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Abstract

We consider a canonical model for coded CDMA with random agireg, where the
receiver makes use of iteratiBelief-PropagationBP) joint decoding. We provide simple
Density-Evolutioranalysis in the large-system limit (large number of usef¢he perfor-
mance of the exact BP decoder and of some suboptimal appatigims based omterfer-
ence CancellatiorfIC). Based on this analysis, we optimize the received ubHR 8istri-
bution in order to maximize the system spectral efficienaygiwen user channel codes,
channel load (users per chip) and target user bit-error fidte optimization of the received
SNR distribution is obtained by solving a simple linear peog and can be easily incor-
porated into practicabower controlalgorithms. Remarkably, under the optimized SNR
assignment the suboptimal Minimum Mean-Square Error (MME&Ebased decoder per-
forms almost as well as the more complex exact BP decodereder, for a large class
of commonly used convolutional codes we observe that thengmd SNR distribution
consists of a finite number of discrete SNR levels. Based srotbservation, we provide
a low-complexity approximation of the MMSE-IC decoder tisaffers from very small
performance degradation while attaining considerabléngavin complexity.

As by-products of this work, we obtain a closed-form expi@s®f the multiuser ef-
ficiency of power-mismatched MMSE filters in the large-systémit, and we extend the
analysis of the symbol-by-symbol MAP multiuser detectothie large-system limit to the
case of non-constant user powers and non-uniform symbai probabilities.

Keywords: Multiuser Detection, Multiple-Access Channel Capacitgrdtive Decoding,
Statistical Mechanics.
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1 Problem statement and prior work

Thecanonicalreal-valued model for the Gaussian multiple-access dis¢mme waveform chan-
nel is given by [1]

v, =SWx,+v,, n=1,...,N (1)
wherex, € R¥,y,. v, € RF are the input, output and noise signal vectors at timeespec-
tively, S € RY*X is a matrix containing by columns the user discrete-timaatigre wave-
forms (spreading sequences) of length L samples, andV = diag(w, ..., wyg) contains
the user amplitudes. The noise is Gaussian i.i.d., withamae per component: (we write
v, ~ N(0, 02T)).

As usual, in multiple-access channels the users send indepeand independently en-
coded information [2] (see the block-diagram in Fig. 1). Smplies thatt, = E[x;x]] is
diagonal. Without loss of generality, we I8, = I and normalize the user signature wave-
forms such thafs,|? = 1, so thaty, 2 w? /0?2 takes on the meaning eéceivedsignal-to-noise
ratio (SNR) of uset. We letC, denote the user codebooks, of rdtg = + log, |C,| bit per
symbol. Eactk-th user, in order to transmit its information messagec {1,...,|C|}, sends
the codewordpy,(my) = (zk,1,...,7kn) € C in N consecutive channel uses as given in (1).
At the receiver, goint decodemaps the received sign® = [y;,...,yn~]| into a K-tuple of
information messagg$n,, . . ., mg). Without loss of generality, we assume that the user infor-
mation messages are represented by vectof$, ohformation bitsb; (e.g.,b, can be seen as
the binary representation of the index,). Hence, we define the per-user bit-error rate (BER)
as

1 fm
Pb(k> = B_k ]Zl Pr <bk,j #+ bk,j> (2)

under the usual assumption that the user information messag uniformly distributed.

From standard arguments [3, Ch. 8]), we have that the tratesirgignal bandwidth i /T,
whereT is the (continuous-time) duration of one channel use. Thezethe system spectral
efficiency is given by [4]

K

p= % ; Ry, bit/s/Hz (3)
We shall also define thgystenreceived energy-per-bit, 2 % and the systent, /N,
given by [4, 5]

(@) a B 1Yiam @

No /oy 202 2p
The model (1) has been used extensively in order to derivémple and concise form most
MultiUser Detection(MUD) algorithms (see [1] and references therein). Morepgeveral
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recent results on the performance analysis of MUD algorglimthe large-system limit (i.e.,
letting both K and L go to infinity with fixed ratioK/L = «) under therandom spread-
ing assumption (i.e., the entries S8fare generated i.i.d. according to some probability dis-
tribution) are derived based on this model for the sake ofydical tractability (see for ex-
ample [4, 6, 7, 8, 9, 10, 11, 12, 13]). We shall not questiore libe validity of this widely
accepted model. Nevertheless, we would like to stress ttiigtfat both more refined analysis
and practical experience shows that the conclusions dresvn the real canonical model (1)
apply (at least qualitatively) to more complicated and eltspractice models taking into ac-
count complex-valued baseband equivalent channels [ghcasonous transmission [14] and
transmission through multipath fading channels [15] witiperfect channel estimation. The
main fact that makes the model (1) “close” to practical CDMimgs is the random spreading
assumption, which prevents the users to pick their wavedooptimally. In this respect, the
random-spreading point of view reflects real-life CDMA piee [16], where physical impair-
ments and practical constraints prevent the system froimaphg the user waveforms.

