
BlueBoX: A Policy-Driven, Host-Based
Intrusion Detection System

SURESH N. CHARI and PAU-CHEN CHENG
IBM Thomas J. Watson Research Center

Detecting attacks against systems has, in practice, largely been delegated to sensors, such as net-
work intrustion detection systems. However, due to the inherent limitations of these systems and
the increasing use of encryption in communication, intrusion detection and prevention have once
again moved back to the host systems themselves. In this paper, we describe our experiences with
building BlueBox, a host-based intrusion detection system. Our approach, based on the technique
of system call introspection, can be viewed as creating an infrastructure for defining and enforc-
ing very fine-grained process capabilities in the kernel. These capabilities are specified as a set
of rules (policies) for regulating access to system resources on a per executable basis. The lan-
guage for expressing the rules is intuitive and sufficiently expressive to effectively capture security
boundaries.

We have prototyped our approach on Linux operating system kernel and have built rule tem-
plates for popular daemons such as Apache and wu-ftpd. Our design has been validated by testing
against a comprehensive database of known attacks. Our system has been designed to minimize
the kernel changes and performance impact and thus can be ported easily to new kernels. We de-
scribe the motivation and rationale behind BlueBox, its design, implementation on Linux, and how
it relates to prior work on detecting and preventing intrusions on host systems.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access
controls; Information flow controls; Invasive software; K.6.5 [Management of Computing and
Information Systems]: Security and Protection—Invasive software; Unauthorized access

General Terms: Security, Design, Experimentation, Performance

Additional Key Words and Phrases: Intrusion detection, sandboxing, policy, system call
introspection

1. INTRODUCTION

The two mechanisms predominantly used to secure application servers today
are firewalls and network intrusion detection systems. One of the attractive fea-
tures of these mechanisms is that they are independent of the server, and thus
easily deployed. Firewalls control the flow of communication to systems and net-
work IDSs detect possible attacks by monitoring this communication. While
properly configured firewalls serve their intended purpose, current network

A preliminary version of this paper appeared in NDSS’02 [Chari and Cheng 2002].
Authors’ address : S. N. Chari and P.-C. Cheng, IBM, P.O. Box 704, Yorktown Heights, NY 10598;
email: schari@us.ibm.com, pau@watson.ibm.com.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appearance, and notice is given that
copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
C© 2003 ACM 1094-9224/03/0500-0173 $5.00

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003, Pages 173–200.

174 • S. N. Chari and P.-C. Cheng

Fig. 1. Ideal IDSs.

IDSs suffer from a number of limitations. Network IDSs typically analyze traf-
fic on the network either by scanning for patterns containing known attacks
or detecting statistically abnormal traffic patterns. With the widespread use of
traffic encryption protocols, such as SSL [Freier et al. 1996; Dierks and Allen
1997] and IPSEC [Atkinson 1995], a significant portion of traffic on the Inter-
net is encrypted and therefore is unavailable for examination in the clear. Also,
there are well-known ways to evade network IDSs [Ptacek and Newsham 1998].
Thus, increasingly, intrusion detection must move to the host server where the
content is visible in the clear and these evasion techniques do not work. Our
system, BlueBox, is such a host-based real-time intrusion detection system and
it can also be configured for blocking intrusions.

In order to contrast with the mechanisms used in our system, we first look
at mechanisms used in currently deployed host-based IDSs. They are primarily
based on one of the following [Debar et al. 1999; Jackson 1999]:

Anomaly Detection: Such systems first try to characterize a statistical profile
of “normal” behavior [Javitz and Valdes 1994; Anderson et al. 1993; Forrest
et al. 1996; Debar et al. 1998]. A pattern that deviates significantly from the
normal profile is considered an attack.

Misuse Detection: These systems first defined a collections of signatures (rep-
resentative patterns) of known attacks [Jackson 1999; Paxson 1998; Ranum
et al. 1997; Crosbie et al. 1996]. Activities matching such patterns are con-
sidered attacks.

Figures 1 and 2 depict the two approaches in an ideal world and in reality.
Conceptually, misuse detection is based on knowledge of bad behavior (attacks)
and anomaly detection is based on knowledge of good (normal) behavior. If
both techniques were perfect, then each would exactly complement the other:
that is, what is not bad is good and vice versa. In reality, neither technique is
perfect. Misuse detection can never know all possible attacks and it usually
classifies some good behavior as attacks. Likewise, anomaly detection cannot
cover all good behavior and will mistake some attacks for good behavior. Also, an
entity’s behavior profile will change as its usage pattern changes. So anomaly
detection has to adapt its profile to these changes. This opens the possibility

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 175

Fig. 2. IDS’s in reality.

for an attacker to gradually increase its level of malicious activities until these
activities are considered normal.

Our policy-driven technique, similar to the concept sandboxing, tries to define
the boundary between the good and the bad as a set of rules. These rules specify
what an executable program or script is allowed to do and attempts to violate
them are considered intrusions. The rules governing a process define precisely
which system resources a process can access and in what way. Section 2 gives
an overview of what the scope of the rules are. The rules are defined through
precise understanding of the expected behavior of the program. They can be
defined using existing templates, audit trails, configuration, and, if necessary,
program semantics. The rules are specified off-line, compiled into a machine
readable binary that is associated with the program and loaded into the kernel
when the program is executed. Rule enforcement happens when the program
is executed in the context of a process: the behavior of the process is checked
and constrained according to the rules. The enforcement is done in the kernel
during invocations of system calls. The concept of sandboxing has appeared in
numerous contexts including IDS and we discuss this in Section 3. In particular,
systems such as LIDS [Xie and Biondi 2001], SubDomains [Cowan et al. 2000]
and REMUS [Bernaschi et al. 2000, 2002] follow similar principles. In Section
3 we will describe these and other approaches such as Linux Security Module
[LSM] and the Secure Linux Project [SELINUX] and highlight how these
systems differ from BlueBox.

We believe that the policy-based approach of BlueBox and like systems offers
a number of advantages over the traditional attack–signature based or profile-
based approaches. They include:

—The security boundary is much more precisely defined in terms of the in-
tended use of the sensitive system resources. Rules are based on under-
standing a program’s behavior and not on attack signatures or time-variant,
incomplete statistical profiles of “normal” behavior. This offers two benefits
1. Unknown attacks can be detected.
2. Previously unseen but legitimate behavior would not be mistaken for

attacks.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

176 • S. N. Chari and P.-C. Cheng

Therefore the false positive and, potentially, false negative rates will be lower.
—Another potential win is the manageability of the IDS, especially as com-

pared to statistical profiling based techniques. There is no need to con-
stantly maintain and update attack–signature database or statistic profiles.
Since rules are precisely defined in terms of system resources, there will be
very few updates, if any, of rules for an application running on a particular
platform.

—Perhaps the most important advantage of BlueBox’s policy-based approach
is that detection is done in real time. Therefore the system could, optionally,
block an unauthorized access or action.

On the other hand, since the rules for an application are defined by its access
to system resources there are some disadvantages when compared with other
IDSs. These include:

—Version Migration: Since different versions of applications may access differ-
ent resources every version will require modified sets of rules. However, in
our experience with the Apache http server, minor version changes impact
the rules very minimally. Even with major version changes, large chunks of
the rule sets can be reused.

—In Memory Attacks: Since the checks on process behavior are made only when
the process makes a system call, attacks which are “in memory” cannot be
detected.

