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Abstract

We consider a canonical model for coded CDMA with random spreading, where the

receiver makes use of iterativeBelief-Propagation(BP) joint decoding. We provide simple

Density-Evolutionanalysis in the large-system limit (large number of users) of the perfor-

mance of the exact BP decoder and of some suboptimal approximations based onInterfer-

ence Cancellation(IC). Based on this analysis, we optimize the received user SNR distri-

bution in order to maximize the system spectral efficiency for given user channel codes,

channel load (users per chip) and target user bit-error rate. The optimization of the received

SNR distribution is obtained by solving a simple linear program and can be easily incor-

porated into practicalpower controlalgorithms. Remarkably, under the optimized SNR

assignment the suboptimal Minimum Mean-Square Error (MMSE) IC-based decoder per-

forms almost as well as the more complex exact BP decoder. Moreover, for a large class

of commonly used convolutional codes we observe that the optimized SNR distribution

consists of a finite number of discrete SNR levels. Based on this observation, we provide

a low-complexity approximation of the MMSE-IC decoder thatsuffers from very small

performance degradation while attaining considerable savings in complexity.

As by-products of this work, we obtain a closed-form expression of the multiuser ef-

ficiency of power-mismatched MMSE filters in the large-system limit, and we extend the

analysis of the symbol-by-symbol MAP multiuser detector inthe large-system limit to the

case of non-constant user powers and non-uniform symbol prior probabilities.

Keywords: Multiuser Detection, Multiple-Access Channel Capacity, Iterative Decoding,

Statistical Mechanics.
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1 Problem statement and prior work

Thecanonicalreal-valued model for the Gaussian multiple-access discrete-time waveform chan-

nel is given by [1] yn = SWxn + �n; n = 1; : : : ; N (1)

wherexn 2 RK , yn;�n 2 RL are the input, output and noise signal vectors at timen, respec-

tively, S 2 RL�K is a matrix containing by columns the user discrete-time signature wave-

forms (spreading sequences)sk, of lengthL samples, andW = diag(w1; : : : ; wK) contains

the user amplitudes. The noise is Gaussian i.i.d., with variance per component�20 (we write�n � N(0; �20I)).
As usual, in multiple-access channels the users send independent and independently en-

coded information [2] (see the block-diagram in Fig. 1). This implies that�x = E[xixTi ℄ is

diagonal. Without loss of generality, we let�x = I and normalize the user signature wave-

forms such thatjskj2 = 1, so thatk �= w2k=�20 takes on the meaning ofreceivedsignal-to-noise

ratio (SNR) of userk. We letCk denote the user codebooks, of rateRk = 1N log2 jCkj bit per

symbol. Eachk-th user, in order to transmit its information messagemk 2 f1; : : : ; jCkjg, sends

the codeword�k(mk) = (xk;1; : : : ; xk;N) 2 Ck in N consecutive channel uses as given in (1).

At the receiver, ajoint decodermaps the received signalY = [y1; : : : ;yN ℄ into aK-tuple of

information messages(bm1; : : : ; bmK). Without loss of generality, we assume that the user infor-

mation messages are represented by vectors ofBk information bitsbk (e.g.,bk can be seen as

the binary representation of the indexmk). Hence, we define the per-user bit-error rate (BER)

as P (k)b = 1Bk BkXj=1 Pr�bbk;j 6= bk;j� (2)

under the usual assumption that the user information messages are uniformly distributed.

From standard arguments [3, Ch. 8]), we have that the transmitted signal bandwidth isL=T ,

whereT is the (continuous-time) duration of one channel use. Therefore, the system spectral

efficiency is given by [4] � = 1L KXk=1 Rk; bit=s=Hz (3)

We shall also define thesystemreceived energy-per-bitEb �= PKk=1 w2kPKk=1 Rk and the systemEb=N0,
given by [4, 5] �EbN0�sys �= Eb2�20 = 1LPKk=1 k2� (4)

The model (1) has been used extensively in order to derive in simple and concise form most

MultiUser Detection(MUD) algorithms (see [1] and references therein). Moreover, several
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recent results on the performance analysis of MUD algorithms in the large-system limit (i.e.,

letting bothK andL go to infinity with fixed ratioK=L = �) under therandom spread-

ing assumption (i.e., the entries ofS are generated i.i.d. according to some probability dis-

tribution) are derived based on this model for the sake of analytical tractability (see for ex-

ample [4, 6, 7, 8, 9, 10, 11, 12, 13]). We shall not question here the validity of this widely

accepted model. Nevertheless, we would like to stress the fact that both more refined analysis

and practical experience shows that the conclusions drawn from the real canonical model (1)

apply (at least qualitatively) to more complicated and close-to-practice models taking into ac-

count complex-valued baseband equivalent channels [5], asynchronous transmission [14] and

transmission through multipath fading channels [15] with imperfect channel estimation. The

main fact that makes the model (1) “close” to practical CDMA settings is the random spreading

assumption, which prevents the users to pick their waveforms optimally. In this respect, the

random-spreading point of view reflects real-life CDMA practice [16], where physical impair-

ments and practical constraints prevent the system from optimizing the user waveforms.

In this work we are concerned with the practically relevant problem of maximizing the

system spectral efficiency� for a given family of user codesfCk : k = 1; : : : ; Kg, given

iterative joint decoders (see [17] and references therein)and subject to the individual maximum

BER constraintsP (k)b � � for all k = 1; : : : ; K, under the random-spreading assumption and in

the large-system limit. We conclude this section by reviewing some known results on spectral

efficiency of random-spreading CDMA and by providing a preview of the reminder of this

paper.

Maximum spectral efficiency with optimal coding/decoding and vanishing BER. The

maximum spectral efficiency of random-spreading CDMA with no restrictions on coding and

decoding and for vanishing BER (i.e.,� ! 0) 2 was found by Verdú and Shamai in [4, 5] for

given finitechannel loadK=L = �, and readsC = �2 log2(1 + �)� 12 log2 � � 1� �2 log2 e bit=s=Hz (5)

where� is the solution to [6] 1� = 1 + � 1 + � (6)

The optimal(Eb=N0)sys for given� andC is given by�EbN0�sys = �2C
2The achievability results referenced in this section hold under the stronger condition of vanishing message

error rate. Well-known converse results ensure that the looser requirement of vanishing BER does not allow any

larger rate [3].
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The spectral efficiency (5) is achieved by Gaussian codebooks and constant user received SNR.3

The supremum ofC over � � 0 is obtained for� ! 1 (an infinite number of users per

dimension, with vanishing user coding rate), and is given bythe single-user Gaussian channel

spectral efficiency, �EbN0�sys = 22C � 12C (7)

It is interesting to notice that, in order to achieve (5), an optimal (ML) joint decoder is not

necessary. In fact, the same optimal spectral efficiency is achieved by astripping decoder

that considers the users in sequence (say, in the orderk = 1; 2; : : : ; K) and, at each stagek,

decodes thek-th message based on the linear MMSE estimate of thek-th user codeword from

the received signal after subtracting the already decoded users [18]. The price incurred by

stripping is that the user coding rates must be assigned suchthat the transmitted rateK-tuple

coincides with a successively decodable point of the multiple-access capacity region [2] or,

if equal user rates are desired, the user received SNRs must be assigned such that the equal-

rate point is successively decodable (at the price of some loss in the total achievable rate).

The power/rate assignment with practical families of user codes (notably, LDPC codes) for

successive stripping decoding is studied in [19].

The spectral efficiency with optimum joint decoding in the case of constant received SNR

and binary antipodal (instead of Gaussian) codes was found by Tanaka in [9], and is given byC = ���� + 12�� 12� log2 e� 12 log2 � � � Z log2 osh(zp� + �)Dz; bit=s=Hz (8)

where� is the solution to [9]1� = 1 + ��1� Z tanh(zp� + �)Dz� (9)

(we defineDz �= 1p2�e�z2=2dz).
It is not hard to show that, for given, the maximum ofC in (8) is also obtained by letting�!1 and coincides with the single-user Gaussian spectral efficiency (7).

Maximum spectral efficiency with optimal coding, separate detection/decoding and van-

ishing BER. A common suboptimal practice in multiple-access systems considers separated

MUD and single-user decoding. In this case, the decoder is formed by some multiuser detector

front-end, producing an estimate of thek-th user transmit signal fork = 1; : : : ; K, followed by a

3We say that the received power distribution isconstantif all users are received at the same SNR level, i.e.,

the empirical cumulative distribution function of the received SNRs is a unit-step with jump at.
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bank ofK single-user decoders, each processing its own MUD front-end output and producing

the decoded messagebmk independently of the others. The spectral efficiency of suchschemes

has been examined in several works for various MUD schemes. In [6], Tse and Hanly investi-

gated the spectral efficiency achieved bylinearMUD (single-user matched filter (SUMF), linear

MMSE and decorrelating filters) and arbitrary user codes. Itis worth noticing that for Gaussian

user codes and linear MMSE filter this is the optimal spectralefficiency achievable by separated

MUD and decoding, since linear MMSE estimation coincides with the optimal MAP symbol-

by-symbol estimation for Gaussian signals. In [20], Müller and Gerstacker found the spectral

efficiency with binary user codes and the individually optimal (symbol-by-symbol MAP) MUD

front-end. Remarkably, both for Gaussian and for binary codes the spectral efficiency under

separated MUD and decoding can be written in terms of the corresponding spectral efficiency

with joint decoding as [5, 20]Csep = Cjoint + 12 log2 � + 1� �2 log2 e (10)

whereCjoint is given by either by (5) or (8) and� is the solution to either (6) or (9), respectively.

The term12 log2 � + 1��2 log2 e quantifies the loss in spectral efficiency due to separation.