In this work we are concerned with the practically relevardlgpem of maximizing the
system spectral efficiency for a given family of user code$C;, : k£ = 1,..., K}, given
iterative joint decoders (see [17] and references theseid)subject to the individual maximum
BER constraintsP,f"“) <eforallk=1,..., K, underthe random-spreading assumption and in
the large-system limit. We conclude this section by revijgome known results on spectral
efficiency of random-spreading CDMA and by providing a pesviof the reminder of this
paper.

Maximum spectral efficiency with optimal coding/decoding &ad vanishing BER. The
maximum spectral efficiency of random-spreading CDMA withrastrictions on coding and
decoding and for vanishing BER (i.e.,.— 0) 2 was found by Verd( and Shamai in [4, 5] for
given finitechannel loadK' /L = «, and reads

1 1-—
C= %10g2(1+7n)—iloggn—?nlogge bit/s/Hz (5)
wheren is the solution to [6]
1 Y
- =14+« (6)
n L+ ny

The optimal( E; /Ny )sys for givena andC is given by

Ey _ay
No /s 2C

2The achievability results referenced in this section haider the stronger condition of vanishing message
error rate. Well-known converse results ensure that thedboequirement of vanishing BER does not allow any
larger rate [3].
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The spectral efficiency (5) is achieved by Gaussian codebaoét constant user received SNR.
The supremum off overa > 0 is obtained fora — oo (an infinite number of users per
dimension, with vanishing user coding rate), and is givenhgysingle-user Gaussian channel

spectral efficiency,
E, 2% )
No/os — 2C

It is interesting to notice that, in order to achieve (5), gutimal (ML) joint decoder is not
necessary. In fact, the same optimal spectral efficiencycligesed by astripping decoder
that considers the users in sequence (say, in the a@rderl, 2, ..., K) and, at each stage
decodes thé-th message based on the linear MMSE estimate ok itreuser codeword from
the received signal after subtracting the already decodedsyl18]. The price incurred by
stripping is that the user coding rates must be assignedtbatithe transmitted rat& -tuple
coincides with a successively decodable point of the mekgzcess capacity region [2] or,
if equal user rates are desired, the user received SNRs raustdigned such that the equal-
rate point is successively decodable (at the price of soreg ilo the total achievable rate).
The power/rate assignment with practical families of usstes (notably, LDPC codes) for
successive stripping decoding is studied in [19].

The spectral efficiency with optimum joint decoding in theeaf constant received SNR
and binary antipodal (instead of Gaussian) codes was foyf@iaka in [9], and is given by

1 1 1
C = [77 (om + 5) - 5} log, e — 3 log, n — a/10g2 cosh(z\/yn + yn)Dz, bit/s/Hz (8)

wheren is the solution to [9]

% =1+4+ay (1 — /tanh(z\/%%- 777)DZ> 9)

(we defineDz 2 \/%e*f/?dz).
It is not hard to show that, for given, the maximum ofC in (8) is also obtained by letting

a — oo and coincides with the single-user Gaussian spectral efityi (7).

Maximum spectral efficiency with optimal coding, separate @tection/decoding and van-
ishing BER. A common suboptimal practice in multiple-access systemsiders separated
MUD and single-user decoding. In this case, the decoderisdd by some multiuser detector
front-end producing an estimate of tieth user transmitsignalfar =1, .. ., K, followed by a

3We say that the received power distributiorcanstantf all users are received at the same SNR leygle.,
the empirical cumulative distribution function of the re@x SNRs is a unit-step with jump at



G. Caire, R. Miller and T. Tanakaubmitted to IEEE IT Trans., March 2003. 6

bank of K single-user decoders, each processing its own MUD frodtesriput and producing
the decoded message, independently of the others. The spectral efficiency of sattemes
has been examined in several works for various MUD schenmegl§],| Tse and Hanly investi-
gated the spectral efficiency achievedibgar MUD (single-user matched filter (SUMF), linear
MMSE and decorrelating filters) and arbitrary user codess Worth noticing that for Gaussian
user codes and linear MMSE filter this is the optimal speétifadiency achievable by separated
MUD and decoding, since linear MMSE estimation coincidethwhe optimal MAP symbol-
by-symbol estimation for Gaussian signals. In [20], Miled Gerstacker found the spectral
efficiency with binary user codes and the individually oglrgsymbol-by-symbol MAP) MUD
front-end. Remarkably, both for Gaussian and for binaryesothe spectral efficiency under
separated MUD and decoding can be written in terms of theesponding spectral efficiency
with joint decoding as [5, 20]

o 1
CP = C™ 4 log, n + T” log, e (10)

whereCi°™ is given by either by (5) or (8) anglis the solution to either (6) or (9), respectively.
The term% logs n + 1’7’7 log, e quantifies the loss in spectral efficiency due to separation.

