
[_11] such as Laplacian [12]_’ bending energy [13], or I_mear eIa‘ﬁ/‘lth success in afew works. In [18], Christensen introduced vis-
ticity [2]_' are a popular ch0|(_:e. A_regu_la_rlz_lng pot_entlal ener9¥%ous fluid material deformation models, in an Eulerian frame-
constraining the deformation, is minimized smultaneouslxork’ by using the Navier—Stokes partial derivative equations
(PDESs). This allows large displacement estimation compared to
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The problem was expressed as a regularization scheme or usiregion model (see Section IV-A), the other conditions are not
PDE, shown to be linked to the fluid model of Christensen. Thatraightforward. First, as stated in the following theorem [22],
proposed numerical scheme was more stable so that no discvgtten working on a closed bounded set, the continuity condition
Jacobian tracking was needed. Ashburner [21] solved the isgogfor the inverse transformation is a consequence of the other
in a Bayesian framework, where the Gibbs potential associaig@perties.
to the prior distribution is a function of the Jacobian. By penal- Theorem 1: Let T be a continuous transformation which is
izing noninvertible solutions through low probabilities, the magne-to-one in a closed bounded $etThen, the corresponding
ping is ensured to preserve almost surely the topology. Finalijverse transformatiofi—* is continuous, and mag#S) back
some authors have addressed the topological issue by consigto 5.
ering simultaneously backward and forward maps, constrainingas a consequence, the major issue is now to ensure the global
a posteriorithe composite of both to reduce to identity [3]. Suckhjectivity of 2. A common solution consists of forcing the Ja-
an approach is fast and simple but does not mathematically @Bhian of the deformation to be positive [22].
sure the preservation of the topology. Theorem 2: Let 7 be a transformation fro8” into E™ (E™

In this paper, we propose an alternative approach, basedi®the space defined as the cross prodiist E x E - - - x E of
a hierarchical continuous parametric model of the deformationspacest) which is of classC? in an open subseb of E,

map, described in [17]. The proposed topology preservingq suppose that the Jacobif) > 0 for eachp € D. Then,
method allows to enforce the positivity of the Jacobiamf g locally one-to-one irD.

the continuous transformation, within a specified interval of yowever, the positivity constraint on the Jacobian only en-
values. Instead of expressing the topology preserving cQfijres |ocal injectivity off’, which means that for each point
straints through PDE or Bayesian approaches, the continugus 1 there exists a neighborhood in whithis injective (or
deformation model is strictly constrained. We establish thg,q 15.one). To infer global injectivity from local injectivity, ad-
possibility to control the positivity of the Jacobian over thejiional conditions are needed (see [22]-[25]).

whole (continuous) image domain, by applying only a limited thaorem 3:1Let 7 : B — B* be a continuous locally

(discrete) set of linear constraints on the parameters of tgﬁe-to-one transformation. B and B* are convex thef’ is
deformation model. An energy function describing the interasﬁ '
e

i bet the two i is th inimized under thi lobally one-to-one.
lons between he wo Images IS then minimized under this 'i:romaIIthesetheorems,wecannowstatethatifthemapping

of constraints, ensuring that the transformation maintains tha. . tinuous. onto. and locally one-to-one over the convex
topology in the deformed image. Thanks to the limited numb £t and ifh(Q)’is cor'1vex, therh is a global homeomorphism

of linear constraints and to the hierarchical modeling approagfly - o into 1(€). To get a topology-preserving transformation
the constrained optimization algorithm enables fast estimatianQ into O anci therefore enforde(2) = 0, a sufficient con-

. o . r
of long range, nonlinear deformation fields (cpu times are abouf. .
1 min on a standard workstation for Zsnages). é['l?lon is to ensure that maps the boundary @&t exactly onto

The remainder of the paper is organized as follows. Sectio ';ﬁelf' Under this additional condition, the convexity bf<2)

presents an overview of the mathematical issues relatedf. 5:;;“3]:/0?'(;”\/:3];rto.?qhtgeai%r:tl.enx'g f'oﬁfoalgggﬁ’eqnfgfee’ It
topology preservation, in which the conditions needed to ensufy W | indous, ' y ihjectiv

topology preservation are recalled. In Section lll, the multire%anéfoméat'on fo;/Zer th.eor;]y e;: sehtf_z and |f|h maps exac_:tly
olution parametric matching method is briefly described. THE® qunfary c;z. onsllts_?h, thenh is a?"po g)llg;é/-pres:arylr:jg
extension of this model in order to preserve topology is thdf@Pping from £2into €2. These properties will be exploited, to

detailed in Section IV. Finally, results on both simulated ang'Sure topology preservation over the whole (continuous) do-
real-world data are discussed in Section V. main {2, in the case of the hierarchical parametric deformation

model described now.

Il. TOPOLOGY PRESERVINGMAPPINGS

The purpose of deformable matching is to estimate the trans- Il- HIERARCHICAL DEFORMABLE IMAGE MATCHING

formation between two different images (the source and the, [17], we have introduced a hierarchical parametric mod-

target) so that, after registration, the corresponding structugﬁlg framework to perform fast nonrigid image matching. The
are superimposed in the target image and in the deformed Vigfasent work is based on an extension of the model and algo-
sion of the source image. Let us denbte(? — 2 the contin-  ithms described in [17]. In particular, the optimization algo-
uous transformation, whet is the domain on which the im- (jihms have been modified to increase their efficiency (by ex-
ages are defined. To be a topology-preserving mappimaust  poiting the local decomposition properties of the model) and
be homeomorphic, which means that it must be (&) continuoy§ake into account topology preservation. Before detailing this
(b) bijective (one-to-one and onto) with (¢) a continuous inversgytension, the following section provides the basis of our hier-
The continuity of the deformation is related to the local neighychical deformable matching approach. For greater detail and

borhood relationship between structures, and maintains their a¢sve results about the method. the reader is referred to [17].
jacency, while global bijectivity ensures that each point in the

source image has one and only one corresponding point in g:ne

target and conversely. '
Even though the continuity and onto properties may be di- The deformable matching method uses the common frame-

rectly and easily imposed through the definition of the defowork [18], [20] of estimating a displacement field by min-