Spectral efficiency for given user codes, iterative detection/decoding and arbitrary tar-

get BER. Driven by the success of iterative decoding schemes in single-user channel coding

(see [21] and references therein), “Turbo” multiuser jointdecoding was proposed in several

works (see for example [22, 23, 24] and references in [17]). These algorithms seek a trade-off

between the complexity of optimal joint decoding and the performance loss of separated MUD

and single-user decoding. The performance analysis for a wide class of user codes (not nec-

essarily random ensembles) and a class of iterative joint decoders obtained as approximations

of the Belief Propagation(BP) algorithm (see details in Section 3) was provided by Boutros

and Caire in [17]. This analysis is based on the general technique known asDensity Evolution

(DE) [25], commonly used to determine the iterative decoding limits of Turbo Codes and LDPC

codes, and is exact in the limit of large blocklength (notice: to obtain a meaningful large system

limit we let firstN !1 andthenK !1 with K=L = �).

Preview of this paper. Several issues are left open in [17]. In particular, how theexactBP

decoder compares with respect to its IC-based approximations? What is the optimal received

SNR distribution maximizing spectral efficiency for given user codes, user target BER and given

iterative decoding scheme? How far is the spectral efficiency of an optimized CDMA system

with simple (practical complexity) user codes and iterative joint decoding from the optimal

spectral efficiency with optimal (i.e., capacity-achieving) codes and optimal joint decoding?
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Can we find iterative decoding algorithms with complexity comparable to separated MUD and

single-user decoding which still significantly outperformthe separated approach?

In this work, we provide answers to the above questions. In Section 2 we recall the exact

BP decoder and some lower-complexity approximations basedon IC. In Section 3 we present

the DE analysis of this family of message-passing decoders under random spreading and in the

large-system limit. Based on this analysis, in Section 4 we provide a simple linear program-

ming algorithm for the optimization of the received SNR distribution. Our results show that,

under constant received SNR, the exact BP decoder significantly outperforms its IC-based ap-

proximations in terms ofpower efficiency(i.e., it requires significantly lower SNR for given

target BER). On the other hand, in terms ofspectral efficiency, the advantage of exact BP over

its approximation based on soft IC and MMSE filtering is only marginal. Moreover, for all the

considered decoding algorithms, the spectral efficiency attained under an optimized received

SNR distribution is significantly larger than under constant SNR. Driven by these observations

and by the fact that, for the user codes considered here, the optimized received SNR distribution

consists of a small number of discrete SNR levels, in Section5 we provide a low-complexity

approximated version of the MMSE-IC iterative decoder thatoffers a very competitive trade-off

between complexity and performance. Finally, we point out our conclusions in Section 6. The

proofs of the main results are provided in the Appendix.

2 Iterative joint decoding algorithm

In the rest of this work we shall restrict the user codes to be binary antipodal, i.e.,Ck �f�1;+1gN . For a binary variable with probability mass function (pmf)(Pr( = +1);Pr( =�1)) we define its log-ratio by L �= log Pr( = +1)Pr( = �1) (11)

The BP algorithm [26, 27] approximates iteratively the log-ratiosLbitk;j corresponding to the

marginals of the a posteriori joint pmfPr(b1; : : : ;bK jY) of the user information bits. After

a given number of iterations, a symbol-by-symbol decision is made according to the threshold

rule bbk;j = sign(Lbitk;j) (12)

Standard results [27] show that if thedependency graphdescribingPr(b1; : : : ;bK jY) is cycle-

free, then BP yields symbol-by-symbol MAP decisions with a finite number of iterations, thus

minimizing the BERP (k)b for each userk. Unfortunately, the dependency graph of the coded

multiuser channel (1) has cycles as long asK > 1 and the user codes are non-trivial (i.e., have
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rateRk < 1). Nevertheless, for sufficiently large blocklengthN and under some randomiza-

tion of the user codes (e.g., theCk’s may be linear convolutional codes the output of which is

independently and randomly interleaved before transmission, or LDPC codes whose graph is

independently and randomly generated), the probability offinding cycles of any finite girth̀

decreases linearly withN [17]. Hence, BP decoding islocally optimalprovided that decisions

are made after a finite number` of decoder iterations, while lettingN sufficiently large.

The BP iterative joint decoder belongs to the class ofmessage-passingdecoding algo-

rithms [25]. It is formed by some computation building blocks that exchangemessagesin

the form of binary pmfs or, equivalently, of log-ratios. Themain building blocks of a BP itera-

tive joint decoder are the Soft-Input Soft-Output (SISO) decoders and the individually optimum

MAP multiuser detector (IO-MUD) (see the block-diagram in Fig. 2).

SISO decoding is formally expressed byLdek;n = log P2Ck:n=+1 exp 12 Pj 6=n jLmudk;j !P2Ck:n=�1 exp 12 Pj 6=n jLmudk;j ! (13)

for all k = 1; : : : ; K andn = 1; : : : ; N , whereLmudk;j is the message (log-ratio) sent by the

IO-MUD for userk relative to coded symbolk;j andLdek;n is the so called decoder “extrin-

sic information”. For convolutional codes, (13) is efficiently implemented by the well-known

forward-backward algorithm [28]. The same forward-backward algorithm can compute the

log-ratiosfLbitk;j : j = 1; : : : ; Bkg for the user information bits while computing (13).

IO-MUD consists of calculating the a posteriori log-ratiosLmudk;n = log Pr(xk;n = +1jyn;Lde1;n; : : : ;Ldek�1;n;Ldek+1;n; : : : ;LdeK;n)Pr(xk;n = �1jyn;Lde1;n; : : : ;Ldek�1;n;Ldek+1;n; : : : ;LdeK;n) (14)

= log Px2f�1gK :xk=+1 exp0�� 12�20 �����yn � KPj=1wjsjxj�����2 + 12 Pj 6=k xjLdej;n1APx2f�1gK :xk=�1 exp0�� 12�20 �����yn � KPj=1wjsjxj�����2 + 12 Pj 6=k xjLdej;n1A (15)

for all k = 1; : : : ; K andn = 1; : : : ; N . Unfortunately, there is no efficient way to perform this

calculation, in general.4

4Based on the fact thatSWx, with x 2 f�1;+1gK is a constellation ofN dimensional points carved from

a lattice with generator matrixM = SW, a modification of the Pohst enumeration of lattice points (Sphere
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Various schemes have been proposed to simplify the exact BP decoder by replacing the

IO-MUD block by some simpler soft-in soft-out algorithm. Inthis work we shall consider the

following options.

Conditional MMSE-IC. The optimal a posteriori estimation (15) can be replaced by the un-

biased MMSE estimation ofxk;n given the received signalyn and the SISO decoders extrinsic

informationfLdej;n : j 6= kg, given byzk;n = hTk;n "yn �Xj 6=k wjsj tanh(Ldej;n =2)# (16)

where the filterhk;n minimizes theconditionalMSEE 24�����xk;n � hTk;n "yn �Xj 6=k wjsj tanh(Ldej;n=2)#�����2������ fLdej;n : j 6= kg35
under the unbiasedness constraintwkhTk;nsk = 1 and is given explicitly byhk;n = wk�20�k;n "I+Xj 6=k j(1� tanh2(Ldej;n =2))sjsTj #�1 sk (17)

where �k;n = ksTk "I+Xj 6=k j(1� tanh2(Ldej;n=2))sjsTj #�1 sk (18)

is the output signal to interference plus noise ratio (SINR).

From (16) and (17) we can writezk;n = xk;n + �k;n, where�k;n has mean zero and variance1=�k;n. Assuming�k;n Gaussian distributed, the log-ratio sent to the SISO decoder is given byLmudk;n = 2�k;nzk;n (19)

In the large-system limit the output of the linear MMSE detector converges almost surely to a

conditionally Gaussian random variable [8]. Therefore, the Gaussian assumption made in (19)

is exact for random spreading CDMA and largeK.

Decoder [29]) has been proposed by some authors in order to generate a list of candidate transmit vectors and

approximate (15) by restricting the sum to a few significant terms in the list [30]. Nevertheless, this approach is

prohibitively complex for largeK and/or� > 1 (i.e.,K > N ).
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The estimator (16) consists of two stages: first, the observation yn is rendered zero-mean

by subtracting the (conditional) mean�yk;n = E �ynj fLdej;n : j 6= kg�= Xj 6=k wjsj tanh(Ldej;n=2) (20)

Then, the linear MMSE estimation of the zero-mean symbolxk;n is obtained by filtering the

zero-mean observationyn � �yn. This decomposition of linear MMSE estimators is canoni-

cal [31]. However, it is interesting to notice that, in this setting, the elimination of the condi-

tional mean of the observation takes on the meaning ofsoft Interference Cancellation (IC). In

fact, �yn is the (non-linear) MMSE estimate of the multiple-access interference
Pj 6=k wjxj;nsj

relative to userk, based on the SISO decoder output messagesfLdej;n : j 6= kg.
Since (16) is obtained by solving a MMSE problem conditionally on the SISO decoders

extrinsic information and involves soft IC, we shall refer to this detector as theconditional

MMSE-IC scheme.

Unconditional MMSE-IC. The conditional MMSE-IC detector requires the computationof

the filters (17) for each user, each symbol interval and each decoder iteration. A simplification

consists of applying unconditional linear MMSE estimationto the observationaftersoft IC. The

resulting estimate ofxk;n is still given by (16), where the filterhk;n is replaced by the filterhk,
minimizing the unconditional MSEE 24�����xk;n � hTk "yn �Xj 6=k wjsj tanh(Ldej;n =2)#�����235
under the unbiasedness constraintwkhTk sk = 1 and is given explicitly byhk = wk�20�k "I+Xj 6=k j(1� E[tanh2(Ldej;n=2)℄)sjsTj #�1 sk (21)

where �k = ksTk "I+Xj 6=k j(1� E[tanh2(Ldej;n=2)℄)sjsTj #�1 sk (22)

is the output signal to interference plus noise ratio (SINR). The log-ratio sent to the SISO

decoder is given by (19) with�k;n replaced by�k.
In a practical implementation, the meanE[tanh2(Ldej;n=2)℄ can be replaced by the empirical

mean 1N NXn=1 tanh2(Ldej;n=2) (23)
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that can be computed directly from the output of eachj-th SISO decoder.