Spectral efficiency for given user codes, iterative detean/decoding and arbitrary tar-
get BER. Driven by the success of iterative decoding schemes ineingér channel coding
(see [21] and references therein), “Turbo” multiuser jaletoding was proposed in several
works (see for example [22, 23, 24] and references in [17fesE algorithms seek a trade-off
between the complexity of optimal joint decoding and thdgrenance loss of separated MUD
and single-user decoding. The performance analysis forda wlass of user codes (not nec-
essarily random ensembles) and a class of iterative joicdiErs obtained as approximations
of the Belief Propagation(BP) algorithm (see details in Section 3) was provided by tBisu
and Caire in [17]. This analysis is based on the general tgakrknown aPensity Evolution
(DE) [25], commonly used to determine the iterative decgdiimits of Turbo Codes and LDPC
codes, and is exact in the limit of large blocklength (nattoeobtain a meaningful large system
limit we let first N — oc andthen K’ — oo with K/L = «).

Preview of this paper. Several issues are left open in [17]. In particular, howedRactBP
decoder compares with respect to its IC-based approximeRidVhat is the optimal received
SNR distribution maximizing spectral efficiency for givesaeu codes, user target BER and given
iterative decoding scheme? How far is the spectral effigie@mian optimized CDMA system
with simple (practical complexity) user codes and itemtj@int decoding from the optimal
spectral efficiency with optimal (i.e., capacity-achigyircodes and optimal joint decoding?
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Can we find iterative decoding algorithms with complexityrmqmarable to separated MUD and
single-user decoding which still significantly outperfotine separated approach?

In this work, we provide answers to the above questions. bii@e2 we recall the exact
BP decoder and some lower-complexity approximations basde. In Section 3 we present
the DE analysis of this family of message-passing decodetsruandom spreading and in the
large-system limit. Based on this analysis, in Section 4 vewige a simple linear program-
ming algorithm for the optimization of the received SNR digition. Our results show that,
under constant received SNR, the exact BP decoder sigrtificaumnperforms its IC-based ap-
proximations in terms opower efficiencyi.e., it requires significantly lower SNR for given
target BER). On the other hand, in termsspiectral efficiencythe advantage of exact BP over
its approximation based on soft IC and MMSE filtering is onlgrginal. Moreover, for all the
considered decoding algorithms, the spectral efficientairegd under an optimized received
SNR distribution is significantly larger than under con$t8NR. Driven by these observations
and by the fact that, for the user codes considered hereptitaiaed received SNR distribution
consists of a small number of discrete SNR levels, in Sed@iare provide a low-complexity
approximated version of the MMSE-IC iterative decoder tiftgrs a very competitive trade-off
between complexity and performance. Finally, we point autanclusions in Section 6. The
proofs of the main results are provided in the Appendix.

2 lIterative joint decoding algorithm

In the rest of this work we shall restrict the user codes to iary antipodal, i.e.C, C
{—1,+1}". For a binary variable with probability mass function (pmf)Pr(c = +1), Pr(c =
—1)) we define its log-ratio by

Pr(c = +1)
Pr(c = —1)
The BP algorithm [26, 27] approximates iteratively the fagios L}’ corresponding to the
marginals of the a posteriori joint pnifr(by, ..., bg|Y) of the user information bits. After
a given number of iterations, a symbol-by-symbol deciseomade according to the threshold
rule

= log (11)

b; = sign(L}) (12)

Standard results [27] show that if tdependency graptlescribingPr(by, ..., bk |Y) is cycle-
free, then BP yields symbol-by-symbol MAP decisions withngtd number of iterations, thus
minimizing the BERPb('“) for each usek. Unfortunately, the dependency graph of the coded
multiuser channel (1) has cycles as longias- 1 and the user codes are non-trivial (i.e., have
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rate R, < 1). Nevertheless, for sufficiently large blocklengthand under some randomiza-
tion of the user codes (e.g., tilg’s may be linear convolutional codes the output of which is
independently and randomly interleaved before transimmssir LDPC codes whose graph is
independently and randomly generated), the probabilitimafing cycles of any finite girtid
decreases linearly witlv [17]. Hence, BP decoding Iscally optimalprovided that decisions
are made after a finite numbépnf decoder iterations, while lettingy sufficiently large.