The rest of the paper is organized as follows: Section 2 gives an overview
of the specification and generation of rules in BlueBox. Section 3 surveys re-
lated work and compares a number of similar systems with BlueBox. Section
4 presents the technical details of our design and implementation, the precise
scope of rules, and the system architecture. Section 5 presents a few examples
of how BlueBox thwarts several well-known attacks and also provides detail
experiences on specifying rules. Section 6 informally argues the soundness and
power of BlueBox rule-checking. Section 7 discusses the performance impact
of the IDS. Section 8 discusses future research directions, and we conclude in
Section 9.

2. BLUEBOX POLICY SPECIFICATION AND GENERATION

Since an attack on a system must access sensitive system resources in unin-
tended ways to be successful, a BlueBox policy defines and enforces rules con-
trolling a process’s access to system resources, thus thwarting unintended ac-
cess. We categorize system resources and the types of access to them in Table I.

Features of our current rule specification includes:

—Access permissions to file system objects.
—Access to the file system, for example, mount and unmount.
—Permitted uid and gid transitions.
—signals which can be sent, received, blocked, ignored, and handled.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 177

Table I. Types of Resources and Access

Resources Types of Access
File system objects create, open, read, write, execute, removal,

link-to, change of access permissions,
change of ownership

File systems mount, unmount, types of mount
Identities acquire, release, inherit
Processes (address spaces, signals, . . .) read, write, deliver
CPU cycles, process scheduling priority raise
System clock set, read
System/kernel memory read, write
IPC objects: pipes, semaphores, create, open (attach), read, write

message queues, shared memory, . . .
Devices, network create/attach, open, read, write, io-control,

removal, link-to, change of access permissions,
change of ownership

Privileges acquire, release, raise, lower

—Process characteristics such as scheduling priorities that can be modified.
—Elementary controls for other system resources such as IPC objects, sockets,

and ioctl calls. This is an area that requires more study for more comprehen-
sive rules.

To make the policy specification more expressive, we provide an allowed
system calls list as a coarser level of control that is effective in thwarting a
number of attacks. Since system resources must be accessed through system
calls, disallowing invocations of a system call disallows access to resources. For
instance, most server processes do not need to mount or unmount file systems,
so mount and unmount are not in their allowed lists, and an invocation of either
will be considered an intrusion regardless of the invocation’s parameters. Even
this coarse form of access control is sufficient to effectively control the behavior
of simple programs, such as cgi-scripts which execute on a web-server since
they are typically very simple and offer limited functionality thereby making
very few system calls.

In the list of system calls allowed to a process, a significant fraction have no
exposure in that they are mainly used to query for information. While the in-
formation queried in these calls can be considered sensitive in some situations,
we note that correct rules on other system calls will guarantee that this infor-
mation will only be used in a controlled manner. For our implementation on the
Linux kernel, we have identified 72 harmless system calls: each of which either
has no security implications or is not supported by the Linux 2.2.14 kernel.
These calls are listed in Table II.

The policy for a program can optionally be marked inheritable. This is
very useful in several situations. Consider a cgi-script executing on a web-
server: most scripts typically utilize a number of general programs such as ls
and cat. Clearly, we cannot attach access control rules to these general pro-
grams. Marking the rules attached to the script as inheritable allows us to
enforce the same policy during the invocations of these general programs.
Another use of inheritable rules is when we want to share the same rules

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

178 • S. N. Chari and P.-C. Cheng

Table II. Harmless System Calls

afs syscall getgid lstat64 sched yield
alarm getgroups mpx setitimer
break getitimer msync sgetmask
brk getpgid nanosleep stat
capget getpgrp newselect stat64
chdir getpid oldfstat statfs
fchdir getppid oldlstat stty
fdatasync getpriority oldolduname sysfs
fstat getresgid olduname sysinfo
fstat64 getresuid poll syslog
fstatfs getrlimit prof time
fsync getrusage query module times
ftime getsid readlink uname
get kernel syms gettimeofday sched get priority max ustat
getcwd getuid sched get priority min vfork
getdents gtty sched getparam vhangup
getegid lock sched getscheduler vm86
geteuid lstat sched rr get interval wait4

across a number of programs. Inheriting rules eliminates duplication and is
also more efficiently implemented since we do not parse the binary rules each
time.

Based on our experience, for a given program, there are several mechanisms
and tools one could use to build and specify the rules.

—Intended Semantics: The most comprehensive way to generate the correct
rules for a program is by looking at the intended semantics of the program.
While this can be daunting for big servers such as Apache, we have found
that for several cgi-bin scripts, this is the easiest way to capture rules since
these scripts typically access few resources.

—Configuration: For servers, such as Apache, that can be configured to run
in different ways, configuration files need to be used (either manually or
automated) to create rules.

—Audit Trails: A very straightforward mechanism to generate large chunks of
the rules is to inspect system call audit trails. For a number of servers and
scripts we have found this to be the simplest method.

—Existing Templates: For large and popular servers, such as the Apache httpd,
we envision existing rule templates that can automatically be customized to
new installations. Our reference server is the Apache httpd for which we
have developed a template. We are currently investigating rule templates
for larger application servers and hope to include rule templates for the most
common configurations of application servers such as the IBM WebSphere
[WEBSPHERE 2001].

While these mechanisms sound daunting for nontrivial programs, as we discuss
in Section 5, we believe that the amount of extra work is manageable. For our
prototypical application of web servers, most of the rules need to be done once,
with little customization for new servers.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 179

3. RELATED WORK

Restricting program behavior based on externally specified rules has a very
long history dating back to the reference monitors of operating systems several
decades ago. In this section, we highlight more recent mechanisms and compare
them with our work. Some of the systems are very different from BlueBox while
others are very similar.

3.1 Language-Based Mechanisms

There are a large number of language-based mechanisms to restrict program
behavior based on policy. They range from the theoretical program correctness
methodology of using asserts to the popular type-based mechanisms enforced
by the loader such as the famed Java Virtual Machine [JVM 2001]. While the
security guarantees promised by these mechanisms are stronger than ours, they
make very strong and in some cases, unrealistic, assumptions about the trusted
computing base (TCB). Some classes of such systems include the following:

3.1.1 Program Correctness-Based Mechanisms. This method has been the
subject of extensive research spanning decades. Recently, these mechanisms
have been proposed as effective mechanisms to mitigate exposures [Erlingsson
and Schneider 2000]. While theoretically elegant, they are largely restricted to
checks in the user space. Hence, the TCB needed for these mechanisms to be
effective is unrealistic since all the checks inserted into the user space program
must be executed. This is rarely realized in commercial operating systems: an
attacker mounting a buffer overflow attack is in no way restricted by any of the
checks inserted in the original program.

3.1.2 Type-Based Mechanisms. The celebrated Java Virtual Machine is a
classic example of a system that enforces strong checks on the interpreted byte
code. For this mechanism to work one has to extend the TCB to include the inter-
preter and loader. In several controlled environments this is possible, however,
it is not realistic, for reasons of performance, to have daemons such as the http
server run in this environment.

3.2 System Call Pattern-Based Systems

These systems identify intrusions by an initial training phase where exhaustive
testing is used to identify the accepted set of patterns in system call sequences,
and then flagging an intrusion if there are erroneous patterns in system calls
made by daemons in an actual run. Some examples are discussed in Forrest
et al. [1996] and Debar et al. [1998]. The main advantage of these systems is
the minimized impact on the kernel, that is, one needs to make few changes
to the kernel to implement them. However, they cannot offer strong security
guarantees: firstly, their efficacy requires exhaustive training to identify normal
patterns and if not done correctly, can result in a large number of false positives.
Secondly, they are very sensitive to the exact version of the monitored software:
small changes in source code can yield very different system call patterns. For
example, the Apache http daemon can be configured to run using processes or

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

180 • S. N. Chari and P.-C. Cheng

threads, and the system call patterns are considerably different. Since BlueBox
tries to capture the resources the daemon uses, there are very few changes
between the two versions.