General Approach
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imizing the following nonlinear distance measure (or ener¢
function) £/ between the target image and the source image

B = [ L) - Lstu@)Pds @)
¢ 08 |
where
Q bounded domain defined by the images;
I, floating (source) image to be mapped onto the targ®®’ /\ ]
imagel;;
s pixel position over?. 0al i

u, denoting the deformation vector field, belongs to an adequi
Hilbert spaceH of finite energy deformation fields. The contin-
uous mapping: between the two images is then defined as o2 |

h(s) =s+u(s). 2)

-2 -15 -1 -0.5 0 0.5 1 1.5 2
Instead of estimating directly the vector fieldvithin 7, suc-
cessive approximations of are considered over a sequence otF
nested subspaces of the original configuration sFacEehis se-
quence Qf subspaces defings a sequence of multiresolution\gpere ! = ((bﬁ,j)i,j:o,...,n is a matrix formed with the
proximations [26] of vector fieldi, as explained below. basis functions off; and AL = (aa;ﬁj)m:o _, and AL —
_ (ayﬁ j)w»:o,_,_m are the matrices of parameters for each compo-
B. Deformation Model nent of the deformation vector. Note that the sum is limited to

The transformation between the two images is parameteriZed 0, - - -, andj = 0,...,n wheren I_Zl — by andby is the
at different scales, using a decomposition of the deformati§i¥€ of the support of the scaling functignindeed, since? is
vector fieldu over a sequence of nested subspdées Vv, ¢ @ bounded set andlis compactly supported, we only consider

. CV, C V41 C --- C H, defining a multiresolution the basis functions, the support of which is partly include@.in
approximation ofu [26]. SpaceV, defines the coarsest scale [N the remainder of the papar,(resp.i(s) = s 4 u(s)) will
representation and is a subset of the finer scale representati@@Rote the deformation field (resp. transformation) in general,
Vi C---V; C ---. Mallat [26], [27] has shown that nonorthog-for example, to express the conditions it should satisfy to ensure
onal (Riesz) basis of these spaces may be generated from dil4@8@logy preservation andf (resp.h'(s) = s+ u'(s)) will de-

and translated versions of a single compactly supported scalftje the parametric deformation field (resp. transformation) at
function ¢ [27].t In one dimension, a Riesz basisfis con- resolution2?, this notation being used as soon as the considera-

ig. 1. Polynomial spline scaling functiogg, (6) ford = 0. 1, 2, and3.

structed by the set of functions tions are specific to the parametric model.
The hierarchical parametric representation (5) is valid for any
P = 21/2¢(21w — ). €) scaling functiony defining a Riesz basis. For this implementa-

tion, we have used a nonorthogonal Riesz basis of polynomial

To represent two-dimensional (2-D) signals, a separalfiglines, constructed withox splineg[27]. The variable order
scaling functiongop (z,4) = ¢(x)¢(y) is considered, so that Polynomial spline functions (Fig. 1) are defined as follows:
the Riesz basis df; becomes L1

(/)0(1'):{17 forz € [—5,5[

0, otherwise

¢iy = 202020 — 4, 2"y —j) = 2'9(2'w — )2y — j). (4)

7 pa(r) =¢o * pa—1(z) (6)
Then, in order to handle a deformation field (i.e., to modelize

vectors instead of scalars), two multiresolution decomposition§iered denotes the order of the representatidn= 0 corre-

are considered, one for each component of the displacementsp@nds to the classical piecewise constant Haar basis. 1

resolution! (in spacel;) the parameterization af is therefore defines continuous and piecewise linear functions in 1-D (but

defined as a nonlinear representation for the 2-D separable case). These
functions have the advantage of being explicitly defined and
ul(z,y) =30, Z};o aii,j (/)li,j (z,9) compactly supported. Nonorthogonal representations have been
— trace A;Tq)l preferred to orthogonalized Riesz bases because the resulting
u(z, ) =3 ;| A (5) orthogonal _bases have |_nf|n|te support [27]._ _
y (2, 4) = 2im0 2oj=0 Oy, , i3 (%5Y) Another interest of this model, which derives directly from
= trace(A;Tqﬂ) the causality property; C V;,1, is that the approximation of

the deformation at resolutidrmay be expanded over the finer

1To define a Riesz basis, functianmust verify some technical conditions, 20rthogonality is not important in our case, since we are modeling an un-
which may be found in [27]. known signal rather than analysing a known signal.
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E (1) are exploited. Since the scaling functigns compactly
scale i supported, the model parameters ; anda, ;» associated to
the basis functionzb’;’j, have a local impact on the deformation

field u'. Instead of considering the simultaneous optimization of
T A [ all the parametersl!, the matching is performed by iteratively
. fA A ;2 2; solving a sequence of local subproblems
NN loop
scale transition for (4,5) € {0,...,n}?