The BP iterative joint decoder belongs to the classmafssage-passingecoding algo-
rithms [25]. It is formed by some computation building blscthat exchangenessage
the form of binary pmfs or, equivalently, of log-ratios. Timain building blocks of a BP itera-
tive joint decoder are the Soft-Input Soft-Output (SISOdaters and the individually optimum
MAP multiuser detector (I0-MUD) (see the block-diagram ig.R2).

SISO decoding is formally expressed by

2. exp (% 2. Cjﬁ»?,}-‘d)

c€Cpicn=+1 | #n
£ = log “° 4 (13)
> exp |5 > L
c€Cpicn=-1 j#£n ’
forall k =1,...,K andn = 1,..., N, WhereLfQ}.ld is the message (log-ratio) sent by the

I0-MUD for user relative to coded symbal; ; and £{% is the so called decoder “extrin-

sic information”. For convolutional codes, (13) is efficignmplemented by the well-known

forward-backward algorithm [28]. The same forward-bactdvalgorithm can compute the

Iog-ratios{U,;f} :j=1,..., By} for the user information bits while computing (13).
IO-MUD consists of calculating the a posteriori log-ratios

— dec dec dec dec
PI'(IEkyn B +1|yn; Ll,n’ te 7’£’k71,n7 LkJrl,n’ T LK,n)

Lmud = lo 14
e Bt (nm = Ly, B0, L%, L, L0 (14)
1 s 2 1 d
> €Xp | —o57 [Yn — > wis;zy| + g ) ke
xe{+1}Fzp=+1 j=1 j#k
= log (15)
K 2
> exp | —gpr |V - Y owisimy| + 3 Y L
xe{+1}Kizp=—1 j=1 j#k
forallk=1,..., K andn = 1,..., N. Unfortunately, there is no efficient way to perform this

calculation, in generaft

“Based on the fact th&Wx, with x € {—1,+1}¥ is a constellation ofV dimensional points carved from
a lattice with generator matridM = SW, a modification of the Pohst enumeration of lattice pointsh&e
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Various schemes have been proposed to simplify the exactdgBder by replacing the
IO-MUD block by some simpler soft-in soft-out algorithm. tims work we shall consider the
following options.

Conditional MMSE-IC. The optimal a posteriori estimation (15) can be replaceckeyuin-
biased MMSE estimation ofy, ,, given the received signgl, and the SISO decoders extrinsic
information{ L5 : j # k}, given by

=h], [yn > " wjs; tanh (L /2)] (16)

J#k
where the filteth,, ,, minimizes theconditionalMSE

2

E (LS j #k}

Thm — hg’n [yn — Z w;S; tanh(L?ﬁf/Q)
J#k

under the unbiasedness constramhk .St = 1 and is given explicitly by

-1
hy., = 5 T+ 95(1 — tanh®(LI%/2))s;s ] Sk 17)
k.n £k
where 1
Brm = st [T+ Z v (1 — tanhQ(L?’e;/Z))sjs]T] Sk (18)
J#k

is the output signal to interference plus noise ratio (SINR)
From (16) and (17) we can writg, ,, = xj ., + (x.n, Where( ,, has mean zero and variance
1/ Bk - Assuming(, , Gaussian distributed, the log-ratio sent to the SISO deadsdgven by

Lint = 2802k (19)

In the large-system limit the output of the linear MMSE d#beconverges almost surely to a
conditionally Gaussian random variable [8]. Therefore, @aussian assumption made in (19)
is exact for random spreading CDMA and larie

Decoder [29]) has been proposed by some authors in ordemtergte a list of candidate transmit vectors and
approximate (15) by restricting the sum to a few significanirts in the list [30]. Nevertheless, this approach is
prohibitively complex for large< and/ora > 1 (i.e., K > N).
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The estimator (16) consists of two stages: first, the observg,, is rendered zero-mean
by subtracting the (conditional) mean

Yen = B[yl {L55 :J #k}]
= ) w;s;tanh(L]%/2) (20)
J#k

Then, the linear MMSE estimation of the zero-mean symfgl is obtained by filtering the
zero-mean observatioyn, — y,,. This decomposition of linear MMSE estimators is canoni-
cal [31]. However, it is interesting to notice that, in thietting, the elimination of the condi-
tional mean of the observation takes on the meaningpftfinterference Cancellation (IC). In
fact, y,, is the (non-linear) MMSE estimate of the multiple-accessrfierence) ., w;x;ns;
relative to uset:, based on the SISO decoder output mess@ges : j # k}.