The unconditional MMSE-IC scheme requires the evaluation of only one filter per user per

iteration.

Single-user matched filter with IC. A further simplfication is obtained by replacing the

MMSE filter by the single-user matched filter (SUMF), and producing an estimate ofxk;n aszk;n = sTk [yn � �yn℄
This approach, referred to as the SUMF-IC scheme, was proposed in several early works on

uncoded multiuser detection under the name of soft ParallelIC (PIC) (see for example [32]),

and has the advantage of not requiring the computation of matrix inverses. The expression of

the output SINR is well-known and will be omitted for the sakeof brevity.

3 Density evolution analysis

DE consists of propagating through the decoding iterationsthe probability density of the mes-

sages exchanged by a message-passing decoder under the assumption that the messages re-

ceived at each computation node are statistically independent. Under some mild conditions

(notably, that the probability of cycles of any given girth` vanishes as the blocklengthN in-

creases), a general concentration theorem [25] ensures that the empirical distribution of the

messages at any fixed decoder iteration` converges with probability 1 to the limit density ob-

tained by DE, asN ! 1. In [17] it is shown that the concentration theorem holds forthe

coded CDMA channel model and the message-passing decoders presented in the previous sec-

tion under mild conditions of regularity of the user codesCk’s. In particular, the theorem holds

for convolutional codes with random independent interleaving.

In the rest of this paper we make the following assumptions: 1) the user codes are all derived

by the same convolutional codeC of rateR, and differ only by the interleaver randomly and in-

dependently generated for each user; 2) the user spreading sequencessk are randomly generated

with i.i.d. components according to a symmetric distribution (zero odd moments), variance1=L
and finite fourth-order moment; 3) the empirical distribution of the received SNRs, defined byF (K) (z) �= 1K KXk=1 1fk � zg
converges almost everywhere to a given (non-random) distributionF(z), asK ! 1; 4) as

anticipated before, we shall study the large-system limit of the iterative decoders by letting first
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(to remove the randomness due to random spreading). Under these assumptions, the following

general result holds:

Proposition 1. For the IO-MUD, conditional MMSE-IC, uncoditional MMSE-ICand SUMF-

IC detectors defined above, at each decoder iteration` the log-ratioLmudk;n sent to thek-th

SISO decoder converges in distribution to a Gaussian randomvariable with conditional mean2k�(`)xk;n (givenxk;n 2 f�1;+1g) and variance4k�(`), where the coefficient�(`) 2 [0; 1℄ de-

pends on the detector and on the iteration`, but it is independent of the user indexk. Moreover,fLmudk;n : n = a; : : : ; bg for given finitea andb (that do not depend on the blocklengthN ) are

asymptotically conditionally independent given thek-th user transmitted codeword.

Proof. It follows directly as a corollary of [8, 9, 13]. �
Proposition 1 essentially tells that eachk-th SISO decoder input sequencefLmudk;n : n =1; : : : ; Ng, at each decoder iteration`, can be thought as the posterior log-ratio of the output of

a virtual binary-input AWGN channelzk;n = xk;n + �k;n where�k;n � N(0; 1=(k�(`))). The

virtual AWGN channel SNR isk�(`). Hence,�(`) represents the ratio between the effective

SNR for userk at the`-th decoder iteration and the nominal received SNRk. Following the

standard definition of [1], we shall refer to�(`) as theMultiuser Efficiency(ME).

Let us consider the output of the SISO decoderk when its input is driven by the virtual

AWGN defined above. The pdf of the log-ratioLdek;n defined in (13) satisfies the symmetry

condition [33] f(�z) = e�zf(z) (24)

In general,Ldek;n is non-Gaussian. However, it can be closely approximated bya Gaussian ran-

dom variable (conditionally onxk;n). By imposing the symmetry condition (24) on a Gaussian

distribution, we find that the variance must be equal to twicethe mean (in absolute value).

Therefore, we shall use theapproximationLdek;n � N�2�(`)k xk;n; 4�(`)k � (25)

This is equivalent to modelLdek;n as the posterior log-ratio of the output of avirtual binary-

input AWGN channeldk;n = xk;n + Æk;n whereÆk;n � N(0; 1=�(`)k ). The aboveGaussian

Approximationhas been used extensively to study the performance of Turbo Codes [34] and

LDPC codes [35] under iterative BP decoding.

The output SNR�(`)k of the virtual channel defined above depends on the user channel codeC and on the input SNRk�(`). However, since (25) is an approximation, there is some degree
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of freedom in how to mapk�(`) into the corresponding�(`)k , for a given codeC. We shall

use the “symbol-error rate matching” approach proposed in [17]. Namely, let�(SNR) be the

average symbol-error probability at the output of the SISO decoder as a function of the input

SNR, defined by �(SNR) �= Pr �Ldek;n < 0��xk;n = +1� (26)

Hence, we let �(`)k = �Q�1 ��(k�(`))��2 (27)

whereQ(x) �= R1x Dz is the standard Gaussian tail function.

Suppose that, for a given MUD scheme, we are able to compute�(`) from the valuesf�(`�1)k : k = 1; : : : ; Kg. Then, the new value�(`)k can be computed by (27). The sequence

of ME f�(0); �(1); : : : ; �(`); : : :g uniquely defines the evolution of message densities along the

decoder iterations (under the Gaussian Approximation). Eventually, the DE with Gaussian

Approximation (referred to as DE-GA in the following) will take on the form of the one-

dimensional dynamical system �(`+1) = 	 ��(`)� (28)

where the initial condition�(0) and the mapping function	 depend on the specific MUD algo-

rithm and on the system parameters, as the channel load� and the limiting distribution of the

received SNRsF(z). The next propositions give expressions for the mapping function	 and

for the initial condition�(0), for all the MUD algorithms considered.

Proposition 2. The mapping function	(�) for the exact BP decoder is given by the stable

solution to the fixed-point equation1	 = 1 + �E 24 ZR2 �1� tanh2 �yp�(�) + �(�)�� �1� tanh �zp	+ 	��1� tanh2 �yp�(�) + �(�)� tanh2 �zp	+ 	� DzDy35
(29)
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in the interval[0; 1℄ that minimizes the quantityI = �	��E[℄ + 12�� 12� log2 e� 12 log2	���E 24ZR28<:1 + tanh�yp�(�) + �(�)�2 log2 osh �zp	+ yp�(�) + 	+ �(�)�++ 1� tanh�yp�(�) + �(�)�2 log2 osh �zp	� yp�(�) + 	� �(�)�9=;DzDy35���2E �ZR log2 �1� tanh2 �yp�(�) + �(�)��Dy� (30)

whereE [�℄ denotes expectation with respect to the received SNR distributionF and where,

from (27), we define the function �(z) �= �Q�1 (�(z))�2 (31)

Proof. See Appendix A. �
Equation (29) may have either one (see example in Fig. 3, left) or three distinct solutions

(see example in Fig. 3, right) in the interval[0; 1℄, depending on�, � andF . If (29) has three

solutions0 � 	1 < 	2 < 	3 � 1, 	1 and	3 are stable fixed-points and	2 is unstable. Then,

the desired	(�) is given by	1 or by	3 for which (30) is minimum.

From the proof given in Appendix A) we notice thatI defined in (30) takes on the oper-

ational meaning ofmutual information per dimension(i.e., spectral efficiency in bit/s/Hz) for

the channel (1) where the input symbolsxn are binary with non-uniform a priori marginal pmf

given by Pr(xk;n = +1) = 1 + tk2
(with tk 2 [�1; 1℄), and where the empirical distributionG(K)T (z) �= 1K KXk=1 1ftk � zg
converges almost everywhere asK ! 1 to the distribution of the random variableT =tanh(L=2), with L � N(2�(�); 4�(�)) and � F. It is also interesting to notice that

the valid solution	(0) of (29) for constant received SNR coincides with the solution of (9),

and that, consequently,I evaluated at� = 0, 	 = 	(0) and constant received SNR coincides

with the spectral efficiency with binary i.i.d. uniform inputsC given in (8).

For the IC-based iterative decoders we have the following results.
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Proposition 3. The mapping function	(�) for the conditional MMSE-IC decoder is given by

theuniquesolution to1	 = 1 + �E 24ZR  �1� tanh2(yp�(�) + �(�))�1 + 	 �1� tanh2(yp�(�) + �(�))�Dy35 (32)

in the interval[0; 1℄, where�(z) is defined in (31).

Proof. See [17]. �
Proposition 4. The mapping function	(�) for the unconditional MMSE-IC decoder is given

by theuniquesolution to1	 = 1 + �E 24  �1� RR tanh2(yp�(�) + �(�))Dy�1 + 	 �1� RR tanh2(yp�(�) + �(�))Dy�35 (33)

in the interval[0; 1℄, where�(z) is defined in (31).

Proof. See [11]. �
Although not surprising, it is interesting to notice that equations (32) and (33) reduce to (6)

for � = 0 and constant received SNR. More in general, the solution	(0) of (32) and (33) for� = 0 and arbitraryF coincide with the ME of linear MMSE MUD found by Tse and Hanly

in [6].

Proposition 5. The mapping function	(�) for the SUMF-IC decoder is given by1	 = 1 + �E � �1� ZR tanh2(yp�(�) + �(�))Dy�� (34)

where�(z) is defined in (31).