3.3 Kernel-Based Reference Monitors

In the last few years there has been a renewed interest in sandboxing by inter-
cepting system calls made by processes. We describe some systems and high-
light the similarities and differences.

3.3.1 LIDS. The Linux Intrusion Detection system (LIDS) [Xie and Biondi
2001] aims to extend the concept of capabilities present in the basic Linux sys-
tem by defining fine-grained file access capabilities for each process. BlueBox’s
rules for file system objects is very similar to LIDS. The complete rule set of
BlueBox is a strict superset of the LIDS system. Among the several additional
features of BlueBox is the state information, which is useful in thwarting some
attacks as described in Section 5.

3.3.2 LSM and SeLinux. The Linux Security Module (LSM) [LSM] is an
ambitious project to define an infrastructure to implement very fine-grained ac-
cess control within the Linux kernel. LSM identifies a number of points within
the kernel code where resources are accessed by the calling process and defines
relevant callouts from these points to a pluggable module which actually im-
plements policy by performing checks on these accesses. SeLinux [SELINUX]
is one module that implements a mandatory access control policy using the
infrastructure of LSM.

Since LSM defines checks interspersed with kernel code, implementing ac-
cess control policies such as SeLinux on top of LSM can yield very strong secu-
rity properties. For instance, since the checks are made just prior to the actual
time of access, it avoids a potential security hole in BlueBox like approaches.
This issue is discussed in detail in Section. 6. However, the impact of the LSM
like approach on kernel code is much greater than that of BlueBox. One of the
key design principles of our system is to minimize, as far as possible, the impact
on the kernel.

3.3.3 A Program as a Finite State Machine. Sekar and Uppuluri [1999]
present a system which combines language-based systems with system call
intercept-based systems. Their approach is to model processes with a state di-
agram describing its functionality and then enforcing this state diagram in the
kernel during system call invocation. They achieve strong security guarantees
since the state diagram captures exact process semantics. The main drawback
of this system is the difficulty in generating the required state diagrams for
a new process. Also, we conjecture, based on our experience in incorporating
state, that the performance penalty in enforcing the rules could be somewhat
high.

3.3.4 Generic Software Wrappers. Generic software wrappers [Ko et al.
2000; Fraser et al. 1999] are a mechanism to enforce various access control and
intrusion detection checks triggered by events during process execution. The

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 181

infrastructure will register various scripts to be run based on events, monitor
process execution for these events to occur, and execute registered scripts when
the events occur. This is a powerful infrastructure that can integrate numerous
approaches to system security under one unifying framework. The main draw-
backs of this approach is the complexity of writing scripts and the performance
impact in such a complex framework. We believe that our approach is much
more intuitive and has substantially better performance.

3.3.5 SubDomains. Cowan et al. [2000] define the concept of SubDomain:
a kernel-enforced refinement of the underlying operating system checks on
file system access. Like BlueBox, this set of refinements is defined and en-
forced on a per-program basis as opposed to a per-user basis. Roughly, the
expressive power of the SubDomain rules correspond to the file system ob-
ject rules of BlueBox. Thus, the rules controlling the behavior of other system
calls and state maintenance mechanisms of BlueBox make it more expressive
than the SubDomain model. However, making the enforcement simpler gives
the SubDomain model better performance. The functional placement of the en-
forcer and other infrastructure in the kernel is also very different from that in
BlueBox.

3.3.6 Other Sandboxing Systems. The system that comes closest to our
system is REMUS [Bernaschi et al. 2000, 2002]. Its system architecture is very
similar to ours and the main differences are in the syntax and semantics of the
rules themselves. The placements of different parts of the system within the
kernel are also very different. Our placement aims to minimize impact on the
kernel code by placing a wrapper around kernel system call handlers while their
placement tries to minimize performance impact. Our system is extensible to
newer versions of the kernel since by and large the same wrapper should work
for newer kernels.

The Domain-and-Type-Enforcement (DTE)-based system of Walker et al.
[1996] groups file system objects into sets called types and puts a subject (an
executable) into a domain which has specific access rights to types. It does not
provide protection on nonfile-system-object resources and seems to incur more
complexity when providing fine-granularity control than BlueBox.

3.4 User Space System Call Introspection

A valid criticism of systems such as BlueBox is the modifications to the kernel
required to install the infrastructure to install and enforce process behavior
rules. To circumvent this, one approach is to use existing monitoring infras-
tructure in kernels such as ptrace to have monitors which reside in user-space
[Jain and Sekar 2000; Wagner 1999]. The monitor sits in a separate process and
intercepts system calls made by the monitored process using ptrace; the monitor
process can then enforce the rules by examining the intercepted system calls
and their parameters and possibly modifying the parameters or terminating
the calls. As pointed out by the authors [Jain and Sekar 2000], this approach
has a few drawbacks. Firstly, since rules are enforced in the context of the
monitor process, there is some overhead due to context switching and copying

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

182 • S. N. Chari and P.-C. Cheng

Fig. 3. BlueBox architecture.

data from one process’s context to the other’s. Also, there are cases when the
monitored process is not entirely under the control of the monitor due to the
implementations of ptrace.

4. TECHNICAL DETAILS

In this section, we will first discuss the BlueBox system architecture to show
how a policy is defined and enforced, then we discuss policy specification in
details, and conclude with a discussion of BlueBox’s impact on the kernel.

4.1 System Architecture

The BlueBox system architecture is shown in Figure 3. The architecture in-
cludes two parts :

Policy Specification and Parsing. A BlueBox policy for an executable pro-
gram is specified in a human-readable form using a text editor and then parsed
into a binary file by a parser program. This part is done off-line and before the
program is executed. Details are in Section 4.2.

Policy Loading and Enforcement. Since BlueBox policies are meant to con-
trol access to system resources that can only be accessed through system calls,
the natural place for rule enforcement is at the kernel system call entry point.
Our first prototype on Linux 2.2.14 places an enforcer module at the kernel sys-
tem call entry point to enforce rules. We have since upgraded to Linux 2.4.18
and moved the entire enforcer into loadable kernel modules and thus avoided
any change to the existing kernel code; Appendix gives more details on the
kernel modules. The enforcer has built-in knowledge of what categories of re-
sources each call may access, so it can check the parameters of the invoked

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 183

system call against the rules. It is our design principle to make the enforcer a
wrapper around the kernel system call handlers rather than code insertions in-
side the handlers. Besides requiring no change to the existing handlers’ code,1

this principle focuses on the very stable syntax and semantics of the system call
interface and not on the handlers’ code which evolves much faster. Therefore
the wrapper can be easily ported to newer versions of kernels. This is in direct
contrast with the design philosophy of access control infrastructures such as
the Linux Security Module [LSM].

Since it is impractical to write policies for all processes on a system, we
added a new system call to mark a process as being monitored; this status will
be passed on to its children and cannot be unmarked. As a tool, we have a
simple wrapper program which marks itself as monitored and then execves
the real program to pass on the monitored status to the new process im-
age. When loading the new image the modified execve system call handler2

loads the rules into the kernel and starts enforcement. If no rules for the
new image are found, then the process will try to inherit and share the rules
of the old image; if these rules are not inheritable or do not exist, then the
process will be crippled; that is, it is only allowed to make harmless system
calls.

Rules are read-only after being loaded. Each monitored process is allocated
a kernel memory buffer3 to hold its private BlueBox state that can change
as the process executes. More discussion on BlueBox process state is given in
Section 4.3. When a process forks, the child process shares the parent’s policy
but will be given a copy of the parent’s BlueBox state. A process’s BlueBox state
will be reset when it execves a program.