Since (16) is obtained by solving a MMSE problem conditibnah the SISO decoders
extrinsic information and involves soft IC, we shall referthis detector as theonditional
MMSE-IC scheme.

Unconditional MMSE-IC. The conditional MMSE-IC detector requires the computatibn
the filters (17) for each user, each symbol interval and eacldkr iteration. A simplification
consists of applying unconditional linear MMSE estimatioithe observatioaftersoft IC. The
resulting estimate aofy ,, is still given by (16), where the filtds, ,, is replaced by the filteh,,
minimizing the unconditional MSE

2

E

—h! [yn ijsj tanh( LdeC/Q)]

J7#k

under the unbiasedness constraiph] s, = 1 and is given explicitly by

-1
h, = I+ (1 — Eltanh®(L5%/2)))s; ]] Sk (21)
m Pt
where 1
B =nsp [T+ 7;(1 — Eltanh*(L9%/2)))s;s ] Sk (22)
J#k

is the output signal to interference plus noise ratio (SINR)e log-ratio sent to the SISO
decoder is given by (19) withj ,, replaced by3;.

In a practical implementation, the mediftanh?(£ 4% /2)] can be replaced by the empirical
mean

— Z tanh?(L9% /2 (23)
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that can be computed directly from the output of ea¢h SISO decoder.
The unconditional MMSE-IC scheme requires the evaluatianty one filter per user per
iteration.

Single-user matched filter with IC. A further simplfication is obtained by replacing the
MMSE filter by the single-user matched filter (SUMF), and proitg an estimate of;, ,, as

Zkn = Sf[yn - yn}

This approach, referred to as the SUMF-IC scheme, was peapimsseveral early works on
uncoded multiuser detection under the name of soft Pal&l€éPIC) (see for example [32]),
and has the advantage of not requiring the computation ofixriatverses. The expression of
the output SINR is well-known and will be omitted for the sakdorevity.

3 Density evolution analysis

DE consists of propagating through the decoding iteratthegprobability density of the mes-
sages exchanged by a message-passing decoder under thmptssiuhat the messages re-
ceived at each computation node are statistically indegr@induUnder some mild conditions
(notably, that the probability of cycles of any given girtlvanishes as the blocklengfti in-
creases), a general concentration theorem [25] ensureshina@mpirical distribution of the
messages at any fixed decoder iterati@monverges with probability 1 to the limit density ob-
tained by DE, asV — oo. In [17] it is shown that the concentration theorem holdstfer
coded CDMA channel model and the message-passing decadsented in the previous sec-
tion under mild conditions of regularity of the user codg$. In particular, the theorem holds
for convolutional codes with random independent interilegwv

In the rest of this paper we make the following assumptiohthd user codes are all derived
by the same convolutional codeof rate R, and differ only by the interleaver randomly and in-
dependently generated for each user; 2) the user spreasfjugisces; are randomly generated
with i.i.d. components according to a symmetric distribot{zero odd moments), variantgL
and finite fourth-order moment; 3) the empirical distrilautiof the received SNRs, defined by

K
Al
FOG) 2 23 1 < 2}

k=1

converges almost everywhere to a given (non-random) bligtdn 7, (z), asK — oc; 4) as
anticipated before, we shall study the large-system lifnihe iterative decoders by letting first
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N — oo (to approach the concentration theorem limit) and ther> oo with fixed K /L = «
(to remove the randomness due to random spreading). Unelee tssumptions, the following
general result holds:

Proposition 1. For the I0-MUD, conditional MMSE-IC, uncoditional MMSE-I&d SUMF-
IC detectors defined above, at each decoder iterstitre log-ratioL}’s! sent to thek-th
SISO decoder converges in distribution to a Gaussian randorable with conditional mean
29Oy, (givenzy,, € {—1,+1}) and variancey,n“), where the coefficienj) € [0, 1] de-
pends on the detector and on the iteratipbut it is independent of the user indexMoreover,
{L;;jgd :n =a,...,b} for given finitea andb (that do not depend on the blocklength) are
asymptotically conditionally independent given théh user transmitted codeword.

Proof. It follows directly as a corollary of [8, 9, 13]. O
Proposition 1 essentially tells that eaktth SISO decoder input sequen{;éfg;;d 'n =
1,..., N}, at each decoder iteratighcan be thought as the posterior log-ratio of the output of

avirtual binary-input AWGN channet;,, = z., + (.o Where¢y.,, ~ N(0,1/(vn'?)). The
virtual AWGN channel SNR is;,n®). Hence,n® represents the ratio between the effective
SNR for userk at the/-th decoder iteration and the nominal received SR Following the
standard definition of [1], we shall refer ¢ as theMultiuser EfficiencyME).