Minimize £ (amé It ay! )

2%

= / |Il(s)—12(s+ul(s))|2ds

Qb
i3

l scale transition

Fig. 2. Hierarchical optimization procedure in the case of the 2-D Haar basis.
end for (¢, 5)

resolution spac#;; without any interpolation nor approxima- until convergence (®)

tion. It can be shown that the parameter matridés" andAt'  whereq! ; is the support of the basis functig ;.
of the decomposition ove;..1, are simply derived fromi; and  This scheme is akin to the classical Gauss-Seidel optimiza-
Al according to [26] tion method which consists of minimizing in turn the objective
function along all the directions of the parameters space, using
+1 _ l +1 _ l ,
A= (12 (A)) «H A = (12 (4))) «H (1) 30ne-dimensional (1-D) minimization technique. Here, instead

whereT, is an operator which puts one zero between each Qf_cor;smermglone parameter at the same time, the two parame-
ement of a matrix, and{ is a numerical convolution filter de- €S¢, , anda,, ; are estimated simultaneously. The optimiza-

pending on the scaling function [26]. tion procedure is described in detail in Appendix D. This local

minimization scheme significantly decreases the computational
C. Matching Procedure time (the number of parameters reaches 32 258 at the resolution

. : Lo level L = 7).
1) Hierarchical Optimization Strategyin order to make use )

of_the pr_eviously o_Ie_fined hierarchical_ decomposition, instead Oflv. T OPOLOGY PRESERVINGHIERARCHICAL DEFORMABLE
minimizing the original energy function (1) over the full, con- MATCHING

tinuous Hilbert space{, we consider a coarse-to-fine sequence

of optimization problems, obtained by successively restricting The hierarchical parametric mapping introduced in the pre-
the vector field to subspacé$, Vi, ..., V; [28]. The energy Vious section imottopology preserving, since, as may easily be
function £ (1) is minimized over each spaéé,! = 0,...,L Verified, the Jacobian of the transformation may take negative
with respect to parameters= (A;,A;), using as an initializa- values over domaii2. In this section, we describe an exten-
tion the estimation obtained at the previous scale. The trackigi@n of the matching procedure, which ensures topology preser-
of the solution between two successive scdlend/ + 1 is vation over the whole (continuous) domdin Using the gen-
performed, without any interpolation (thanks to the causaligfal results on topology preserving mappings (see Section lI),
property), using (7). The procedure is repeated until the desii@ Show that topology preserving constraints may easily be ex-
scaleL is reached, this scale being a compromise between #igssed through a limited set of linear inequalities on the de-
computational cost, the desired resolution, and the desired régjmation model parameters. A fast constrained minimization
ularization of the vector field. As shown in [28], this hieraralgorithm, relying on these constraints, is then devised.

chical coarse-to-fine procedure exhibits fast convergence prop- o -

erties when applied to high-dimensional nonlinear optimizatidy C0ntinuity and Boundary Conditions

problems (with many local minima). Indeed, the energy function The continuity of transformation!(s) = s + u(s), is en-
becomesmoothemt coarse scales, and thus local deterministiured by using the general properties of the parametric model.
optimization algorithms may be used to track the solution fro@inceu’ is expressed as a linear combination of basis functions
coarse to fine scales. derived from a single scaling functian(5) and (4),u!, andh!

Fig. 2 illustrates the algorithm for th@, scaling function inherit the continuity and differentiability properties 6f As a
(corresponding to the Haar basis). The Haar basis representationsequence, the continuity of transformatidris simply ob-
amounts to constraining the deformation field to be blockwigained, by considering a continuous functipr~or the polyno-
constant over cells of decreasing size. The Haar basis is not usedl spline functiong; (6), this property is satisfied faf > 1.
in the present application since it does not yield a continuousTo ensure thab!(Q) = €, the transformation must satisfy
deformation, as required (see Section IV-A). some Dirichlet boundary conditions corresponding to the nul-

2) Separable Minimization ProcedureAt each scald, the lity of u’ on the boundary of Q. To this end, only the basis
energy function® (1) is minimized, as a function of the modelfunctionsd)ﬁ’j that have their support entirely included{inare
parameterst! = (A | A;). To this end, the local representatiorretained. This principle is illustrated in Fig. 3, for the 1-D case
of the deformation and the possible decomposition of the energyd a degree 1 polynomial spline functign.
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topology preservation can no longer be guaranteed by the
theorems in Section Il, which are valid only for continuous
transformations. The method proposed in this paper enforces
local injectivity over the whole continuous domahﬁrj and not
only on the discrete lattice, as explained now.

To overcome this key problem, we have considered the degree
1 polynomial spline scaling functiog; . By using this scaling
Fig. 3. Deformation fieldu' is enforced to be null on the boundary @fby function, we show that the Jacobidp (x, y) is piecewise linear
considering only the basis functions, the support of which is entirely includatith respect tec andy (see Appendix B). More precisely, at res-
in . In this figure, the 1D caséX = [0, 1]) and the polynomial spline function olution2¢, .J;. is linear with respect te andy over each square

of degree 1 are considered. The basis functions represented with solid lines l { { l
kept, while those represented with dashed lines are excluded from the modgé?namsk m = [k/2, (b + 1)/2] x [m/2", (m + 1)/2 B k .
,28—1,m =0,...,2' - 1. To enforce Jacobian positivity

over domarrﬂ,ﬂ o ItiS therefore sufficient to impose this condi-
tion at the four corners o}, ,,,,» which corresponds to only four
ﬁrlrear inequality constraints. The supp@‘t being the union

of the four square domarn%fj, Sy T S”Jrl, ands?,, Fay
the conditionv(z, y) € Qf ;, Jui(z,y) > 0is easily obtained
with a set of only 16 inequality constraints. The matching pro-
cedure then becomes

B. Local One-to-One Property

As stated in Section Il, topology preservation requires loc
injectivity of the deformation, which, under the right conditions
may lead to global injectivity. According to Theorem 2 (Sec
tion I1), for a C* transformation, local injectivity is obtained
by enforcing the Jacobia#,(s) to be positive for each point
s € Q, whereJ,(s) is the Jacobian af at points € 2. Taking

advantage of the local minimization scheme presented in (8), V(i,5) € {0,1,...,n}?
and ensuring the adequate boundary conditions, as explained in L. . .
Section IV-A, a topology preserving version of the matching Minimize E (al’ij’ayi,j)
method may thus be expressed as 5
/ 1 (s) = In(s + w(s)|Pds
¥(i,j) € {0.1,....n}?