4.2 Rules for Different Types of Resources

In this section, we will discuss rules for various classes of system resources
such as file system objects, uid/gid lists, signals, sockets, and device special
files. Each class has its own particular syntax and semantics. The description
of the rule syntax for these resources and their associated semantics captures
the essence of almost all of the possible rules under BlueBox.

4.2.1 Rules for File System Objects. Rules on file system objects are en-
coded as a tree which mimics the hierarchy of files on a UNIX system. The
policy of a program includes one such tree encoding the program’s access rights
to file system objects. Figure 4 shows a part of the specification of rules on file
system objects for Apache 2.0 HTTP server. Each node in the tree records access
rights to a (set of) file system object(s). The root of a tree corresponds to the root
of the hierarchy of files. Like a UNIX file system, each node has a name. Unlike
a UNIX file system, the name can contain UNIX shell-like wildcard characters
“*” and “?” with the same interpretation as in a UNIX shell. The only excep-
tion is that a leaf node with the name “∗” represents an entire subtree; for

1The handlers of execve, fork, and exit are changed to load, share, and unload rules, respectively.
2The API for execve is not changed.
3At present, the size of the buffer is one page or 4 KB.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

184 • S. N. Chari and P.-C. Cheng

Fig. 4. Partial rules for Apache file access.

example, “/a/b/∗” matches any file in the subtree under “/a/b/.” Limited sup-
port for character classes (e.g., [abc]) is also provided.4 A node’s name can also
contain environment variables and these are evaluated when the policy is be-
ing loaded into the kernel. For example, if a rule is “/home/${USER}/pub/ ∗
.html r” and the value of USER is “joe,” then the process will have read access
to all HTML files under /home/j oe/pub/. This is useful to control access of
programs such as cgi-scripts which typically get most of their arguments from
environment variables.

When a process makes a system call to access a file system object, the object’s
fully resolved,5 absolute pathname is matched against the tree. If a path in the
tree matches the object’s pathname, then the access rights in the last node of
the path determines if this invocation of the system call is allowed. Care has
been taken to ensure that there are no security holes with the name resolution
procedure. We note here that this additional resolution causes the main per-
formance overhead in the BlueBox system. However, we note that due to this
resolution the Linux operating system caches the directory entries of the all
the inodes along the path. Thus the name resolution in the system call code
will in most cases use these cached entries. Thus the time for resolution is not
doubled. This and other issues related to performance impact of BlueBox are
discussed in Section 7.

4Character ranges (e.g., [a-h]) and the character “]” are not allowed in a character class.
5A fully resolved pathname is a pathname without symbolic links, “.” or “..”.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 185

The set of possible permissions on filesystem objects has been chosen
to be able to easily express a wide range of policies. Besides the usual
read, write, execute, create, and append, access rights to a file system
objects also include: delete, hard link to, soft link to, shared lock,
exclusive lock, and truncate. We also encode rights related to directories
used as file system mount points: (a) mount point—a directory can be a mount
point, (b) unmount—a file system mounted on a directory can be unmounted,
and rights related to swapping devices, (c) swapon—a device can be a swapping
device, and (d) swapoff—a device can be released from being a swapping device.

A node in the tree may also be associated with a list of uids and a list of gids
(see Section 4.2.2). These lists are the allowed new user and group ownerships
for file system objects matching the node.

4.2.2 Rules for Identities. The rules on assumable identities (uids
or gids) are encoded as lists of singular integers and ranges6 such as
[−5,−3], 1, [30, 100], 251. The basic operation on such a list is to check if
a specific integral value is in it. Each program’s policy has an uid list and a
gid list. These lists are the new identities a process running the program is
allowed to assume. A process has three types of identities: real, effective, and
saved [McKusick et al. 1996].7 Since a process can freely exchange the values
of different types of ids or assign one to the other, the BlueBox enforcer does
not make a distinction among the three types of ids when checking the rules.
In other words, when a system call requests new uids or gids, the enforcer only
allows one of the following two cases:

(1) the uids/gids are in the set of uids/gids that the process already has, or
(2) the uids/gids are in the process’s uid/gid list and if the following condition

is met: if the process’s euid has gone through the transition “(euid = 0)⇒
(euid = a 6= 0) ⇒ (euid = 0)” and asks to change its euid to v, then v
equals a. This condition is meant to prevent an attacker from hopping over
different uids.

An integer list can also represent rules on system resources with integral
values such as scheduling priorities, and so on.

4.2.3 Rules for Signals. Rules for signals are encoded as a bit-mask,8 which
is an array of unsigned integers used as bit-vectors and represents a set of
nonnegative integers whose corresponding bits are 1. Bits in a bit-mask are
numbered sequentially, starting from the LSB of the first integer, numbered
zero, to the MSB of the last integer. Unlike an integer list, set operations can
be easily performed on bit-masks.

For rules on handling received signals, BlueBox puts signals into four sub-
sets: (1) those can be blocked (CBB), (2) those can be ignored (CBI), (3) those
can be default (CBD): their handlers can be the default handlers, and (4) those

6It may contain nonnegative and negative integers; for example, uids could be negative or
nonnegative.
7We have currently not chosen to control change of the fsuid of a process.
8Bit-masks are also used to encode the allowed system calls list.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

186 • S. N. Chari and P.-C. Cheng

Table III. Socket Layers and Resources

Layer Resources Access Modes/Actions
socket socket file descriptors ioctl/fcntl on aynchronous

I/O, out-of-band data, . . .
transport <IP address, protocol, port> pairs bind-to, connect-to,

read, write, shutdown,
close

IP <IP address> pairs bind-to, connect-to,
read, write, close

routing routing table entries add, modify, delete/flush
Network Interface Interface IP address(es) get/set addresses

broadcast/multicast IP address(es)
link addresses, . . .
interface name get/set Interface name
mtu, . . . get/set mtu, . . .

ARP ARP table entries add, modify, delete
Link layer protocol specific protocol specific

can be handled (CBH): their handlers can be assigned by the process. These
subsets can intersect in any possible way. Since a UNIX/LINUX system does
not support other types of treatment for received signals, if a signal is in only
one subset, then “can be” becomes “must be.” For example, signals that are only
in the CBB subset are signals that must be blocked. Besides maintaining four
bit-masks for the four “can be” subsets, BlueBox also computes and maintains
the must be blocked subset for performance reasons. An array of pointers to
handlers for the CBH subset is also maintained; Section 4.3 gives more details
on this array.

4.2.4 Socket Rules. The socket interface was originally designed for inter-
process communication (IPC) across the network and within a single system
[Leffler et al. 1986]. It has evolved on different flavors of UNIX since its in-
ception and now supports functions not strictly for IPC, such as the net link
socket on Linux 2.2. The functionality of sockets is so rich that it is beyond the
scope of this paper to discuss them and the possible rules on all of them. Our
work on refining socket rules is still ongoing. We outline the general principles
of our rules for sockets, using rules on sockets using protocols in the Internet
Protocol Family as an example.

A socket is created by the socket system call which returns a file descriptor
as a handle to the socket. Most of the system calls operating on file descriptors,
such as read, write, close, ioctl, and fcntl can be applied to a socket file
descriptor. Unlike a file, a socket is not a persistent object and vanishes when
it is closed, and except for UNIX Domain sockets, a socket has no pathname.
Thus we cannot directly specify file system object rules for sockets. Our principle
is that a socket is just an access point to a set of resources. So rules on socket
should be defined in terms of access to these resources and not on a socket that is
generally transient. Table III shows some of the resources and types of accesses
in the Internet Protocol Family. Resources are organized into layers, which
roughly mimic the OSI 7-layer architecture. Each layer supports a specific set
of functionalities and therefore specific types of access to resources in the layer.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 187

We believe this layering principle applies to other types of sockets, although
they may have different number of layers.