Let us consider the output of the SISO decodexhen its input is driven by the virtual
AWGN defined above. The pdf of the Iog-rat[qjj‘g defined in (13) satisfies the symmetry
condition [33]

f(=2) =7 f(2) (24)

In general,agf’g is non-Gaussian. However, it can be closely approximatea Grussian ran-
dom variable (conditionally om, ,,). By imposing the symmetry condition (24) on a Gaussian
distribution, we find that the variance must be equal to twilee mean (in absolute value).
Therefore, we shall use tlapproximation

Lgf’; ~N (2ug>xk,n, 4;15?) (25)

This is equivalent to mode‘L;‘fg as the posterior log-ratio of the output ofvatual binary-
input AWGN channeldy,, = zj, + 0, Whered,,, ~ N(O, 1/;1,@). The aboveGaussian
Approximationhas been used extensively to study the performance of Tudde<[34] and
LDPC codes [35] under iterative BP decoding.

The output SNF,u,(f) of the virtual channel defined above depends on the user eheode
€ and on the input SNR;,n“). However, since (25) is an approximation, there is someedegr
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of freedom in how to map;n'¥ into the correspondingc,(f), for a given codeC. We shall
use the “symbol-error rate matching” approach proposed . [ Namely, let¢(SNR) be the
average symbol-error probability at the output of the SISfatler as a function of the input
SNR, defined by

A

€(SNR) = Pr (Lg% < 0|z = +1) (26)

Hence, we let
2

w = 1Q7" (e(wn™))] (27)
whereQ(z) 2 [.° Dz is the standard Gaussian tail function.
Suppose that, for a given MUD scheme, we are able to comgpltdrom the values

u,(f’” : k=1,...,K}. Then, the new vaIua,(f) can be computed by (27). The sequence
of ME {n®, (M, ... . n® ..} uniquely defines the evolution of message densities aloag th
decoder iterations (under the Gaussian Approximation)enfvally, the DE with Gaussian
Approximation (referred to as DE-GA in the following) wilake on the form of the one-
dimensional dynamical system

n(éJrl) — (77([)) (28)

where the initial conditiom® and the mapping functiod depend on the specific MUD algo-
rithm and on the system parameters, as the channeldaad the limiting distribution of the
received SNR,(2). The next propositions give expressions for the mappingtian ¥ and
for the initial condition;(?), for all the MUD algorithms considered.

Proposition 2. The mapping functionl(n) for the exact BP decoder is given by the stable
solution to the fixed-point equation

[ / (1= tant? (yy/u(3m) + p(ym) ) ) (1 = tanh (2177 + 7¥))
- e T (/) + ) ) tanhs® (/79 + )
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in the interval[0, 1] that minimizes the quantity

2 2

/ { 1+ tanh (y\/u(vn) + u(vn))
) 2

1 1 1
J = [\If (aEA,M + —> — —] log, e — ilogQ\If —

—ak, log, cosh (Z\/ Y+ yv/ulyn) + ¥ + u(vn)) +

+

1 — tanh (y/u(ym) + p(9m)
(y Z e ) log; cosh (z\/ﬁ — y\/u(ym) + 7P — u(vn)) } DzDy

2

-SE, [/R log, (1 — tanb? (yy/u(ym) + (1) )) Dy} (30)

where E, [-] denotes expectation with respect to the received SNR loligioin 7>, and where,
from (27), we define the function

u(z) 2 [Q 7" (e(2))]

2

(31)

Proof. See Appendix A. O

Equation (29) may have either one (see example in Fig. 3, defthree distinct solutions
(see example in Fig. 3, right) in the intenél 1], depending om, « and F.,. If (29) has three
solutions) < ¥; < ¥y, < U3 < 1, ¥, andW; are stable fixed-points anl; is unstable. Then,
the desiredl () is given byW; or by ¥; for which (30) is minimum.

From the proof given in Appendix A) we notice thadefined in (30) takes on the oper-
ational meaning omutual information per dimensiofi.e., spectral efficiency in bit/s/Hz) for
the channel (1) where the input symbelsare binary with non-uniform a priori marginal pmf

given by
1+t
2

(with t;, € [—1, 1]), and where the empirical distribution

Pr(zy, =+1) =

K
G () A %Z 1ty < 2}

k=1
converges almost everywhere 85 — oo to the distribution of the random variablé =
tanh(L/2), with L ~ N(2u(yn), 4u(yn)) andy ~ F,. It is also interesting to notice that
the valid solution¥(0) of (29) for constant received SNR coincides with the solutid (9),
and that, consequently,evaluated aty = 0, ¢ = ¥(0) and constant received SNR coincides
with the spectral efficiency with binary i.i.d. uniform infaC given in (8).