Minimize E (axéj,ayli )

p {
7 ) subject to Mz‘l,j <Z%,J> + bl (20)
= / [1.(s) — (s +u'(s))| ds Yi.g
Q. whereM; ; ! and bl are, respectively, a matrix and a vector re-
subject to ¥(z,y) € 2\, Jy(z,y) > 0. ) lated to the 16 necessary and sufficient control points &yer

(the expressions dw’ andb’ are given in Appendix B).

This constrained minimization is performed while keeping Afinalproblem comesfromthestrong assumption of Theorem
the hierarchical strategy introduced in Section IlI-C.1. In each, thath should be &* transformation. With the; scaling func-
spaceV;, the solution obtained at the previous scale is trackeidn, this assumption is not verifiedl’ is only piecewise’*. As
and used as an initialization. According to the causality properyconsequence, local injectivity cannot be directly inferred from
Vi C V41, each scale transition step preserves the deformatibheorem 2. Fortunately, the property still holds in our case: an ex-
field u’ so that the positivity property s € €2 J,,(s) > Oisalso tension of Theorem 2is demonstrated in Appendix C.
propagated through the scale spaces. The hierarchical strateg9ractically, the constrained optimization problem (10) may
and the constrained minimization are therefore associated ibeaaddressed with any existing approach, using the linearity of
mathematical coherent way. the constraint [29], [30]. For our implementation, we have de-

The principal issue thus consists in ensuring conditioreloped a fast method, close to sequential linear programming
Jii(s) > 0 for all the points inQ! ;. The Jacobian/,: may [30]. The algorithm is described in Appendix D.
be easily expressed as a function of the scaling functiand Finally, let us notice that, beside topology preservation, the
of the model parameters. In Appendix A, it is shown that, faJacobian is also related to the compression and dilation prop-
any scaling functiom, J;: is linear with respect to parameterserties of matter. In some applications, it might be interesting to
al,ﬁ,j and ay’m.. As a consequence, the positivity constraint oenforce the Jacobian between user-defined values/,,i, <
the Jacobian may be expressed as a siat@dr inequalities on  J,, < J,.... This may be achieved with few modifications of
the model parameters. This is an appealing feature, since lingg method. The number of inequality constraints is simply in-
inequalities are easily handled in constrained minimizatiasreased to 32 (16 for each inequality)
methods. The number of inequalities to be considered is ‘
however equal to the number of points@j ;. For a control  V(4,) € {0,1,...,n}?
of positivity over the whole continuous domarn this yields ( l )
an infinite set of constraints. A solution often used in other Minimize £ %”’ay“
approaches, is to compute the Jacobian (or finite difference _ |_71( — Iy(s +ul( | ds
approximations of the Jacobian) on the discrete image lattice
only. The set of constraints is then reduced to the number of 2 l
pixels inQ2! .. However, this approach does not ensure Jacobian . 1 Oz, !
positivity for all points on the continuous domasy, so that subject to 0 < Juwm < M;; <ay%j) i Smax: (11)
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Fig. 4. Deformable matching of (a) a circle on (b) a square. For each method, the transformation is applied to a regular grid of lines, to visudézgitite un
deformation field. Deformable matching is performed: (c) and (d) without any constraint; (e) and (f) with a positivity costraihtand (g) and (h) with the
constraint/ > 0.5.

V. RESULTS involved example, with larger, nonlinear deformations. This

To illustrate the contribution of topology preservation, ngample 1S sor_newha_t beyond the representatlon capabilities

' . i . f our model, since it is not possible to obtain an exact match

first present an example showing the mapping of two simple . : )

. . - in this case. Fluid deformation models [18], [20] are neces-
binary shapes [a circle and a square, as shown in Fig. 4(a) an : L . .

S . sary to cope with such intricate cases, but their additional

(b)]. The deformation field that maps the circle on the square is 7, . : . .

nonlinear and long-range (in the sense that it may not be e%rtlﬁodellng power is obtained at the expense of computational

: ; . ’ iciency. For this second example, the unconstrained ap-

mated with local differential methods [31], [32]). Fig. 4(d)—(h@ 4 P P

. . . . . roach [Fig. 5(c) and (d)] clearly yields singularities in the
displays the deformed images of the circle, obtained with d eformation field, making holes appear in the deformed

ferent constraints. We simultaneously apply the same transf%—age and therefore changing the topology of the source

mations to a regular grid, to visualize the underlying deformﬁﬁage_ The constrained method [Fig. 5(e) and ()] produces

tion field [Fig. 4.(c)—(g)]. As ex-pected, the unconstrained de; topology preserving result, without any hole appearing,
formable matching method [Fig. 4(c) and (d)] does not Pregither during the registration process nor in the final result

serve topology and yields singularities in the deformation fielgsee our web sitettp: //www-ipb.u-strasbg. fr/gitin/
which may be detrimental in most applications. These siNQlzgearch/index a.html in the section on topology pre-
larities appear clearly as folds or line crossings on the deformg&ving deformable matching, for animated deformations).
grid [Fig. 4(c)]. This is not the case for the constrained matchinghen the constraint increaség > 0.5), the method is
algorithm, which clearly ensures the bijectivity of the transfolcompletely unable to retrieve the large displacements, since
mation [see Fig. 4(e) and (f)], while providing a satisfactorhey are outside the space of feasible solutions.
mapping. This shows that, in the space of possible solutionsas an example of application, the inter-subject registration
that warp the circle onto the square, the constrained metho®{-D MR images has been considered. Inter-subject registra-
able to retrieve a topology preserving transformation. On thien is a key issue in medical imaging applications involving
other hand, when the minimal value of the Jacobian is unduhlividualized or probabilistic atlases [18], [33]. Extensive ex-
increased.J > 0.5), the deformation field becomes smootheiperiments with the previous unconstrained version of our de-
but is unable to match exactly the target shape [see Fig. 4{gymable matching algorithm [17], have shown that the hierar-
and (h)]. chical model was able to provide accurate maps between 2-D (or
In the previous example, the singularities in the unco3-D) inter-subject MRI's, which shows that the modeling power
strained approach are only visible on the regular grid and havkthe representation is adequate in this application (in many
no consequences on the appearance of the resulting deformmases of course, the mappings were not topology preserving, as
shape [Fig. 4(c) and (d)]. In Fig. 5, we show a second, moexpected).