4.2.5 Device Rules. A device special file is the interface to a device of a
specific type: such a file has a major number indicating the device type, and a
minor number indicating the specific device to which the file is an interface.

Access to device special files must be carefully controlled because these files
allows direct manipulation of system resources such as memory, disks, termi-
nals, and so on. It is possible to bypass other rules by accessing devices directly:
for example, if a process is allowed to read and write a disk on which a file sys-
tem resides, then all rules controlling access to files on that file system can be
bypassed.

The definition of the scope and semantics of BlueBox rules on device special
files is still ongoing. Our main principle is that a device special file must be
controlled both as a file and as a device for the following reasons:

—A device special file is like a regular file with a pathname, user and group
ownerships, and access permissions; and it can be opened, read, written,
closed, and deleted just like a regular file.

—It is necessary to prevent unintended access to a device special file, especially
when its pathname does not follow the general naming tradition. Tradition-
ally, a device special file is the offspring of the /dev directory; and its name
has a special prefix indicating the device type. For example, names of de-
vice special files for hard disks have the prefix “hd.” This naming tradition
is followed, but not enforced by an UNIX system. If the file /home/joe/data
is a device special file for a hard disk and a privileged process has the rule
/home/joe/∗ rw then it will be given direct read–write access to a hard disk,
even if this access is not intended at all.

—Each device type also has its own unique resources and operations accessible
through the ioctl system call, and its own unique set of ioctl commands and
the corresponding parameters.

To address these concerns, we decided that the rule on a device special file
will be like the rule on a regular file with the following annotations:

—A device: <major number, minor number> line to indicate this rule is for a
device special file with the major and minor numbers. An access attempt to a
device special file will be denied if the attempt is matched with a rule that is
not annotated with the major and minor numbers of the file. So if a program
has a need to access a device, the need must be explicitly indicated in the
rule. Thus unintended access is prevented.

—An ioctl: <rules on commands> line to specify rules on the ioctl commands
for this file. The syntax and semantics of “<rules on commands>” will be
unique to the specific device type.

Each device type needs its own parser and kernel enforcer for its ioctl com-
mand rules. Given the fact that the number of types of devices is large and
increasing but a typical computer usually has a relatively very small number

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

188 • S. N. Chari and P.-C. Cheng

of devices installed, we decided that the kernel enforcer of a device type will
be a loadable kernel module. The module is loaded when a process’s rule file,
which includes rules on devices of such type, is loaded into the kernel.

4.3 Per-Process State

Incorporating process state into rules can protect process against a much larger
number of potential attacks. Several daemons, especially setuid programs, start
out with real uid as root, setting only the effective uid as a user, while retain-
ing the possibility of acquiring root state to do privileged operations. If such a
daemon is subverted the attacker can then reacquire root privileges. One such
example is described in the attack on the wu-ftp daemon in Section 5. Incorpo-
ration of state into the system call checks impacts performance as process state
needs to be updated and checked. We have chosen to have a small amount of
process state so as to minimize the performance impact. Our guiding principle
is to add state only when absolutely necessary. Parts of the states we maintain
are:

—Identity State: The main state component we maintain is the current process
identity state. The states we note are the initial root state, user state, and
reroot state when the process becomes root again. Each state has its own list
of allowed system calls but other rules for the process are shared among the
states. Daemons typically switch back to root state only for a short while to
do a few privileged operations, and this can be effectively controlled by just
changing the allowed system calls.

—System Call Count: Another process state component is the number of times
certain system calls are made. Currently, this is enabled for only the fork and
waitpid system calls. For each call we keep the current count and maximum
allowed. This component is useful in two situations: first, we can use this
to stop DOS attacks which repeatedly consume system resources via system
calls: an attacker could repeatedly fork child processes. The second situation
where this might be useful is in controlling scripts that execute arbitrary
shell commands. Since the shell script forks processes to execute different
commands this can control the number of commands the process can execute.
While this by itself does not offer more security, it does so in combination with
other rules.

—Signal Handlers: Another DOS attack is to have signals handled incorrectly
resulting in errant process behavior. This can be done by registering a “wrong”
signal handler. Since there is no way for the IDS to identify the “correct” signal
handler, it assumes that the first handler registered is the right handler and
does not permit any change to this.

Our philosophy to adding state to the rules is that we add state only when there
is substantial benefit to be gained either in strengthening security guarantees
or in making it easier to specify rules for a particular process. We note that our
process state is substantially smaller than the system proposed by Sekar and
Uppuluri [1999].

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 189

Fig. 5. The PHF cgi-bin script.

4.4 Kernel Impact

A very important design criteria for our system was to minimize the impact
on the kernel. The placement of functionality has been carefully done to re-
duce impact on the kernel. Our reference intrusion avoidance implementation
on Linux has an intercept at the system call entry point and minor hooks in
the kernel code for process creation and termination (the fork, execve, and exit
system calls). The total impact on the kernel sources is limited to about 10
lines of assembly and 20 lines of C code. The rest of the enforcement process
and the code to parse, allocate memory for and install rules are in a completely
independent module. The patches to kernel are very simple and do not change
the semantics of the remaining code nor do they interfere with other parts of
the system. A very valid concern is the portability of BlueBox across different
versions of the kernel: we believe that the points in the Linux kernel that we
have intercepted are very stable and unlikely to change in revisions of the ker-
nel. On Linux, where it is easier to allocate memory as pages, each process
usually needs no more than two pages (8K) to store all IDS related structures.
Of course, we use only a smaller subset of this depending on rule size and so on.
We note that elementary optimization can substantially decrease this usage of
kernel memory.

5. EXAMPLES

In this section we illustrate how our framework can be effectively used to thwart
well-known attacks. They also illustrate how rules for various process can be
defined.

5.1 Phf cgi-bin with Apache

The phf cgi-bin script was a sample script that came with the earlier distribu-
tions of Apache as an example of how cgi-bin scripts could be written. Figure 5
shows the relevant parts of the code for phf script. The script first syntacti-
cally transforms the incoming http request into a list of options for a fictional
program ph and then spawns (using popen) a shell to execute ph with the cre-
ated options. The escape shell cmd subroutine escapes shell characters that

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

190 • S. N. Chari and P.-C. Cheng

may be present in the options string. The fatal bug was that it did not es-
cape the newline (\n) character: the attack simply ensured that arbitrary com-
mand was executed by passing the command after a newline character in the
options.

This is a good example of how straightforward it is to write effective rules. By
design, the script invokes two commands /bin/sh (while using the popen library
call) and the program /sbin/ph. Thus a very natural set of rules is to allow
read and execute to these files. Besides shared libraries, the process accesses
no other objects. Marking these rules as inherited ensures that the process
which executes /bin/sh can only execute these two programs and the attack is
thwarted. Note that the process can execute these as many times as it wants.

5.2 Buffer Overflow in wwwcount

The wwwcount program is a popular cgi program which maintains a count of
the number of hits on a website and displays this in a graphical form. This
is widely used although in nonsensitive web sites. The earlier versions of the
program suffer from a well-known buffer overflow attack that can be used to
execute arbitrary program on the web site. It is almost trivial to define the
rules for this script. From the definition, or from an inspection of the system
call audit trace for this process we can derive the proper file accesses: these
are all restricted to a single directory based on the initial configuration of the
program. No executable is in the rules; in fact, the execve system call is not in
the allowed system call list.