For the IC-based iterative decoders we have the followisglts.
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Proposition 3. The mapping functio () for the conditional MMSE-IC decoder is given by
theuniquesolution to

1 v (1= tanh?(y\/u(ym) + plym) )
E =1+ OéE,y / ; Dy (32)
R1+ Uy (1 — tanh®(y\/p(yn) + u(w)))
in the intervall0, 1], wherep(z) is defined in (31).
Proof. See [17]. O

Proposition 4. The mapping functiol () for the unconditional MMSE-IC decoder is given
by theuniquesolution to

[ Y (1 — [ tanh®(y~/p(yn) + /‘(VH))D@ -‘

1
—=1+ak, (33)
v [1 + Uy (1 — [ tanh®(y/p(yn) + u(vn))DyH

in the intervall0, 1], wherey(z) is defined in (31).

Proof. See [11]. O

Although not surprising, it is interesting to notice thatiatjons (32) and (33) reduce to (6)
for n = 0 and constant received SNR. More in general, the solutigh of (32) and (33) for
n = 0 and arbitraryF,, coincide with the ME of linear MMSE MUD found by Tse and Hanly
in [6].

Proposition 5. The mapping functior¥ () for the SUMF-IC decoder is given by

é =1+ak, {’y (1 - /Rtanh2(y\/m+ u(w))Dyﬂ (34)
wherey(z) is defined in (31).
Proof. See [11]. O
Proposition 6. For all the above cases, the DE-GA initial condition is gibgm® = ¥(0),

and coincides with the ME of the corresponding MUD schemel adene, i.e., without coding
and iterative decoding.
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Proof. It follows directly from the definition. O
With some effort, it is possible to verify that, for ajle [0, 1] and all SNRs distributions’,
the following inequalities hold

0 S \Ilsumffic(n) S \Ilunc.mmsefic(n) S \Ilcond.mmsefic(n) S \Iliofmud(n) S 1 (35)

Moreover, for any finiten we haven® > 0 and the functionsl are non-decreasing with
n. Therefore, the smallest solution of the fixed-point equrati () = 7 in [0, 1] yields the
stable fixed point which the DE-GA tends to, i.e., by lettijfgdenote this solution, we have
limy_, o 77(@ =n*.

Within the limits of the assumptions made in order to obtam DE-GA, the iterative de-
coder performance is completely characterized by theilngiME »*. In fact, after many iter-
ations, every:-th SISO decoder “sees” a binary-input AWGN channel with SNR*. There-
fore, for a given user cod@, the BER is uniquely determined by and by the individual
received SNRy,. For example, ifj* =~ 1, every user in the system attains a performance close
to its single-user lower bound, as if it was alone in the systi this case, the iterative decoder
is able toremovealmost entirely the effect of multiple-access interfeenc

To illustrate the above DE-GA analysis, we computed the BER @dded CDMA system
where the user cod€ is the classical 64-state rate 1/2 convolutional code wotttg] nota-
tion [36]) generatorg133,171)s. Figs. 4 and 5 show BER vsE, /N, for constant received
SNR,a = 1.0 and2.0, respectively, and various iterative decoding schemes.nbtee that
the BER shows the typical “waterfall” region (a behavior goon to several iterative decoding
schemes) where the error curve decreases rapidly iV, and approaches the single-user
BER curve. For sufficiently large load, the waterfall region becomes a “jump”, i.e., an abrupt
transition from very large to very small BER. As noticed ir7]1this transition corresponds to
afold bifurcation[37] of the dynamical system (28) representing the DE-GAe Value ofa
for which the bifurcation appears depends on the decoderitign. For example, forv = 1.0
(Fig. 4) the SUMF-IC decoder shows the bifurcation behawibile the other detectors have a
smooth waterfall. Forr = 2.0 (Fig. 5) the exact BP, conditional and unconditional MMSE-I
decoders show bifurcation (at different valuesmyf/Ny) while the SUMF-IC decoder is not
able to eliminate multiple-access interference (equiviife the bifurcation appears at infinite
Ey/Np).

4 Received SNR distribution optimization

In this section we aim at optimizing the received SNR disttiitn 7', in order to maximize the
spectral efficiency = a R, for a given user convolutional cod® given channel load;, given
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maximum BER constraint (for all users in the system) and for a given iterative decaaléhe
class of algorithms studied in the previous sections.