MUSSEet al. TOPOLOGY PRESERVING DEFORMABLE IMAGE MATCHING 1087

b d f h

Fig. 5. Deformable matching of (a) a capital “C” on (b) a square: (c) and (d) without any constraint; (e) and (f) with a positivity cohstraintand (g) and
(h) with the constraint/ > 0.5.

In order to get 2-D images of two different patients, corre- VI. CONCLUSION

sponding to the same part of the head, we consider two ince§Ne resented a parametric anproach for topoloav-preservin
extracted at the same position in two 3-D MR images {256 d P P PP bo'ogy"p g

; . ; formable image registration. The method is based on a contin-
after having put them in the same coordinate system, throulggw

iaid . o 1341 Fig. 6 displ h its obtained us hierarchical modeling of the deformation field, relying on
rigid registration [ . ] Fig. displays the results obtaine e multiresolution approximation theory for finite energy sig-
matching the two images with different constraints. In ea

th istrati P d ub to séate 7. which Is. The deformation field is expanded on a set of scaling func-

case, the :jeg![s ra 'ontlwgz gg;orme uf 0 STh ' V\Ilt cht _tio(gs corresponding to Riesz bases of polynomial splines. These
corresponds to exactly o parameters. 1he result obtaiiele s enable to handle topological constraints as a limited set of
without the topology-preserving constraints [Fig. 6(d), (), aNfthear constraints on the model parameters. The method is devel-

()] is quite noisy, both for the deformed image and on thSped in two dimensions but the 3-D extension is plarihé&the

regular.grld. When Complj't'_ng Fh,e Jacob!a}n Of, thg dEformat'OEhoice of other scaling functionsin2-D andin 3-D, as well astheir
we notice that the local injectivity condition is violated ove

. : ) influence onthe accuracy of the matching, is also under study.
a large part of the image. With the constrained approach, thel'he major contribution of the proposed constrained hier-
resulting deformation preserves topology, thus providing

tomicall h t def tion. As the minimal valug faar?chical approach is to enforce Jacobian positivity over the
anatomica g iﬁ edrefn N ?rma} Icl)g'b s he m|n|mat\|4a u bot whole continuous domaift on which the deformable mapping
IS Increased, the delormation field becomes Smoother, bUt W&afineq. Contrary to existing approaches that track discrete
matching remains very satisfactory [see Fig. 6(g), (k), and (o

. - rdpproximations of the Jacobian on the discrete image lattice,
Ta illusirate the actual contribution of topolo_gy preservatmqo ology preservation is thus mathematically guaranteed over
we have manually segmente_d the left V(_entncle in the so_urﬁé image support, at all scales. The hierarchical estimation
image [Fig. 7(a)]. By applying the estimated deformauogc
on this segmentation map, we directly get a segmentationeor{I

the left ventricle in the target image. An interesting point Iéomputational burden [typical computational time for matching

that a part of the left ventricle in the target image presents,ge images is less than 1 min on a standard single processor
contraction, reducing it to a thin line [Fig. 7(d)]. When usmg/vorkstation (HP C3000 360 MH2)]

the unconstrained approach, the connected component formef’%ter—patient registration of medical images, presented in Sec-

by the source ventncle IS separatce.d.lnto two different COHon V, is one of the potential applications of the method. Let us

nected regions [Fig. 7(b)], thus modifying the topology of this

structure. When the topology-preserving method is used, the o

structure remains connected so that the region correspondinsghe linearity of the Jacobian with respect to the model parameters (Ap-
he thin line is well segmented [Fig. 7(c)], ensurin thg'ee dix A) has been established for 3-D vector fields, but the linearity with

to the " mn g9 g ! g9 spect to the spatial coordinates, is no longer verified. This issue is currently

anatomical coherence of the segmentation. under study.

eme also exhibits low sensitivity to local minima, and
ables large, nonlinear deformation estimation with moderate
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Fig. 6. Nonrigid matching of MR images from two different individuals: (a) source (reference) image; (b) target image (patient data); (c) difiereecethe

source and the target image; (d) result of the deformable matching without constraint; (e) result of the matching with the positivity dopstraffjtdeformable
matching with the constraint > 0.3; (g) with the constrainf > 0.5. For each case, the difference between the deformed image and the target image is computed
(h)—(k) and a superimposed regular grid of lines is also deformed to visualize the smoothness and coherence of the deformation (I)-(0).

however notice that the framework described here is also suitetiability in shapes among a population is not the same for all
to many other pattern matching problems in which the topolognatomical structures. A description of these variations for each
of the underlying structures have to be preserved. In the currstructure may be very useful for instance, to perform or analyze
implementation of the method, the constraints are spatially ithhe mapping of an atlas on a template. In other applications, one
variant, but the method may be extended to handle spatially oeuld enforce local injectivity in some part of the image while
homogeneous constraints. For inter-patient registration of medlowing singularities in other parts, in order to deal with local
ical images, this represents an interesting extension since thanges in topology.
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(b) (d)

Fig. 7. Effect of the topology-preserving constraint on atlas-based segmentation using registration: (a) source image with the contour oégmearaabs

of the left ventricle superimposed (d) target image. The results of the matching of (a) on (d) are displayed: (b) using the unconstrained apgpichehtdtha

positivity constraint/ > 0. By ensuring topology preservation, the constrained approach provides a connected region while the unconstrained approach separates
it into two different components.