Proof. See [11]. �
Proposition 6. For all the above cases, the DE-GA initial condition is givenby �(0) = 	(0),
and coincides with the ME of the corresponding MUD scheme used alone, i.e., without coding

and iterative decoding.
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Proof. It follows directly from the definition. �
With some effort, it is possible to verify that, for all� 2 [0; 1℄ and all SNRs distributionsF

the following inequalities hold0 � 	sumf�i(�) � 	un:mmse�i(�) � 	ond:mmse�i(�) � 	io�mud(�) � 1 (35)

Moreover, for any finite� we have�(0) > 0 and the functions	 are non-decreasing with�. Therefore, the smallest solution of the fixed-point equation 	(�) = � in [0; 1℄ yields the

stable fixed point which the DE-GA tends to, i.e., by letting�? denote this solution, we havelim`!1 �(`) = �?.
Within the limits of the assumptions made in order to obtain the DE-GA, the iterative de-

coder performance is completely characterized by the limiting ME �?. In fact, after many iter-

ations, everyk-th SISO decoder “sees” a binary-input AWGN channel with SNRk�?. There-

fore, for a given user codeC, the BER is uniquely determined by�? and by the individual

received SNRk. For example, if�? � 1, every user in the system attains a performance close

to its single-user lower bound, as if it was alone in the system. In this case, the iterative decoder

is able toremovealmost entirely the effect of multiple-access interference.

To illustrate the above DE-GA analysis, we computed the BER of a coded CDMA system

where the user codeC is the classical 64-state rate 1/2 convolutional code with (octal nota-

tion [36]) generators(133; 171)8. Figs. 4 and 5 show BER vs.Eb=N0 for constant received

SNR,� = 1:0 and2:0, respectively, and various iterative decoding schemes. Wenotice that

the BER shows the typical “waterfall” region (a behavior common to several iterative decoding

schemes) where the error curve decreases rapidly withEb=N0 and approaches the single-user

BER curve. For sufficiently large load�, the waterfall region becomes a “jump”, i.e., an abrupt

transition from very large to very small BER. As noticed in [17], this transition corresponds to

a fold bifurcation[37] of the dynamical system (28) representing the DE-GA. The value of�
for which the bifurcation appears depends on the decoder algorithm. For example, for� = 1:0
(Fig. 4) the SUMF-IC decoder shows the bifurcation behaviorwhile the other detectors have a

smooth waterfall. For� = 2:0 (Fig. 5) the exact BP, conditional and unconditional MMSE-IC

decoders show bifurcation (at different values ofEb=N0) while the SUMF-IC decoder is not

able to eliminate multiple-access interference (equivalently: the bifurcation appears at infiniteEb=N0).
4 Received SNR distribution optimization

In this section we aim at optimizing the received SNR distributionF in order to maximize the

spectral efficiency� = �R, for a given user convolutional codeC, given channel load�, given
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maximum BER constraint� (for all users in the system) and for a given iterative decoder in the

class of algorithms studied in the previous sections.

For simplicity, we quantize the SNRs levels, i.e., we shall assume that the users received

SNRs take on values in a finite discrete set of levels0 < g1 < g2 < : : : < gJ , for some finite

integerJ . Users received at SNR levelgj are said to “belong to classj”. Moreover, we define

the partial channel loads�j = Kj=L, for j = 1; : : : ; J , whereKj is the number of users in classj. Clearly,
PJj=1 �j = �. Finally, we assume that whenK ! 1 all the class sizesKj grow

to infinity, with given ratiosKj=K = �j=�. In order to stress the dependency of the DE-GA

mapping function on the system parametersg �= (g1; : : : ; gJ) and� �= (�1; : : : ; �J), we shall

use the notation	(�) � 	(g;�; �).
Since the BER is a non-decreasing function of the decoder input SNR, fixing a maximum

target BER� to be achieved by all users in the system is equivalent to requiring that the DE-GA

fixed point�? satisfies�?g1 � SNR(�), where the SNR level SNR(�) is determined by the codeC. Let 0 � Æ1 < Æ2 � 1 andÆ3 > 0. We fix g1 = SNR(�)=Æ2 and obtain the other SNR levelsg2; : : : ; gJ by sampling with a sufficiently small step a desired interval[g1; gmax℄. Then, we look

for the class load assignment� solving the optimization programminimize JXj=1 �jgj subject to

8><>: 	(g;�; �) � � + Æ3; 8 � 2 [Æ1; Æ2℄PJj=1 �j = �;�j � 0; 8 j (36)

Suppose that (36) is feasible. Then, the solution�? has the property of minimizing�EbN0�sys = PJj=1 �jgj2�R
over all class load assignments� such that the spectral efficiency is equal to� = �R, and the

DE-GA has limit�? � Æ2 (implying that all users attain BER not larger than�). The parameterÆ3 governs the speed of convergence of DE-GA (and eventually ofthe true iterative decoder) to

the fixed point. IfÆ3 is very small,	(g;�?; �) is very close to� for some values of�, and the

decoder needs many iterations to find its way out of these “tunnels” (this behavior is completely

analogous to what observed in iterative decoding of Turbo Codes and LDPC codes through the

so-called EXIT diagrams [38]). On the other hand, there is nohope to obtain small(Eb=N0)sys
by keepingÆ3 large. Therefore,Æ3 can be used as a performance vs. complexity tradeoff design

parameter.

If for some� and � the program (36) is infeasible, then some of the parameters must be

changed, for example, by decreasing� and/or increasing the range[g1; gmax℄ of permitted re-

ceived SNR levels.
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Fortunately, for all decoding algorithms considered in this paper, the condition	(g;�; �) �� + Æ3 can be re-formulated as a linear constraint with respect to�. Therefore, (36) is a linear

program and can be solved by standard numerical methods. Before proving the above statement,

we would like to point out here that the optimization of� via linear programming has striking

analogy with the methods for optimizing the degree sequences of LDPC code ensembles, as for

example in [35, 39].

For the SUMF-IC decoder, from (34) we re-write	(g;�; �) � � + Æ3 asJXj=1 �jgj �1� ZR tanh2(yq�(gj�) + �(gj�))Dy� � 1� + Æ3 � 1 (37)

which is clearly linear in�.

For the conditional and unconditional MMSE-IC decoder,	 is given implicitly as the solu-

tion of the fixed-point equations (32) and (33), respectively. These equations have the following

property [6]. Let us write (32) and (33) in the form	 = f(g;�; �;	), and denote by	(g;�; �)
the solution. Then, for allx 2 [0; 1℄x � 	(g;�; �) , x � f(g;�; �; x) (38)

Due to this iff implication, it follows that	(g;�; �) � � + Æ3 is equivalent toJXj=1 �jgj ZR �1� tanh2(yp�(gj�) + �(gj�))�1 + (� + Æ3)gj �1� tanh2(yp�(gj�) + �(gj�))�Dy � 1� + Æ3 � 1 (39)

for conditional MMSE-IC, and toJXj=1 �jgj �1� RR tanh2(yp�(gj�) + �(gj�))Dy�1 + (� + Æ3)gj �1� RR tanh2(yp�(gj�) + �(gj�))Dy� � 1� + Æ3 � 1 (40)

for unconditional MMSE-IC. Again, both (39) and (40) are linear constraints in�. Finally, for

the exact BP decoder we have to be a bit more careful because ofthe possibility of multiple

solutions to the equation (29) defining the mapping function	. Let us re-write (29) in the form	 = f(g;�; �;	) and denote by	1(g;�; �) � 	3(g;�; �) its stable solutions. Clearly, the

inequality	(g; �; �) � 	1(g;�; �) always holds. Thus, the condition	1(g;�; �) � � + Æ3
for � 2 [Æ1; Æ2℄ implies the first constraint in (36).

Since	1(g;�; �) is, by definition, the smallest solution of (29), the functionf(g;�; �;  )� is positive for 2 [0; 	1(g;�; �)). Thus, the first constraint in (36) can be replaced by the

more stringent constraintf(g;�; �;  )�  > 0; 8 2 [0; � + Æ3); 8� 2 [Æ1; Æ2℄ (41)
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As desired, (41) is a collection of linear constraints on�, parametrized by and�.
In practice, the linear constraints corresponding to (41) are obtained by sampling on an

appropriate grid of points the trapezioidal region defined by  2 [0; � + Æ3); � 2 [Æ1; Æ2℄, in
the( ; �)-plane. This may produce a large number of constraints. A simpler approach consists
of requiring that (29) has a single solution. Then, if	(g;�; �) = 	1(g;�; �) is the unique
solution of (29), then the condition (38) holds and the corresponding linear constraint is given
byJXj=1 �jgj ZR 2 �1� tanh2 �yp�(gj�) + �(gj�)���1� tanh�zpgj(� + Æ3) + gj(� + Æ3)��1� tanh2 �yp�(gj�) + �(gj�)� tanh2 �zpgj(� + Æ3) + gj(� + Æ3)� DzDy � 1� + Æ3�1

(42)

By replacing the first constraint in (36) by (42), the vector�? found by linear programming

corresponds to a valid receiver SNR distribution if	 = f(g;�?; �;	) has a unique solution for

all � 2 [0; 1℄. This can be checked a posteriori, i.e., by solving the linear program given by (42),

finding a candidate�? and checking the uniqueness of the solution of the fixed-point equation.

Fortunately, for practically relevant choices of the codeC and of the target BER� (notably, in

all numerical results presented here) we found that the solution of (29) for the candidate optimal�? is unique.