5.3 wu-ftpd Buffer Overflow

This example illustrates how to use the state maintenance part of our system
to enforce sophisticated checks. wu-ftpd is the ftp daemon developed at the
Washington University at St. Louis and is one of the more popular ftp daemons
in use today. There have been a number of attempts to model the behavior of
the daemon to detect intrusions [Sekar and Uppuluri 1999].

At a very high level, the ftp daemon starts running as root, waits for a user
to login by authentication, and sets its effective uid to that of the user. For the
rest of this session, the daemon has as effective uid that of the authenticated
user. It is thus in an unprivileged state, except when it needs to bind sockets to
the well-known ftp data port. Since this is a privileged port, this bind operation
can only be done in a privileged state so the daemon becomes root again. The
only system calls made by the daemon in this state are socket, bind, and setuid
to the user. Figure 6 describes this state diagram of the ftp daemon. From
this functional description we can easily identify one portion of the rules for
the ftp daemon. In the initial state it starts as root and is permitted to make
most of the system calls; in the second state it has a nonzero uid and is per-
mitted among other the setuid system call to become root again. In the third
state the daemon is only allowed to execute the socket, bind, and setuid to user
system calls. Note that this is only a subset of the entire rule set and illustrates
how this thwarts a well-known attack. This subset of the rules is shown in
Figure 7.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 191

Fig. 6. State diagram of the wu-ftp daemon.

Fig. 7. Subset of the state-dependent rules for the ftp daemon.

The earlier versions of this daemon were susceptible to an attack where a
regular user authenticated and overflowed the process heap [WUFTP]. Then,
arbitrary code could be executed in the reroot state, for example, spawn a root
shell on the server. Using the subset of the BlueBox rules described above, we
can mitigate the damage due to this attack. The only system calls the attacker
can execute in the reroot state are the socket, bind, and setuid to user; the
attacker has no potential access to the file system objects, that is, all other
sensitive system calls are disallowed. Although there is no way in the kernel,
to distinguish the normal setting uid to root by the ftp daemon from the user
state and the attacker setting uid to root after the buffer overflow, this is the
best protection one can expect.

The examples that we have described in this section highlight several
important features of the semantics of the rules in our system. They also il-
lustrate the security guarantees the system can provide. For instance, in the
case of the phf-attack, the system guarantees that the only executables are
/bin/sh and /sbin/ph. However the attack can make the system endlessly exe-
cute these binaries resulting in a denial-of-service. In the ftpd example, we are
unable to detect that the buffer overflowed, yet we are able to substantially
mitigate the damage that the attacker can do. Another important feature is
that the rules for a large number of programs are very easy to write and can
potentially be done with a single examination of the audit trail. Even in the
more sophisticated example of the ftp daemon, we believe our approach is sub-
stantially simpler than the state diagram-based approach advocated by Sekar
and Uppuluri [1999].

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

192 • S. N. Chari and P.-C. Cheng

6. EXPRESSIVE POWER OF RULES

In this section we will informally argue the soundness of BlueBox rule-checking
and also describe the kinds of attacks that the rules of BlueBox will be able
to protect against. We will also discuss some weaknesses of the system-call
introspection approach and pieces of our extended architecture which mitigate
them.

6.1 Rule Expressiveness

The rules of BlueBox are very comprehensive and can potentially block a large
class of attacks. The richness of features in the BlueBox architecture such as
state maintenance mechanisms, checks on other system calls combined with
the checks on file system objects make BlueBox rules more expressive than a
number of comparable systems. Some features of the rules and architecture
which make the system particularly effective are as follows:

—Rules per-program. BlueBox rules are expressed on a per program basis
as opposed to the per user/role approach taken by a number of extensions to
operating system checks, such as role-based systems. This substantially sim-
plifies writing rules for processes and the infrastructure in enforcing them.
Substantial portions of rules are portable across systems. Making rules per
program makes it substantially easier to implement very fine-grained access
control. However alternatives such as role-based access control systems can
yield better performance since the controls are typically well integrated into
the kernel.

—State Maintenance. We have chosen to maintain a minimal amount of pro-
cess state in the rules for a program. As we showed in the case of the ftp-
daemon this substantially increases the number of attacks which we can
protect against. Other uses for process state maintained in our system is to
prevent Denial of Service type attacks since we can bound the number of
times certain system calls such as fork as used.

However, we note that maintaining state impacts performance of the sys-
tem. The state we use in our system has been carefully chosen to minimize
this impact.

—Parameterizable Rules. As we noted in Section 4 the rules for file system ob-
jects can be parameterized with variable names which are then instantiated
with the actual values from the environment variables passed to the process
upon invocation. This is particularly useful in establishing a fine-grained
control of cgi-scripts which use environment variables to access file system
objects.

6.2 TOCTTOU Attacks and Defense Against Them

A fundamental feature of the BlueBox system is that the checks on the access to
resources is done at the system call entry point by introspection of the system
call parameters. This is to be contrasted with the approach of the Linux Security
Module [LSM] where checks on the access to resources is done at various points

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 193

Fig. 8. TOCTTOU attack on file system objects and defense against it.

in the kernel, close to where the resources are actually accessed. While the
BlueBox approach is less intrusive on the kernel code, by design the checks
are made much before the point where the resources are accessed. This time
interval between check and actual access can be exploited maliciously to mount
what are called time-of-check-to-time-of-use (TOCTTOU) attacks [Bishop and
Dilger 1996]. A TOCTTOU attack can happen if a parameter of a system call
invocation can be made to refer to one system object at the time of check but to
another system object at the time of use.

Figure 8 shows a TOCTTOU attack on file system objects and the pos-
sibilities to defend against these attacks. Assuming the rules for a process
running as root allow read—write access to all files under the directory /
home/joe but only read access to/etc/passwd. The process makes an open
system call to open a file with the pathname/home/joe/data for reading
and writing. This call passes the BlueBox check. Before the file is actually
opened, the link between the pathname and the file is severed and the path-
name is made to refer to a symbolic link pointing to/etc/passwd. There-
fore/etc/passwd will be opened for read—write; this is a clear violation of the
rules.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

194 • S. N. Chari and P.-C. Cheng

There are three options to mitigate TOCTTOU attacks on file system objects:

(1) Conduct the checks at time of use. This option is not directly applicable and
was rejected because it violates the “wrapper” design principle and it would
lead to a big impact on the kernel.

(2) Change the syntax and semantics of the rules on file system objects so
such a rule will refer to the object directly, not to the pathname point-
ing to the object. This would mean referring to an file system object by
its device number and inode number [McKusick et al. 1996]. This option
has substantial limitations including those listed below and was hence not
adopted.
—It is counterintuitive. Most users and system administrators do not access

files through their device numbers and inode numbers.
—It could not support wildcard in rules.
—Different versions of a file may have different inode numbers. For exam-

ple, if the popular text editor emacs is used to modify the file /etc/passwd,
then the original file will be renamed to /etc/passwd∼, and a new ver-
sion of the file will be created with the same pathname /etc/passwd but
a different inode number than that of the original file.

(3) The third option we considered was to do another check after the time of
use, at the end of the system call, to see if the same file was checked upon
and accessed. We have decided to use this option since it keeps the impact
on the kernel minimal and yet retains all the flexibility of our approach.
However, we note that in some cases the effect of a system call may not be
easy to reverse.