PPENDIX e deformation field is given or the sake of simplification,
A A the def tion field is given by (for th ke of simplificati
LINEARITY OF THE JACOBIAN WITH RESPECT TO THEMODEL  the square domaify;, ,,, is assumed to b, 1]%)
PARAMETERS
. . . . . ( u’i‘ = al’i‘,—l,'rn,—l(l - ‘1;)(1 - y)
As stated in Section IV-B, we show in this Appendix that, for tagk . a(l—1y)
an arbitrary scaling functios, the Jacobian/,; of maph'! is o !
H H 13 1 +a1‘rk71 rn(l _x)y+aTk mTY
linear with respect to the parameters ; anda, i iz, y) =< 1 _ e 1 ’ (15)
From (5), we can write Uy = aykzl’ml((l_ x))( —v)
+a,; . xl—Yy
o (00) = b 0+ vpm :
1(37 y) = { ! (a: y)=a ”d)ld 1]1 (12) \ tay_y rn(]' — )y + Ty FY
Y %,
. " 5 . The expression of the partial derivativeswdfon S}, m De-
where #!, = EZ,# > i @ - P and 4, = comes
Dirti ZJ 15 @ yz, L #, ; are the terms ofu’ and u!, cor- P
responding to the basis functions, the subscripts of which are 3 L =%,y — %fe—l,m_l + %i,m_l
different from(, 5). The Jacobian’;, is then given by 85
. aul, L= ZT‘/E - ami¢_1 m—1 + afl‘iﬂ—l m
Jp = * o 6; dy ’ ’
} - ’Lbl ’Lbl I
B - R P Oty _ g gt z
O ay gr Ey¥ = Oyg_q 1 T Oy g
=a+ /j’awz St fyayz . (13) aué l l
where 8—y = Xyx — Byp_1m—1 T Cyp_1m
oul, | du, outduy du 9l where
dx dy dr Oy dx Oy
{ ~l { ~1 _ +
g iy | 00 08y D, 00, —ZZ Yy,
dz dr Oy dy Oz p= Oq 0
l l ~ { ~
_ 9, | 900, 99, 0%, —Z Z 1ty
dy dy Ox dr Oy Zy o o —pm—g
The Jacobian is therefore linear with respectatd ; and The Jacobiar is therefore given by
ayt ;, foralls € Q.
' J=dr+py+v (16)
APPENDIX B where
POSITIVITY CONSTRAINTS ON THEJACOBIAN
. . . :(1 - al‘gc—l m—1 + al‘gc rn—l)Ey
To enforce the positivity of the Jacobian over dom@inve . L
take advantage of the linearity df: with respect to the spatial + (ayk—l,m—l - ayk,m—l)zw
cogrdma(tg)s, |pt:]r2le calse of :]ble scaling function. p=(1- “yi‘fl,mfl + ayi‘il’m)zw
rom (6), withd = 1, we have
41 f [ 1 0] + (amgcfl,rnfl - a-"l‘récfl,rn)zy
T , Torx e |—1, _ l { { {
prx) =4 1=z, foreel0,1] . T I e R R R
0, otherwise - (—%Ll,mfl + al‘kflym)l(_ay;«—l,m—l + %Z,m—l)

From (3) and the parametric deformation model (5), it comes This expression shows thd: is linear with respect ta and
that over each square doma#l) ,, = [k/2',(k + 1)/2'] x y. As a consequence, to enforce the constraint Juim <
m/2t,(m+1)/2,k = 0,...,2" = 1,m = 0,...,2" = 1, Ju(z,y) < Juax for all z € [0, 1]?, we simply need to force
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0 < Jin < Jpi(z,y) < Jmax at the four “control” points

(0,0); (0, 1); (1, 1); (L,

points are

l l
-1 ayk—l,rn—l + ayk—l,rn
1 1 1 1

Ozp—1,m—1%gk—1m — %km—1%k_1m—1
{ l { l
+ al‘k,rn—la’ykf]”rn + al‘k—l,rn—la’ykﬁnfl
l 1 l 1
+ Caok—1,mPyp_1,m-1 " Cek—1,mbyp m_1

=1

Jhl (07 0) =1- afl‘i:—l,rn,—l + afl‘riﬂ,nz,

l l l l
Jhl (17 0) - awk717n171 + aﬂ?k,rnfl + aykml—l + ayk,rn

l l l l
- awk,rn—laykfl,rnfl + awk_lﬂn_laykﬂnfl

{ l { l
~ Ork1m—1%p T Grkm—1%yy

aazggmlayéc,rnfl

ayiym_l + ayéc,rn
aaclig,nzflaylis:—l,nlr
- aacgc—l,rnay;e,rn
amg«,mrayi‘,nl—l

l l
Byp 1 me1 T Cp_1m

! !
t Ok mOyp_1 1 —

— { l
Jhl (17 1) =1- Azg—1,m + Az leom —
l 1
1 Qg m By —
l 4
+ awk—lmlayk,rnfl

i l
+ A k,m—1 aykJn -

Jni(0,1) =1

l l
“Uri—1,m + Az jom —

i i
+ awk:"laykfl,rn -

l l
1 g1, m Oy o1 —

l l
al‘k—l,rn—la’ykflﬁn

l l
axkflznlay k,m

! !
Ozt mPy—1,m—1-

17)
Let us now consider the optimization problem expressed

(10) or (11). The suppom of basis functlort/)l is simply

the union of the four square domatﬁ$ St SZ+1 j+1 and

St j+1- To enforce the constraint ové)’ i.j» we therefore need

{ 4
+ al’k*l,’ﬁl*laykﬂn -

?