As an example of the above optimization technique, considerFig. 6, showing the DE-

GA mapping function	(g;�; �) for the exact BP decoder, load� = 4:5, maximum free-

distance 64-state rate 1/3 convolutional user codes with generators(133; 145; 175)8 (see [36]),

and(Eb=N0)sys = 6 dB. The curve corresponding to constant receiver SNR yields�? � 0:1,

i.e., the iterative decoder applied to this system yields very poor performance for all users (10

dB degradation with respect to their single-user performance). On the contrary, the system

with optimized SNR distribution yields�? � 1:0, i.e., each user attains its single-user perfor-

mance after a sufficiently large number of iterations. The SNR-optimized curve in Fig. 6 is

obtained by linear programming by using the constraint (42), enforced over grid of points in[Æ1 = 0; Æ2 = 0:5℄, equally spaced by0:01, and by lettingÆ3 = 0:01.

Fig. 7 shows the achievable spectral effciency� at target BER10�5, for coded CDMA

systems based on the convolutional code with generators(133; 145; 175)8 and different iterative

decoders, with optimized received SNR distribution. For the sake of comparison, we show

also the spectral efficiency achievable by optimal Gaussian(or binary) codebooks with joint

detection (given by (7), with linear MMSE detection (optimal separate detection for Gaussian

inputs) and with (suboptimal) linear SUMF detection (thesecurves have been presented in [4].

Fig. 8 compares the spectral efficiency� at target BER10�5 for the same system described

above with the performance of a system with the same user codes and constant receiver SNR,

with iterative detection and with separate detection (corresponding to the performance of the

iterative decoders after the first iteration).
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Based on these results, the following remarks are in order:� All spectral efficiencies of the convolutionally-coded systems are zero for(Eb=N0)sys <3:94 dB, that is the value ofEb=N0 needed for a single user to achieve BER= 10�5. This

limit depends on the user code alone, and can be improved by choosing a more powerful

code.� As said in Section 1, for both Gaussian and binary inputs spectral efficiency is maximized

by infinite load and vanishing per-user rate. On the contrary, the spectral efficiency curves

for the convolutionally-coded CDMA system with iterative multiuser joint decoding re-

ported in Figs. 7, 8 correspond to per-user rateR = 1=3 bit/symbol and finite� users

per chip. In this sense, these curves are much more meaningful from the viewpoint of

practical CDMA design.� For large(Eb=N0)sys, the iteratively-decoded systems with optimized SNR distribution

are not interference limited, in the sense that their spectral efficiency increases with(Eb=N0)sys. Remarkably, for the exact BP and the MMSE-IC decoders the large-(Eb=N0)sys
slope of spectral efficiency is (close to) optimal, at least in the considered range of(Eb=N0)sys.� CDMA systems with constant receiver SNR are basically interference limited, and it-

erative joint decoding provides a significant gain with respect to conventional separate

multiuser detection and single-user decoding only for small (Eb=N0)sys.� The unconditional MMSE-IC yields spectral efficiency very close to exact BP with much

smaller complexity with respect to both exact BP and conditional MMSE-IC. This makes

the unconditional MMSE-IC decoder a good candidate for high-performance low-complexity

iterative multiuser decoding. This point will be elaborated further in the next section.

5 Low-complexity implementation

In the previous section we showed that the unconditional MMSE-IC iterative decoder provides

a good trade-off between spectral efficiency performance (under the optimized received SNR

distribution) and complexity. Nevertheless, complexity is still fairly larger than conventional

CDMA receivers, since it requires the computation of a bank of K MMSE filters (complexityO(K2) per user per iteration) at each decoder iteration. A solution reported in the literature [40]

consists of using the standard linear MMSE detector for the first few iterations and, assuming
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that the decoder is able to eliminate multiple access interference, switch to the standard SUMF

filter when the residual interference symbol variances, given byvk = 1� E �tanh2 �Ldek;n=2�� ; k = 1; : : : ; K (43)

are below a certain threshold. This approach achieves complexityO(K) per user per iteration,

but it does not take into account the fact that, under optimalSNR distribution, users are received

at different SNR levels and the evolution of their residual symbol variances with the decoder

iterations may be very different. Indeed, we may expect thatusers received at higher SNR levels

are correctly estimated and canceled much faster than usersreceived at low SNR.

In order to illustrate the above intuition, consider the SNRdistribution in Fig. 9, optimized

by linear programming for the unconditional MMSE-IC receiver with � = 4:5, convolutional

code with generators(133; 145; 175)8 and(Eb=N0)sys = 6:29 dB. The distribution is composed

by J = 3 SNR levels, denoted byg1; g2; g3. Fig. 10 shows the evolution of the multiuser

efficiency (left) and the residual user symbol variances (right) for the three classes of users vs.

the decoder iterations. We notice that the three user classes are removed in sequence, starting

from the highest-SNR class: after 10 iterations, the power of class 3 users is reduced by 10

dB, after 22 iterations class 2 users are reduced by 10 dB and,eventually, after 40 iterations

all users are removed from the received signal, meaning thateach user is decoded as if it was

alone on the channel (the multiuser efficiency converges to� 1). Intuitively, we may say that

the iterative decoder (under optimized received SNR distribution) performsimplicit stripping of

the different classes of users.

Fortunately, for the class of convolutional codes and iterative decoders considered in this

paper and for a surprisingly large range of system parameters (user coding rates,(Eb=N0)sys
and load�) the optimal SNR distribution consists of a small numberJ of discrete SNR levels,

as in the example above. Next, we take advantage of this fact to obtain a low-complexity

iterative multiuser decoding algorithm which performs very close to unconditional MMSE-IC

with complexityO(K), comparable to that of conventional CDMA receivers.5

Consider again the CDMA channel model (1) and an IC-based iterative decoder that, at a

certain iteratioǹ , produces then-th observable for the SISO decoder of userk asz(`)k;n = �f (`)k �T �yn � SWbx(`)n + skwkbx(`)k;n� (44)

5Our receiver algorithm applies to the so-calledperiodic random spreading, i.e., where the user spreading

sequences are randomly generated and used for a long sequence of codewords (blocks ofN symbols). We hasten

to say that rather different approaches based on matrix polynomials should be considered for low-complexity

algorithms in the case ofaperiodic random spreading, where a new set of spreading sequences is used on every

symbol interval (see [10, 41]).
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wherebx(`)j;n is the current estimate of thej-th user symbol given the SISO decoders output mes-

sages at the previous iteration, that for the binary antipodal case considered here is given bybxj;n = tanh(Ldej;n=2) (see (20)), andf (`)k is an appropriately chosen filter.6

The unbiased unconditional MMSE criterion leads to (21), that it is rewritten by using sim-

ple matrix identities as f (`)k = �S�V(`)ST + I
��1 sksTk [S�V(`)ST + I ℄�1 sk (45)

where we define� �= diag(1; : : : ; K) and the residual symbol covariance matrix at iteration`
as V(`) �= E h�xn � bx(`)n � �xn � bx(`)n �T i = diag

�v(`)1 ; : : : ; v(`)K � (46)

Notice thatV(`) isexactlydiagonal in the limit for large blocklengthN becausebx(`)j;n are obtained

from the SISO decodersextrinsic information[17].

Under the optimized received SNR distribution, we shall assume that the users are grouped

intoJ � K classes of sizeK1; : : : ; KJ . Userk in classj is received at SNR levelk = gj. As in

Section 4, we letg1 � � � � � gJ and enumerate the users such that usersk 2 fKj�1+1; : : : ;Kjg
belongs to classj, whereK0 �= 0 andKj �=Pji=1Ki.

The proposed low-complexity approach makes use ofJ linear detectors. Detector numberj at iteration` assumes user SNRs given byu(`)j;k = ( �(`)kv(`j)k for k = 1; 2; : : : ;Kj0 for k = Kj + 1;Kj + 2; : : : ; K (47)

where�(`) is an iteration-dependent scaling factor common to all users (to be specified later)

and`j is an iteration index that characterizes thej-th detector. In matrix form, we define the

diagonal matrixZj such that itsk-th diagonal element is zero ifk belongs to a class larger thanj and one otherwise, and let the diagonal matrix ofnominalreceived SNRs for thej-th detector

be given by U(`)j = �(`)�V(`j)Zj (48)

Equation (48) is meaningful only for̀� `j. As it will be clear in the following, detectors are

used in the orderj = J; J � 1; : : : ; 1 and the indices̀j determine the detector switch points,

i.e., thej-th detector is used for̀ = `j; : : : ; `j�1 � 1, where`J = 0 and`0 is the maximum

number of iterations.

6We usef (`)k instead ofhk as in Section 2 in order to stress the fact that here the filter does not coincide

necessarily with the unconditional MMSE filter (21). Moreover, we specify explicitly the iteration index̀since it

is relevant in the definition of the low-complexity algorithm.



G. Caire, R. Müller and T. Tanaka:submitted to IEEE IT Trans., March 2003. 23

In order to obtain a computationally efficient form for thej-th detector, we decompose the

spreading matrix as S = SZj + S (I� Zj)| {z }�= eSj (49)

and replace thetrue SNR diagonal matrix�V(`) in (45) byU(`)j . We introduce the singular

value decomposition S ��V(`j)Zj�1=2 = �jDj�Tj ; (50)

such that�j and�j are unitary andDj is diagonal up to some additional columns or rows

which are all zero. We defineQj �= �Tj S (51)= Dj�Tj ��1=2 �V(`j)��1=2 +�Tj eSj: (52)

Note that, though (52) looks more complicated, it may require fewer computing effort than (51)

due to the diagonal structure of the matricesDj;�, andV(`j) and the zero columns ineSj. By

using (51) and (48) in (45) and in (44), we can write thej-th detector filter for userk at iteration` = `j; : : : ; `j�1 � 1 as ef (`)j;k = �j ��(`)D2j + I
��1 qj;kqTj;k ��(`)D2j + I
��1 qj;k (53)

whereqj;k denotes thek-th column ofQj, and itsn-th output asez(`)k;n = qTj;k ��(`)D2j + I
��1�TjqTj;k ��(`)D2j + I
��1 qj;k �yn � SWbx(`)n + skwkbx(`)k;n�= qTj;k ��(`)D2j + I
��1qTj;k ��(`)D2j + I

��1 qj;k ��Tj yn �QjWbx(`)n + qj;kwkbx(`)k;n�= qTj;k ��(`)D2j + I
��1qTj;k ��(`)D2j + I

��1 qj;k ��Tj yn �QjWbx(`)n �| {z }�=d(`)n;j +wkbx(`)k;n (54)

GivenQj and the singular value decomposition (50), (54) has complexity O(K) per user per

iteration: notice that the calculation ofd(`)n;j involvesO(K2)=K operations per user, since it

is common to all users. The other operations are just inner products of vectors with diagonal

kernels. This brings the computational effort per user per iteration from quadratic to linear.