To determine if the same file is checked upon and accessed, the fully resolved
pathname that is used to check against the rules, and the type of the file (reg-
ular, directory, device special, and so on) are recorded at the time of check.
After the object is accessed, the object’s fully resolved pathname and type is
compared with the records and a mismatch indicates a TOCTTOU attack. In
the case of the open system call, the opened file is closed and an error is re-
turned. To improve performance, we implement a shortcut for detecting TOCT-
TOU attacks on file system objects. At the time of check, a reference is placed
on the inode of the file being checked; after the time of use, we compare the
inode of the accessed object to the inode referenced at the time of check. If
they are not the same, the file name and type matching is performed. The
reference holds the inode in system memory and is released after the inode
comparison.

7. PERFORMANCE

One of the main design guidelines for BlueBox is to minimize the performance
impact. Crucial design decisions about how much state to incorporate into the
rules were driven primarily by how much it impacts the performance of the
process being monitored. The prototypical application we use to measure the
performance is the Apache 2.0 web server daemon. The results for this daemon
are representative as it exercises most of the checks implemented for the various

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 195

Fig. 9. Performance of the Apache 2.0 with and without system call checks.

system calls. In fact, many of the compute intensive system call checks, such
as open, read, and fcntl, are used substantially. Other processes will typically
use fewer such calls, and hence the performance impact on the Apache httpd
daemon will be an upper bound.

7.1 Testbed

Our tests ran the WebStone benchmark of server performance with the fol-
lowing parameters: there is a single client machine generating load and it has
between three and eight threads generating requests for the server. These were
so chosen such that the resulting load does not saturate the server with or with-
out BlueBox. The load generated by the clients is entirely static content. Testing
under dynamic content would result in a larger penalty due to the overhead of
loading rules for each script that is invoked. Both the webstone client and the
Apache server were put on a gigabit ethernet to ensure that no effect due to
large network latencies were observed in the results.

7.2 Test Results

Figure 9 shows the performance of the Apache 2.0 webserver performing with
and without BlueBox under various server load factors. We anticipate a 8–10%
performance penalty for the Apache 2.0 server running on the Linux 2.2.14
kernel.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

196 • S. N. Chari and P.-C. Cheng

7.3 Bottlenecks

The main performance bottlenecks in enforcing the system call checks for the
Apache server is pathname resolution. For each request, the Apache server
opens a file and then uses sendfile to send it over the socket. For each request,
we perform a full name resolution operation to match the right file name with
a node on the tree of file system object rules to eliminate security holes. This
can be additionally optimized by caching and marking certain names as fully
resolved. Systems such as LSM/SeLinux, have mandatory access control type
labels [DoD 1985] on file system objects and move the check entirely to the
file system, that is, the file system will check the labels for permission before it
opens the file. Although this may yield better performance, we have not adopted
this in BlueBox since this would result in a very large impact on kernel code.

The results shown in Figure 9 were generated entirely using static content.
Dynamic content requires the server to load another process and thus load
the rules for this new process that adds to the performance penalty. This can
be somewhat mitigated by caching the data structures representing rules for
frequently used cgi-bin scripts. We are in the process of implementing this in
the BlueBox implementation on Linux.

Using these optimizations, we expect that the performance penalty for the
Apache daemon will be close to 5%. We believe that this penalty is not excessive
given the security guarantees one can obtain using this system.

8. FUTURE RESEARCH DIRECTIONS

Besides the ongoing work of improving performance and refining the syntax
and semantics of rules, research effort in our system will focus on addressing
the following issues:

—Rule generation aids to make the generation of program rules more easier.
We think that work on static analysis of programs [Wagner and Dean 2001;
Ashcraft and Engler 2002; Zhang et al. 2002] is a promising approach.

—A flexible response mechanism to allow different levels of responses to an
attack based on the program and the resources being attacked, policy config-
uration, and other inputs from the surrounding environment.

—A report mechanism to report detected attacks and responses taken.
—Using the report and response mechanisms as links to integrate the three

different types of IDS, namely, misuse detection, anomaly detection, and the
policy-based approach into an integrated defense system.

8.1 Integrated Defense System

We believe BlueBox is very good at detecting attacks. However, BlueBox cannot
do the following by design:

—Identifying the attack: BlueBox can detect a rule is violated, but it cannot tell
which attack is being carried out.

—Early detection: BlueBox can only detect an attack after the start of the
execution of the attack.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 197

Fig. 10. Integrated defense system.

Misuse detection can identify attacks and can detect attacks before the start of
their executions on a system but its false positive and negative rates are usually
high. Anomaly detection can detect attacks disguised as legitimate activities,
such as access to a sensitive file at an usual time or an unusually high level of
a legitimate activity, but the detection may have to be done off-line due to the
need to collect statistics and incorrect detection rates could be high. Each of the
three approaches has unique abilities that can compliment the other two. So
we submit that the best defense is to integrate the three approaches together.

Figure 10 depicts our current thinking of an integrated defense system.
Like a nation protects itself, the misuse detection box serves as an intelligence
agency watching out for attacks from the outside, anything it misses is subject
to BlueBox rule checking which servers as the baseline defense at the boundary
of a system or an application. Any attacks disguised as legitimate activities and
which pass BlueBox is subject to the watchful eyes of the profile engine which
is like a law-enforcement agency watching for unusual, suspicious activities.
The coordinator uses information provided by the three approaches to make
on-line decisions regarding responses to attacks; it may also change BlueBox’s
responses to attacks.

The attack/log analyzer correlates and analyzes the system/network logs
and detected attacks; its goal is to combine information collected by the three
approaches to enhance them. The analyzer can identify signatures of previously
unknown attacks, refines signatures of known attacks, adjusts the behavior of
the profile engine, refines the rules of BlueBox, and so on. Due to the difficulty
of analyzing large amount of logs and attacks, we expect the analyzer to work
off-line and it may very well need human assistance.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

198 • S. N. Chari and P.-C. Cheng

9. CONCLUSION

We have presented BlueBox, a simple system for sandboxing applications that
can substantially mitigate security exposures of processes. We believe that our
system is a simple and comprehensive way to incorporate checks on the execu-
tion of programs at the time of invocation of system calls. We have described
rules for important servers such as the Apache daemon and a number of pop-
ular cgi-bin scripts; these rules can be used as templates across installations
with new rules written for the individual scripts. Our rule syntax and seman-
tics are simple and yet quite effective in catching a large number of known
attacks. Since performance has been a motivating factor in our design, we have
achieved our security guarantees with minimal impact on the performance.

On a much larger scale, we believe that much more effective security can be
achieved by combining the attack signature-based systems, statistical profile-
based systems, and the sandboxing systems such as the one described in this
paper into a integrated defense system.

APPENDIX: BLUEBOX KERNEL MODULES ON LINUX

To avoid any changes to the existing Linux 2.4.18 kernel code, we implemented
BlueBox using two loadable kernel modules:

System Call Interception Module. This module intercepts every system call
made by a process. If the process is being monitored, the control is then trans-
ferred to the Rule Enforcement Module which is registered with the System Call
Interception Module, otherwise the control is transferred back to the kernel’s
handler routine of the particular system call.

Rule Enforcement Module. This module registers itself with the System Call
Interception Module and checks a process’s invocation of a system call and its
parameters against the BlueBox rules associated with a process. An error is
returned if the rules are violated, otherwise the control is transferred back to
the kernel’s handler routine of the particular system call.

We believe the important concept here is the separation of the system call in-
terception mechanism from the operation performed on an intercepted system
call. BlueBox rule enforcement is just one of many possible operations to per-
form on intercepted system calls; other possibilities include detailed auditing,
statistical profiling, etc. We actually implemented a kernel version of the strace
utility to audit system calls. This auditing mechanism can monitor multiple
processes simultaneously and provided us great help in understanding a pro-
cess’s behavior. In particular, this auditing mechanism does not interfere with
delivery of signals as strace does so it will not block the operation of a group of
processes communicating through signals.