16 inequalities corresponding to the 16 control points. These i
equalities derive from (17) for the four couplgs m) = (¢, j),

(k,m) = (i +1,5), (kym) = (i + 1,5 + 1), and (k,m)
(¢,j + 1). The Jacobian being linear with respecu;qyj and

ay. ;, the constraints can be expressed in matrix form as followp:

i

a
{ Ti,q {
0< Jmin < Ml:j <CL ) + b < Jma.x (18)
yz,]
where
r_
M}l =
0 0
1 1 1 1
Byi 151 Pyij1 L=0gi g1+ 021
i i 1 1
L—ay;; +ay_ 1= aaj g+ 0o
1 1 1
Tday, (;—ay; 5, Gai—1,j—1 7 Bwi—1,j
1 1 1 1
Ty o1 T Ay g1t 1t asiy
0 0
1 1 1 1
ayi-|[—1,j—1 —1- a'lyi-l—l,j aw?-i—l,j - al‘i-l—l,jl—l
Uyi i1 = 1= Oypq g Tl aeiy
1 1 ‘ 1
Qyiq i1 T 1 =0y Ozi—1,j — Gwi-1,j+1
1 1 7 7
T—ay;, 1, +tay; ;11 I—tgijp1 + 02y
‘ 1 1 1
Oy 41 T Qi O jp1 — Lt gy
0
1 1 1 1
Qyiv1,; —+ 7 By 41 LA Gag ) — Qe
1 1 1 1
Oyt — Lt Ay Owiy1,j41 — Coigly
1 l _ ! 1
Oy i1 T Oyig1 i1 L1+ ao; 41 = Goigr 1
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and

0). The values of the Jacobian at thessz B

l gt
Gy 1,51~ %o

{ 1 l l 1
tay; 15 Oy 10y T Oain 0y

{ { {
Ltay; ;= Geiogjo1 TGz 1 —

J—1
J—1

o ! ! ! Y’ !
Ari—1,j%y; 1 T Qi j—10y; 15 ~ Gwi—1,j—1%; 1 ;

1-— aq;é_lJ_l + aa;li7j_1 - ayéd;l - al‘é,j—layi—l,jfl
+aw§—1,j—1ayé,j71

1- al‘é—l,j + al‘é—l,jayé,jfl - ayé,jfl - awé,i—layéfl,j

1- al‘é—l,j + al‘é—l,jayi—l,jfl - ayéfl,jfl T Oy
_al‘é—l,j—layéfl,j

1- al‘é,j—l + al‘é,j—layli+l,jfl - al‘é+l,j—1ayé,jfl

1
FOaiq1 1 — Oy

l l l l l
Lt Gaj j 10y 1 = Geijo1 T Gaipr j—1 — Gyiqy j1

+ayé+17j - ax§+1,j—1ay§,j71 + awli+1,jaylz‘,jfl

Oz 1%y T %z‘+1,a’“y§+1,g’71
Haiy1 o104

1+ azly ;+ ayli-q-l,j - ay§+1,j71 - awli+1,jayli+1,jfl
Haiy1 o104

T+ ey

1—

o o l i l
Qyj i1~ Ceigl,j%; 1 1 Geij—1%iq1

l l 1 l l
Oai1,jy; 1,541 ~ Goim1 T Ozl j41%; 1,5

l _
Fy; 141 T Oy
1 —

1—

! ! ! ! ! !
Garim1,j T Oy iy~ Gwio1,jyi 1 T Ord g%,

=}

! l 1 l l
Qo141 T Ooi 410y 1 j41 T Goiji1 T Gy, i

o
i—1,5+1%;, j+1

{ { { {
=gy g1+ Gai g =Gy g 5Ty 4

. 1 l
m Ozijr1%y,—1,5

{ { { { _

i1, i1 T Gei 1%y
l !
Tz 1%y g1 T Gl % g1
l l
FOai1 jp10y;

l+a,t | —art et +arty et +art

Yig+1 — Hag+1%yig1,y TSm0 541 T Yeit1 g

i _ {
1+agiyy Aoit1,j41%yi41 5

l { _
Bitt,j T Wit
{
Ozt 541
_ !
1 Ayiv1,5

1 1 1 1 ‘
FOyi 41 T B i1 Qyigr ;T Coirt, i1 By iy
1 1

{ [ { {
Qi1 Py; 11 ~ Cwigyl T Oaiqn jpr —

{ [ I [
TO2+1%41 41 T it 1,41 %0415

I
FOaiq1 041 511

l l l l l
I1+azitrj41+ Ay i1 T Czit1j+1%; j41 — B g1
{
O 4 1%y41 41
Due to the simplifying assumption th&f, ,, = [0, 1], pre-

vious equations are only valid for resolunon Ie\Iel: 0. To
deal with resolutior?’ it is easy to show that all terms of order
n = 0,1,2, with respect taz!, anda,, simply need to be multi-
plied by2—"! in (16)—(18)

APPENDIX C
LocAL ONE-TO-ONE PROPERTY OF THEPIECEWISE C!
DEFORMATION MAP

Theorem 2 states that the local one-to-one property, necessary
to get a global homeomorphism, may be obtained{fbtrans-
formations, by ensuring the positivity of the Jacobian. However,
when using the, polynomial spline scaling function/! is only
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a piecewise”* transformation (see Appendix B). We show here

that this condition is sufficient to ensure the local one-to-one St m| Sicim
property ofh!.