Costly computations are needed only when a switch from detector j to detectorj + 1 takes

place. Then, a singular value decomposition (50) and a matrix multiplication (51) or (52) are
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needed. The impact of this computations is not very large in typical situations with optimized

SNR distribution. In the example at the end of this section, we haveJ = 3 swtich points and

total iterations̀ 0 = 55, therefore the complexity of SVD per user per iteration yieldsO(K2),
but it is multiplied by a factor3=55. In general, our approach is very effective for smallJ and

a large number of decoder iterations (typical of heavily loaded systems attaining large spectral

efficiency).

Two questions have been left open: how to determine the detector switch points̀ j and how

to choose the scaling factor�(`). They will be addressed in the following.

For the time being, let�(`) be a given function of the iteration index and of the other system

parameters (including the received signal blockY) that can be easily computed in real-time

along the decoder iterations. The filteref (`)j;k can be regarded as amismatchedMMSE filter

that assumes user received SNRs given by the diagonal elements ofU(`)j rather than the exact

values given by�V(`). In order to determine an effective switching criterion, wemake use

of the following result characterizing the multiuser efficiency of an MMSE filter with power

mismatch:

Proposition 7. Consider the CDMA system withK users and spreading factorL defined byy = SP1=2x + � where� � N(0; I) and the usual assumptions on random spreading made in

Section 3 hold. LetP �= diag(P1; : : : ; PK) such thatmaxk Pk � P , and let(U1; : : : ; UK) be

an arbitrary sequence of positive numbers such thatmink Uk � U , whereP andU are fixed,

finite and positive constants independent ofK. Assume that, asK ! 1, the joint empirical

distribution of the pairs(Pk; Uk), defined byF (K)(p; u) �= 1K KXk=1 1fPk � p; Uk � ug
converges almost everywhere to a given distributionFP;U(p; u). Then, by lettingK !1 withK=L = �, the multiuser efficiency of a linear detector obtained as the MMSE filter assuming

received user powers given byfUkg instead of the true valuesfPkg converges almost surely for

all userk to the value� given by � = � 1 + �EU h U(1+�U)2 i1 + �EP;U h P(1+�U)2 i (55)

where� is the solution to 1� = 1 + �EU � U1 + �U � (56)

and whereEU [�℄ andEP;U [�℄ denote expectations with respect to(P; U) � FP;U(p; u).
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Proof. The proof of the above proposition follows as a corollary of the proof of the main

result of [8]. A concise and self-contained scketch of proof(skipping technicalities on almost-

sure convergence) is given in Appendix B. �
Proposition 7 is the key for a simple and effective switchingcriterion. Before illustrating

it, we take a short detour for the following interesting corollary. Notice that� given in (56) is

the multiuser efficiency of a MMSE filter matched to powersfUkg rather thanfPkg. Hence, it

can be regarded as thenominalmultiuser efficiency of the mimatched detector, while� given by

(55) is thetruemultiuser efficiency of the mismatched detector. We say thatthe nominal powersfUkg areadaptedto the actual powersfPkg if the two sequencesfPkg andfUkg can be sorted

in non-decreasing order by the same permutation and have thesame sum. We say thatfUkg is

a conservativechoice of the nominal powers if it is adapted tofPkg and yields� � �, i.e., the

actual detector performance is better than what can be expected if the users had powersfUkg
instead offPkg. The following result gives a sufficient condition for a conservative nominal

power assignment.

Corollary 7.1. Let fUkg be adapted tofPkg. Then, in the limit for largeK, fUkg is a conser-

vative choice of the nominal powers iffPkg majorizesfUkg.7
Proof. See Appendix B. �

Corollary 7.1 generalizes the result of [10] that, rephrased in our terminology, states thatfUk = 1K PKj=1 Pj : k = 1; : : : ; Kg is a conservative nominal power assignment for any

received power sequencefPkg, since it is well-known that anyfPkgmajorizes its corresponding

constant mean-value sequence [42].

Going back to the detector switching problem, a sensible criterion to switch from detectorj to detectorj � 1 at a given iteratioǹ consists of choosing the detector with largest ME. Letj be the current detector index. At each iteration` we decide if using detectorj or switching

to detectorj � 1 by comparing their MEs�(`)j and�(`)j�1 via the large-system formula (55). For

7A sequencefPkg is said to majorize [42] a sequencefUkg ifkXj=1 U(j) � kXj=1 P(j); 8 k = 1; : : : ;K
with equality fork = K, wherefP(k)g andfU(k)g denote the non-decreasing arrangements offPkg andfUkg,

respectively.
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detectorj we have�(`)j = �(`)j 1 +PKjk=1 �(`)kv(`j )k(1+�(`)j �(`)kv(`j )k )21 +PKjk=1 kv(`)k(1+�(`)j �(`)kv(`j )k )2 +PKk=Kj+1 kv(`)k1�(`)j = 1 + KjXk=1 �(`)kv(`j)k1 + �(`)j �(`)kv(`j)k (57)

while for detectorj � 1 we have�(`)j�1 = �(`)j�1 1 +PKj�1k=1 kv(`)k(1+�(`)j�1kv(`)k )21 +PKj�1k=1 kv(`)k(1+�(`)j�1kv(`)k )2 +PKk=Kj�1+1 kv(`)k1�(`)j�1 = 1 + Kj�1Xk=1 kv(`)k1 + �(`)j�1kv(`)k (58)

If �(`)j < �(`)j�1, then`j�1 is set equal tò and the detector is switched fromj to j � 1.

In writing (58) we implicitly assumed that�(`) = 1 at each switch point (in particular, for` = `j�1). Optimizing the detector with respect to�(`) appears to be a hard problem. A very

effective heuristic choice enforcing the condition�(`j) = 1 for all j = J; J � 1; : : : ; 1 is given

by �(`) = PKk=1 v(`)kPKk=1 v(`j)k ; for ` = `j; `j + 1; : : : ; `j�1 � 1 (59)

In order to illustrate the behavior of the proposed low-complexity iterative scheme, we consider

again the system and SNR distribution of Fig. 9. Fig. 11 showsthe evolution of the multiuser ef-

ficiency (left) and the residual user symbol variances (right) for the three classes of users vs. the

decoder iterations, for the low-complexity algorithm described above. The dash-dotted curves

show the evolution of the nominal user symbol variances assumed by the low-complexity de-

tector. The detector switch points, determined by the abovealgorithm, occur at̀ 2 = 10 and`1 = 26. In this case, the low-complexity algorithm achieves the same performance of the un-

conditional MMSE-IC decoder with 55 instead of 43 iterations. In general, a small degradation

in achievable performance may be expected, due to the suboptimality of the low-complexity

linear detector.
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6 Concluding remarks

In this work we have extended the DE-GA analysis approach of iterative multiuser joint decod-

ing of [17] to the exact BP algorithm. As a byproduct, we have extended the analysis of [9]

of the IO-MUD in the large-system limit to the case of non-uniform symbols prior probabili-

ties. Based on the DE-GA performance characterization of the exact BP iterative decoder and

of its IC-based approximations, we have formulated the problem of optimal user received SNR

distribution in terms of simple linear programming. This allowed us to compute the achiev-

able spectral efficiency of convolutionally-coded CDMA forgiven user codes and target BER.

We showed that by optimizing the SNR distribution very significant gain in terms of spectral

efficiency can be achieved, especially for large(Eb=N0)sys. Interestingly, the simple uncondi-

tional MMSE-IC algorithm performs very close to the exact BPalgorithm in terms of achievable

spectral efficiency. Driven by this observation and by the fact that the optimal SNR distribution

consists of a small number of discrete SNR levels, we provided an approximated version of the

unconditional MMSE-IC algorithm achieving complexity comparable to conventional CDMA

receivers (essentially linear in the number of users or, equivalently,constantper decoded infor-

mation bit) with very small degradation. As a byproduct of the development of the proposed

low-complexity algorithm, we obtained an interesting general expression for the multiuser effi-

ciency of an MMSE filter with mismatched user powers, in the large-system limit.