ACKNOWLEDGMENTS

This work has benefited substantially from discussions with a large number of
people. In particular, we would like to acknowledge the contributions of Pankaj
Rohatgi, Josyula R. Rao, David Safford, and Douglas Schales of IBM Research,
and Hervé Debar who was at IBM Zurich Research Lab. Our summer intern

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

BlueBox: A Policy-Driven, Host-Based Intrusion Detection System • 199

Oleg Kolesnikov implemented a primitive report-and-response subsystem. We
would like to give special thanks and praises to our summer intern Ramkumar
ChinChani who did a very good job of porting BlueBox to Linux 2.4.18 and
moving the entire rule enforcer into a loadable kernel module.

REFERENCES

ANDERSON, D., LUNT, T. F., JAVITZ, H., TAMARU, A., AND VALDES, A. 1993. SAFEGUARD
FINAL REPORT: Detecting unusual program behavior using the NIDES statistical com-
ponent, Tech. Rep., Computer Science Laboratory, SRI International, Menlo Park, CA,
USA.

ASHCRAFT, K. AND ENGLER, D. 2002. Using programmer-written compiler extensions to catch se-
curity holes. In Proceedings of the 2002 IEEE Symposium on Security and Privacy.

ATKINSON, R. 1995. Security architecture for the Internet protocol. Internet RFC 1825.
BERNASCHI, M., GABRIELLI, E., AND MANCINI, L. 2000. Enhancements to the Linux kenel

for blocking buffer overflow based attacks. Available at http://www.iac.rm.cnr.it/newweb/

tecno/papers/bufoverp.
BERNASCHI, M., GABRIELLI, E., AND MANCINI, L. V. 2002. REMUS: A security-enhanced operating

system. ACM Trans. Inf. Syst. Sec. 5, 1 (February).
BISHOP, M. AND DILGER, M. 1996. Checking for race conditions in file accesses. Computing Syst. 9, 2,

131–152.
CHARI, S. N. AND CHENG, P. C. 2002. BlueBox: A policy-driven, host–based intrusion detection

system. In Network and Distributed System Security Symposium.
COWAN, C., BEATTIE, S., KROAH-HARTMAN, G., PU, C., WAGGLE, P., AND GLIGOR, V. 2000. SubDomain:

Parsimonious server security. In Proceedings of the 14th Systems Administration Conference
(LISA 2000).

CROSBIE, M., DOLE, B., ELLIS, T., KRSUL, I., AND SPAFFORD, E. 1996. IDIOT users guide. Tech. Report
CSD-TR-96-050, COAST Laboratory, Dept. of Computer Sciences, Purdue University.

DEBAR, H., DACIER, M., NASSEHI, M., AND WESPI, A. 1998. Fixed vs. variable-length patterns for
detecting suspicious process behavior. Research Report, No. RZ3012, IBM Research Division,
Zurich Research Lab.

DEBAR, H., DACIER, M., AND WESPI, A. 1999. Towars a taxonomy of intrusion detection systems.
Computer Networks 31.

DIERKS, T. AND ALLEN, C. 1997. The TLS protocol version 1.0. IETF <draft-ietf-tls-protocol-
02.txt>.

DoD 1985. US Department of Defense trusted computer system evaluation criteria. DOD
5200.28-STD. Available at http://www.radium.ncsc.mil/tpep/library/rainbow/index.html.

ERLINGSSON, Ú. AND SCHNEIDER, F. B. 2000. IRM enforcement of Java stack inspection. In IEEE
Symposium on Security and Privacy.

FORREST, S., HOFMEYR, S. A., SOMAYAJI, A., AND LONGSTAFF, T. A. 1996. A Sense of self for UNIX
processes. In IEEE Symposium on Security and Privacy.

FRASER, T., BADGER, L., AND FELDMAN, M. 1999. Hardening COTS software with generic software
wrappers. In Proceedings of the IEEE Symposium on Security and Privacy.

FREIER, A. O., KARLTON, P., AND KOCHER, P. C. 1996. The SSL protocol version 3.0. IETF <draft-
ietf-tls-ssl-version3-00.txt>.

JACKSON, K. A. 1999. Intrusion Detection System (IDS) product review. IBM internal confidential
document, IBM Research Division, Zurich Research Lab.

JAIN, K. AND SEKAR, R. 2000. User-level infrastructure for system call interposition: A platform
for intrusion detection and confinement. In Proceedings of the Network and Distributed Systems
Security Symposium.

JAVITZ, H. AND VALDES, A. 1994. The NIDES statistical component description and justification.
Tech. Rep., Computer Science Laboratory, SRI International, Menlo Park, Cal., USA.

JVM 2001. The Java virtual machine. Available at http://www.javasoft.com.
KO, C., FRASER, T., BADGER, L., AND KILPATRICK, D. 2000. Detecting and countering system intru-

sions using software wrappers. In Proceedings of the 9th USENIX Security Symposium.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

200 • S. N. Chari and P.-C. Cheng

LEFFLER, S. J., JOY, W. N., FARBY, R. S., AND KAREL, M. J. 1986. Networking implementation notes,
4.3BSD edition. In UNIX System Manager’s Manual, 4.3 Berkeley Software Distribution, Virtual
VAX–11 Edition. USENIX Association.

LSM. The Linux Security Module Project. Code available at http://lsm.immunix.org.
MCKUSICK, M. K., BOSTIC, K., KARLES, M. J., AND QUARTERMAN, J. S. 1996. The Design and Imple-

mentation of the 4.4 BSD Operating System. Addison Wesley, New York City, USA, 67, 540.
PAXSON, V. 1998. Bro: A system for detecting network intruders in real-time. In the 7th USENIX

Security Symposium.
PTACEK, T. H. AND NEWSHAM, T. N. 1998. Insertion, evasion, and denial of services: Eluding network

intrusion detection. Available at http://www.nai.com.
RANUM, M. J., LANDFIELD, K., STOLARCHUK, M., SIENKIEWICZ, M., LAMETH, A., AND WALL, E. 1997.

Implementing a generalized tool for network monitoring. In the 11th USENIX Systems Admin-
istrator Conference.

SEKAR, R. AND UPPULURI, P. 1999. Synthesizing fast intrusion detection systems from high-level
specifications. In the 8th USENIX Security Symposium, 63–78.

SELINUX. Security-enhanced Linux. Available at http://www.nsa.gov/selinux/.
WAGNER, D. A. 1999. Janus: An approach for confinement of untrusted applications. Tech. Rep.

CSD–99–1056, University of California at Berkeley.
WAGNER, D. A. AND DEAN, D. 2001. Intrusion detection via static analysis. In Proceedings of the

2001 IEEE Symposium on Security and Privacy.
WALKER, K. M., STERNE, D. F., BADGER, M. L., PETKAC, M. J., SHERMANN, D. L., AND OOSTENDROP, K. A.

1996. Confining root programs with domain and type enforcement. In the 6th USENIX Security
Symposium.

WEBSPHERE 2001. WebSphere V4.0 Advanced Edition Handbook. Available at http://www.

redbooks.ibm.com/redpieces/pdfs/sg246176.pdf.
WUFTP. Source code to exploit the heap overflow in wu–ftpd. Available at http://oliver.

efri.hr/∼crv/ security/bugs/mUNIXes/wuftpd15.html.
XIE, H. AND BIONDI, P. 2001. The Linux Intrusion Detection Project. Available at http://

www.lids.org.
ZHANG, X., EDWARDS, A., AND JAEGER, T. 2002. Using CQUAL for static analysis of authorization

hook placement. In the 11th Usenix Security Symposium.

Received May 2002; revised December 2002; accepted December 2002

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