As already established in Appendix B, with the scaling Skt Sem
function, J,. is linear with respect ta: andy on each square S
domain S} . (16). Let us denoté' the extension of/(s), kerlam-| krm
s € S, to the wholeR? plane. The Jacobiad;, of Al is

linear with respect ta: andy overR2? and strictly positive on Fig. 8. Geometric properties of the parametric deformation: under the con-

: - strained approach, each square donsgin, is deformed toward a quadrilateral,
the closed bounded Sé‘ﬁv:m' From the uniform continuity of the angles of which are all positive. This property ensures local injectivity of the

J;, itfollows that there exists an open s&t, containingﬁ‘ium, map even at points of discontinuous derivative.
over which J;, is strictly positive. Applying Theorem 2 t67,

we obtain thak! is locally one-to-one o8* and then ors!

) Y . L k,m: APPENDIX D
Sinceh' = h" on S, ., h' is locally one-to-one on the closed CONSTRAINED MINIMIZATION METHOD
bounded sef!

k,m- However, this does not imply the local in-
jectivity of 2 on the boundary between two square domain
(S, and Si,, ., for instance) since the neighborhood of g

172

point on this boundary lies simultaneously over two (or fou ¢
different squares. To address this issue, we use some eleme eﬁg 0, where(6;),__, are then parameters to be estimated
geometric properties related to the constrained mapping. Frfifici.; andd; are the coefficients associated to thelinear
(15), it is easy to see that the boundaries of dongjn, are Cconstraints to be satisfied. Given one paint=(6;)i=o,....n
linearly mapped to line segments. The image of the boundéPythe feasible region (the region for which the constraints are

of the square domaifd, 1] is thus a quadrilateral joining the N0t Violated) and a direction of minimizatign= (p;)i=o,....n.
following points: we can directly compute the maximum step length,.., along

this direction, so that the new solution does not violate the con-

s The linearity of the constraints enables to adapt standard con-
trained minimization methods. Let us consider a minimization
roblem under linear constraintsj € 0,...,m, > . ¢; 6+

P :(awi‘—l,m—lvayi‘fl,mfl) (19) straints
=(1 + a/Trl‘ m—11@; l‘ 20 717 7 91 d
D2 ( K ;ﬂr, —1 yk,;n—l) ( ) v min <Ez_lnc 5J + J) ) (24)
p3 =(1+ agj s 1+ ayl ) (21) J Doy CigPi
ps=(azh_y 1+ ayi‘fl,m) (22) Many minimization methods, with linear constraints, can be

found in [29] and [30]. For our current implementation, we have
Let vi=1,..,3 = Pi+1 — Pi» V4 = p1 — pa, denote the four ysed a minimization approach close to sequential linear pro-
vectors corresponding to the edges of the deformed square. Fgmming [30]. The purpose is to minimize, under constraints,
vector productslet(v;, vi41) are nothing else but the Jacobiang |ocal energy function (11) according to the two parameters

of k! on the four corners db, 1]2 (17). For instance [using (16)] aa;ﬁj anda,’ . associated to basis functio;tjj. To avoid te-

we have dious iterative schemes, the problem is linearized with respect

to the residual displacement, associated to a variation of the two

I (0, 0)6’ l . coefficientsa, ! ; anda,! ;. A Taylor approximation of the de-
|14+ 52(0,0)  52(0,0) formed intensity imagé,, is given by

ou! ou!

5(0,0) 1+ 52(0,0)

_ ‘ 1+a$1j«,nl—l - awé«—l,rn,—l awé«—l,rn, - aw;«—l,rn,—l 12(8 + ul(s, Al) + ul(s, 6ami7j’ 6ayi71))
ayljs:,nz,—l - ayljs:—l,nz,—l 1+ay§s:—l,rn, - ayit—l,nl,—l = 12(8 + ul (3’ AI)) + ul(s’ 6amé,j’ 6ay£,J)
:det(vl, 1}4). (23) . VIQ(S + ul (8, Al)) (25)

The positivity constraint on the Jacobian, when applied on
the four corners of each square domajn, ,, thus amounts to where
enforcing the four angles formed by the edges of the deformed
shapeh!(S}, ) to remain positive. By considering domati) ,,, . . .
and the ei@ht surrounding squares, it follows that, after con- u (3’5“’”%]"5“%,]') - {
strained deformation, these nine squares are transformed into a
set of nine closed, bounded, simply connected and mutually dis- o o
joint regions [see Fig. 8]. Using Theorem 3, the restrictionlof ~ From this linearization, the two parametéts; ; andéa,; ;
on this nine square domains is thus a global homeomorphisi€ estimated in one step by solving the corresponding least
which implies the desired local injectivity on the boundary ofduare system
S} - As a consequence, the positivity constraints enforced on

the Jacobian ensure that transformatiéis locally one-to-one baz;;\ (M M)~ MTh (26)
for all the points inf2. ! -

U’;‘(S) = 6awé,j¢é,j
“5(3) = 5ayé,j¢é,j
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where

where{sy, ..
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(11]

Vala(s1)¢h (s1)  Vyla(s1)@l ;(s1) (12]

M = 5 5
Vﬂ:]?(sn)(f)li,j(sn) VyIQ(Sn)(f)é,j(sn)
_[2(81) — 11(81)

(13]

[14]
: [15]
I(sp) — I1(sn) [16]

., $n } are then pixels inQ; ;. The two parameters

ba., ; andéa,! . can be interpreted as the search direction oft’!
the current iteration. To address the constrained minimization

we then use the following scheme:

0.

(18]
If the new point(a,! ; + 6a.! ;, ay’i’j + 6ay§7j) is in the
feasible region, this point is accepted as a new value fol19]
the two parameters,; anday’w.
If one or more constraints are not satisfied, the maximunyyq;
step lengtha,,.. is computed using (24). The point
(awéjj + ozmaxéawéjj,ayé’j + ozmaxéayli’j) thus obtained,
lies in the feasible region.

If it minimizes the energy it is directly accepted.

If not, a 1-D minimization method (Brent's method |23

[35]) is used to find in[0, x| the step length

that minimizes the energy along the direction [24]

(8az! j, bay. ;). [25]

(21]

(22]
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