We wish to conclude this work by pointing out some observations about the practical rele-

vance of our findings in CDMA system design:� For given user codes, decoding algorithm, target BER and(Eb=N0)sys, the resulting op-

timal received SNR distribution can be regarded as the target distribution of SNR that

somepower controlalgorithm should enforce at the receiver. Notice that standard power

control aims at inducing a constant SNR distribution at the receiver, which we have seen

to be strongly suboptimal with iterative joint detection.� In a near-far environment, where users are affected by very different propagation channel

gains (due to distance from the base-station and to other propagation factors such as

fading), in order to induce the optimal received SNR distribution it is convenient to assign

the users with largest channel gain to the highest SNR level and so forth, so that each

user can attain its required received SNR level with minimaltransmit power. This goes

precisely in the opposite direction of conventional power control, that requires that users

with the smallest channel gain transmit at the largest powerlevel, in order to render the

received SNR of all users constant. Under a reasonable mobility assumption, for which

the channel gain of each user is an ergodic process varying ona time scale much larger



G. Caire, R. Müller and T. Tanaka:submitted to IEEE IT Trans., March 2003. 28

than the duration of a codeword, the optimal received SNR distribution will also provide

longer battery life to the user terminals with respect to conventional power control.� For the same reason, in a multi-cell environment the optimal(single-cell) SNR distribu-

tion is expected to provide a smaller total emitted energy from each cell, thus reducing the

inter-cell interference (not taken into account by the iterative joint decoder at each base-

station). Therefore, the impact of iterative multiuser joint decoding with optimal SNR

distribution on the spectral efficiency of a cellular systemmight be even more evident

than in the standard multiple-access (single-cell) scenario examined in this work.

Although very interesting, the issue of a power control algorithm inducing the required received

SNR distribution while maximizing the user battery life and/or minimizing the total inter-cell

interference is out of the scope of this work and is left for future investigation.

APPENDIX

A Proof of Proposition 2

The proof of Proposition 2 follows closely the analysis technique of the IO-MUD develped

in [9] for uniform symbol a priori probabilities and constant user power, and extended in [43] to

the case of an arbitrary user power distribution. This technique is based on theReplica Method,

which is a common tool in statistical mechanics [44]. The main difference between [9] and

the case at hand is that here, at any given iteration` > 0, the IO-MUD (15) for userk treats

the messagesfLdej;n : j 6= kg provided by the SISO decoders at the previous iteration as (log-

ratios) prior probabilities for the interfering user symbols. Therefore, Proposition 2 is proved

by simply extending the result of [9] to the case of arbitrarysymbol prior probabilities under the

assumption that, asK ! 1, the empirical distribution of these prior probabilities converges

almost everywhere to some deterministic distirbution. Dueto the similarity of our proof and [9],

we shall give the details of the different steps, while we briefly outline the common parts.

With reference to the channel model (1), the pdf of the channel outputyn conditioned on

the spreading sequencesS is proportional toZ(yn;S) = Xxn2f�1gK Pr(xn) exp�� 12�2 jyn � SWxnj2� (60)

if the fictious noise variance�2 is set to the true noise variance�20 . Moreover (60) is independent

of n since the input is assumed to be stationary. Thus, the time indexn is dropped andn is used
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for different purpose in the rest of this section. In statistical mechanics, the quantityFK(y;S) = 1K logZ(y;S) (61)

is called thefree energy. One of the fundamental principles of statistical mechanics is that the

free energy is self-averaging in the large system limit. That is,limK!1FK(y;S) = limK!1E[FK(y;S)℄ �= F (62)

with probability 1, where averaging is with respect to the random spreading sequences and

the channel noise. A standard trick used in statistical mechanics in order to computeF is the

Replica Method. This consists of re-writing the free energyin the following wayF = limK!1 1K limn!0 ��n log (E[Zn(y;S)℄) (63)

with the advantage that the expectation operator has moved into the argument of the logarithm.

Now, the free energy is evaluated for integern and the results is assumed to generalize to

positive realn. Further discussion about the Replica Method and its justification is provided

in [44, 9].

In passing, we notice that�� Fj�2=�20 + 12 log 2��20 is the large-system differential entropy

of the outputy per dimension. The mutual information (in nat) per dimension is given byI = �� Fj�2=�20 + 12 log 2��20 � 12 log 2�e�20 = �� Fj�2=�20 � 12 (64)

Following [9], by using theReplica Symmetryassumption (see [9, 43]), Cramér Theorem and

Varadhan Lemma [45], we get that the free energy can be expressed as follows. Let�(n) be

defined by the following saddle-point�(n) = supm;q infem;eq� 1�G(m; q)� nemm� n(n� 1)2 eqq + EV;L [log�(V em; V eq;L)℄� (65)

wheren is the replica order. Then, F = limn!0 ddn�(n) (66)

In (65),V;L are random variables with joint distribution equal to the limit of the empirical joint

distribution of Vk �= w2k; Lk �= log Pr(xk = +1)Pr(xk = �1)
for K !1, and�(em; eq;L) is the moment-generating function of the random vectorfxaxb : a = 1; : : : ; n; 0 � b < ag
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for xi i.i.d., with pmf defined bylog Pr(xi=+1)Pr(xi=�1) = L, and computed in the arguments�ab = ( em b = 0; a 6= beq b > 0; a 6= b
This is given by�(em; eq;L) = X(x0;x1;:::;xn)2f�1gn+1 nYi=0 Pr(xi)! exp Xb<a xaxb�ab!= X(x0;x1;:::;xn)2f�1gn+1 nYi=0 Pr(xi)! exp0�emx0 nXa=1 xa + eq2  nXa=1 xa!2 � neq2 1A= X(x1;:::;xn)2f�1gn nYi=1 Pr(xi)!0�1 + T2 exp0�em nXa=1 xa + eq2  nXa=1 xa!21A++ 1� T2 exp0��em nXa=1 xa + eq2  nXa=1 xa!21A1A e�neq=2 (67)= X(x1;:::;xn)2f�1gn nYi=1 Pr(xi)! 1 + T2 ZR exp (zpeq + em) nXa=1 xa!Dz++ 1� T2 ZR exp �(zpeq + em) nXa=1 xa!Dz! e�neq=2 (68)

where we have used the identity (Hubbard-Stratonovich transform [9])eAX2=2 = ZR e�pAXzDz
and we have definedT = tanh(L=2) so thatPr(x0 = +1) = (1 + T )=2;Pr(x0 = �1) =(1� T )=2.

In passing, we notice here that ifLk is the extrinsic log-ratio provided by the SISO decoder

for userk with input SNRVk�=�20 then, under the Gaussian Approximation, we have that for

givenVk, Lk � N(2�(Vk�=�20); 4�(Vk�=�20))
Hence, the limiting joint distribution ofV;L is completely defined byV=�20 � F andL �N(2�(V �=�20); 4�(V �=�20)) givenV .

Also, for later use we notice that, from (67), we have��eq�(em; eq;L) = 12 �2� em2�(em; eq;L)� n2�(em; eq;L) (69)
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We can further simplify the expression of the moment-generating function in (68) by notic-

ing thatPr(xa = +1)ezpeq+em + Pr(xa = �1)e�(zpeq+ em) = 1 + T2 ezpeq+ em + 1� T2 e�(zpeq+ em)= osh(zpeq + em)�1 + tanh(L=2) tanh(zpeq + em)�= osh(zpeq + em+ L=2)osh(L=2)
and, similarly,Pr(xa = +1)e�(zpeq+em) + Pr(xa = �1)ezpeq+ em = osh(zpeq + em� L=2)osh(L=2)
Then, by rearranging the terms in the sum with respect tox1; : : : ; xn in (68) and summing by

using the two above identities, we obtain�(em; eq;L) = RR h(1 + T ) oshn(zpeq + em+ L=2) + (1� T ) oshn(zpeq + em� L=2)iDz2 oshn(L=2)
(70)

The functionG(m; q) in (65) does not depend on the symbols prior probabilities and is

directly obtained from [9] asG(m; q) = 12 log (1 + ��2 (1� q))n�11 + ��2 (1� q) + n�20�2 (1 + ��20 (1� 2m+ q)) (71)

Let F (n;m; q; em; eq) denote the argument of the extremization (sup-inf) in (65).The saddle-

point condition is obtained by the set of equations��mF = 0; ��qF = 0; �� emF = 0; ��eqF = 0 (72)

In order to obtainF we should: 1) find the solution of the system of equations (72); 2) find�(n) by substituting this solution intoF (n;m; q; em; eq); 3) evaluate the derivative and the limit

in (66). As a matter of fact, from a continuity argument, it isequivalent (but easier) to solve for

the system of equationslimn!0 ��mF = 0; limn!0 ��qF = 0; limn!0 �� emF = 0; limn!0 ��eqF = 0 (73)

and substitute the solution into limn!0 ��nF (n;m; q0; em; eq)
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After some algebra, using (69), the saddle-point equations(73) can be put in the explicit formm = EV;L �V ZR �1 + T2 tanh�zpV eq + V em+ L=2� + 1� T2 tanh�zpV eq + V em� L=2��Dz�q = EV;L �V ZR �1 + T2 tanh2 �zpV eq + V em + L=2�+ 1� T2 tanh2 �zpV eq + V em� L=2��Dz�em = 1�2 + �(1�m) ; eq = �20 + �(1� 2m+ q)(�2 + �(1�m))2 (74)

Since we are interested in the IO-MUD, we let�2 = �20 (see [9]) and find that, at the saddle-

point given by (74), the solution yieldsm = q and em = eq. In this case, by following the

gauge-theory argument of [46], it is possible to show that the Replica Symmetry assumption

made before in order to obtain (65) is indeed valid for the stable solutions of the IO-MUD with

arbitrary symbol priors.

Notice that, in (15), when computing the output message for userk only the symbol prior

probabilities of interfering usersj 6= k are used: the a priori pmf for the userk symbol is

uniform Pr(xk = 1) = 1=2. Therefore, the IO-MUD error probability for userk is given byPr(L(mudk � 0jxk = +1) even for arbitrary prior probabilities on the other users. In a way

completely analogous to [9], we can show that in the large-system limitPr(Lmudk � 0jxk = +1) = Q�qemw2k�
Hence,�20 em (independent of the user indexk) is the ME of the IO-MUD in the large-system

limit. By using the first and the third equation in the system (74), and replacingq andeq bym
and em, respectively, and by substitutingem = 	=�20 we obtain the implicit expression for the

ME of the IO-MUD with arbitrary prior probabilities on the symbols of the interfering users as1	 = 1 + �� 1�20 � E;L � ZR �1 + T2 tanh�zp	+ 	+ L2� +1� T2 tanh�zp	+ 	� L2 ��Dz��= 1 + �E;L " �1� T 2� ZR 1� tanh �zp	+ 	�1� T 2 tanh2 �zp	+ 	� Dz# (75)

Finally, by using the fact thatL given  is � N(2�(�); 4�(�)) and by substitutingT =tanh(L=2) in (75) we obtain (29). By computinglimn!0 ��nF (n;m; q0; em; eq) in the saddle-

point solution given by (74), and rewriting the result in terms of	, we obtain the corresponding

expression for the free energyF. As a matter of fact, we prefer to give the result in terms of

the mutual informationI that, after some algebra, can be put in the form (30), expressed in

bit/dimension.
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From standard results in statistical mechanics [9], when (74) has multiple stable solutions,

the performance of the IO-MUD corresponds to the solution maximizing the free energy or,

equivalently, minimizing the mutual information. This proves all statements in Proposition 2.

B Proofs of Proposition 7 and of Corollary 7.1

Fix userk as the reference user. The nominal and the actual interference plus noise covariance

matrices are given by �U = I+Xj 6=k UjsjsTj�P = I+Xj 6=k PjsjsTj (76)

respectively. The output SINR of the mismatched MMSE filter for userk that assumes�U
instead of�P is given by �k = Pk (sTk��1U sk)2sTk��1U �P��1U sk (77)

From the standard result of [6] we have that, under the assumptions of Proposition 7, the nom-

inal ME � = sTk��1U sk converges with probability 1 to the unique fixed point of the Tse-Hanly

equation (56).

We re-write the denominator of (77) in the large-system limit assTk��1U �P��1U sk = sTk��1U  Xj 6=k PjsjsTj !��1U sk + sTk��2U skw:p: 1! limK!1 1L tr

 ��1U  Xj 6=k PjsjsTj !��1U !+ limK!1 1L tr
���2U � (78)

where we used the result proved in [47]limK!1 sTkAKsk w:p: 1= limK!1 1L tr(AK) (79)

for a sequence ofL� L random matricesAK statistically independent ofsk with well-defined

limiting eigenvalue distribution and finite maximum eigenvalue. Notice that for all inverse

covariance matrices and powers thereof involved in (78), the maximum eigenvalue is always

upper bounded by 1.
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Next, we evaluate the two limits in (78) separately. For the first we have1L tr

 ��1U  Xj 6=k PjsjsTj !��1U ! = 1LXj 6=k PjsTj ��2U sja= 1LXj 6=k PjsTj "��1U;j � Uj1 + UjsTj ��1U;jsj��1U;jsjsTj ��1U;j#2 sj= 1LXj 6=k Pj 24sTj ��2U;jsj + UjsTj ��1U;jsj1 + UjsTj ��1U;jsj!2 sTj ��2U;jsj��  2UjsTj ��1U;jsj1 + UjsTj ��1U;jsj! sTj ��2U;jsj#w:p: 1! limK!1 �KXj 6=k PjB(1 + UjA)2= �EU;P � PB(1 + UA)2� (80)

where (a) follows from the matrix inversion lemma, by writing�U = UjsjsTj +�U;j, where�U;j = I+ X6̀=k; 6̀=jU`s`sT̀
we used repeadetly the lemma (79), and we defined the limitsA = limK!1 1L tr

���1U;j�B = limK!1 1L tr
���2U;j� (81)

Under the assumptions of Proposition 7, the matrix�U ;�U;j and�P have all a well-defined

limiting eigenvalue distribution and are invertible with probability 1, therefore, the limits in (81)

exist and are immediately obtained from the limiting eigenvalue distributions.

For the second limit in (78) we have, again using lemma (79),limK!1 1L tr
���2U � = B (82)

since the limiting eigenvalue distribution of�U and�U;j coincide (notice that the two matrices

differ by the rank-1 matrixUjsjsTj , that has no effect on the limiting eigenvalue distribution).

LetG(�) denote the limiting eigenvalue distribution of
Pj UjsjsTj . Then, we can writeA = Z 11 + �dG(�)B = Z 1(1 + �)2dG(�) (83)
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Eventually, the last line of (78) is given byD = �EU;P " P R 1(1+�)2 dG(�)�1 + U R 11+�dG(�)�2#+ Z 1(1 + �)2dG(�) (84)

Now, we use the result by Silverstain and Bai (see [6] and references therein) yieldingG(�) in

terms of its Stieltjes transform:mG(z) �= Z 1�� z dG(�); Imfzg > 0
We have mG(z) = 1�z + �EU h U1+UmG(z)i (85)

In particular, we have that� defined in (56) is given by� = Z 11 + �dG(�) = mG(�1) (86)

Furthermore, Z 1(1 + �)2dG(�) = ddzmG(z)����z=�1 �= m0G(�1) (87)

By substituting (86) and (87) in the SINR denominator (84), and using the result in the expres-

sion for the SINR (77) we can write the large-system ME of userk, given by�k=Pk, as� = �2m0G(�1)�1 + �EU;P h P(1+�U)2 i� (88)

Since for the matched MMSE receiver (i.e., forUj = Pj; j = 1; : : : ; K), it must be� = �, we

obtain m0G(�1) = �1 + �EU h U(1+�U)2 i
By using the above expression in (88) we obtain (55). This concludes the proof of Proposition

7.

Next, we focus on the proof of Corollary 7.1. LetfUkg be a nominal power assignment

adaptedto the true powersfPkg, in the sense that
PKk=1 Uk =PKk=1 Pk and that the sequencesfPkg and fUkg are sorted in non-decreasing order by the same permutation.Without loss

of generality, we assume thatfPkg and fUkg are non-decreasing (i.e., the common sorting

permutation is the identity). The nominal powers are a conservative choice if� � �, where�
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and� are the true and the nominal ME given by Proposition 7, respectively. From (55) we see

that this is verified if and only ifEU � U(1 + �U)2� � EP;U � P(1 + �U)2� (89)

Assume, for the time being, a finite number of users. Then, inequality (89) becomes1K KXk=1 Uk(1 + �Uk)2 � 1K KXk=1 Pk(1 + �Uk)2 (90)

We make use of the following lemma, proved in [48]:

Lemma. Let a, b and be real vectors of dimensionK with non-decreasing components. Ifb majorizesa, then KXk=1 akk � KXk=1 bkk (91)�
We apply the lemma to (90) by lettingak = Uk, bk = Pk and k = (1 + �Uk)2 and

we conclude that iffPkg majorizesfUkg, then (90) is verified. Finally, a standard continuity

argument extends the result toK !1.
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[1] S. Verdú,Multiuser detection, Cambridge University Press, Cambridge, UK, 1998.

[2] T. Cover and J. Thomas,Elements of information theory, Wiley, New York, 1991.

[3] R. Gallager,Information theory and reliable communication, Wiley, New York, 1968.
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accumulate codes,” submitted to IEEE Trans. on Inform. Theory, October 2002.

[40] A. Tarable, G. Montrosi, and S. Benedetto, “A linear front-end for iterative soft interfer-

ence cancellation and decoding in coded CDMA,” inProc. IEEE Int. Conf. on Commun.

(ICC), Helsinki, Finland, June 2001.
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Figure 1: Coded CDMA with AWGN. User encoders may include interleaving.
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Figure 2: Block diagram of a multiuser iterative joint decoder.
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Figure 3: The curves show the reciprocal of the RHS of (29) as afunction of	 2 [0; 1℄ for� = 1:5 (left), � = 3:0 (right) constant = 10 dB and� = 0. The intersections of the curves

with the straight line give the solutions of (29).
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Figure 4: BER vs.Eb=N0 for � = 1:0, constant receiver SNR, convolutional code with genera-

tors(133; 171)8 and different iterative decoding algorithms.
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Figure 5: BER vs.Eb=N0 for � = 2:0, constant receiver SNR, convolutional code with genera-

tors(133; 171)8 and different iterative decoding algorithms.
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Figure 6: DE-GA mapping function	(g;�; �) for the exact BP decoder,Eb=N0 = 6 dB,

constant and optimized SNR distributions,� = 4:5 and convolutional code with generators(133; 145; 175)8.
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Figure 7: Spectral efficiency vs.Eb=N0 at BER� 10�5 for convolutionally-code CDMA with

user codes with generators(133; 145; 175)8, optimized received SNR distribution and different

iterative decoding algorithms. Curves for joint detectionand optimal codes (binary and Gaus-

sian input), and separated MMSE and SUMF detection and decoding (Gaussian inputs) are

reported for the sake of comparison.
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Figure 8: Spectral efficiency vs.Eb=N0 at BER� 10�5 for convolutionally-code CDMA with

user codes with generators(133; 145; 175)8, optimized received SNR distribution and constant

received SNR distribution with iterative and separate detectiona and decoding. Each set of

curves shows the performance of exact BP, conditional MMSE-IC, unconditional MMSE-IC

and SUMF-IC (from top to bottom curve). Obviously, for separate detection conditional and

unconditional MMSE coincide.
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Figure 9: Optimized SNR distribution for the unconditionalMMSE-IC receiver with� = 4:5,

convolutional code with generators(133; 145; 175)8 andEb=N0 = 6:29 dB.
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Figure 10: Evolution of the multiuser efficiency (left) and of the user residual symbol variances

(right) with the decoder iterations for the system of Fig. 9.
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Figure 11: Evolution of the multiuser efficiency (left) and of the user residual symbol variances

(right) with the decoder iterations for the system of Fig. 9 with the low-complexity detector

algorithm.