For simplicity, we quantize the SNRs levels, i.e., we shafiuane that the users received
SNRs take on values in a finite discrete set of levels g; < ¢» < ... < gy, for some finite
integer.J. Users received at SNR leve] are said to “belong to clags. Moreover, we define
the partial channel loads; = K /L, forj =1, ..., J, whereK; is the number of users in class
j. Clearly, Z;’Zl a; = a. Finally, we assume that wheii — oo all the class size&’; grow
to infinity, with given ratioskK;/K = «;/«. In order to stress the dependency of the DE-GA
mapping function on the system parametgré (91,---,9s) andex 2 (aq,...,ay), we shall
use the notatio® (n) = ¥(g, , n).

Since the BER is a non-decreasing function of the decodext iSpIR, fixing a maximum
target BERe to be achieved by all users in the system is equivalent tanieguhat the DE-GA
fixed pointn* satisfies;*g; > SNR(¢), where the SNR level SNR) is determined by the code
C. Let0 < §; < §, < 1 andds; > 0. We fix g; = SNR(e)/d, and obtain the other SNR levels
g2, - - -, g7 by sampling with a sufficiently small step a desired intefyalgm.x]. Then, we look
for the class load assignmeamtsolving the optimization program

J V(g a,n) > n+0d3, ¥ 1€ [01,0]
minimize Z a;g; subject t ijl a; = a, (36)
g=1 o 2 0, \4 ]

Suppose that (36) is feasible. Then, the solutidrhas the property of minimizing

7
Ey _ Zj:l Qj9;
N() sys 2aR

over all class load assignmenissuch that the spectral efficiency is equapte- aR, and the
DE-GA has limity* > 4§, (implying that all users attain BER not larger thgn The parameter
03 governs the speed of convergence of DE-GA (and eventuatlyedtfrue iterative decoder) to
the fixed point. Ifo; is very small,¥ (g, a*, n) is very close ta; for some values of), and the
decoder needs many iterations to find its way out of thesenéls’ (this behavior is completely
analogous to what observed in iterative decoding of TurbdegS@and LDPC codes through the
so-called EXIT diagrams [38]). On the other hand, there ifiope to obtain smallEj, /No)sys
by keepingd; large. Thereforeg; can be used as a performance vs. complexity tradeoff design
parameter.

If for some o and e the program (36) is infeasible, then some of the parameterst be
changed, for example, by decreasim@nd/or increasing the rande, gm.x] of permitted re-
ceived SNR levels.
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Fortunately, for all decoding algorithms considered is hper, the conditior (g, o, ) >
n + d3 can be re-formulated as a linear constraint with respeat.t@ herefore, (36) is a linear
program and can be solved by standard numerical methodsrd3afoving the above statement,
we would like to point out here that the optimizationeivia linear programming has striking
analogy with the methods for optimizing the degree sequeateDPC code ensembles, as for
example in [35, 39].

For the SUMF-IC decoder, from (34) we re-wrilgg, o, ) > n + d3 as

J
;ajgj <1 - /Rtanh2(y\/M+ M(Qﬂ?))Dy) < j o1 37)

which is clearly linear inx.

For the conditional and unconditional MMSE-IC decodeiis given implicitly as the solu-
tion of the fixed-point equations (32) and (33), respecyivEhese equations have the following
property [6]. Let us write (32) and (33) in the fonin= f(g, a, n, ¥), and denote by (g, a, )
the solution. Then, for alt € [0, 1]

r<V¥(g,a,n) & < fg an) (38)

Due to this iff implication, it follows thatV (g, , 7) > 1 + 45 is equivalent to

J (1 — tanh®(y\/u(g;n) + u(wn))) 1

Zajgj/ 5 Dy < e 1 (39)
=1 R 1+ (n+03)g (1 — tanh”(y/p(g;m) + u(%n))) s

for conditional MMSE-IC, and to

ZJ: (1 — Jg tanh®(y/u(g;m) + u(gjn))Dy> o1
;g < -
=1 L4 (n+03)g, (1 — [ tanh’ (y/u(g;m) + u(gm))Dy> N+ 03

for unconditional MMSE-IC. Again, both (39) and (40) aredar constraints iax. Finally, for
the exact BP decoder we have to be a bit more careful becaube pbssibility of multiple
solutions to the equation (29) defining the mapping funclfoh.et us re-write (29) in the form
U = f(g,a,n,¥) and denote by (g, o, ) < ¥3(g, o, ) its stable solutions. Clearly, the
inequality¥ (g, a, n) > ¥,(g, o, n) always holds. Thus, the conditioly (g, &, ) > 1 + 03
for n € [01, d2] implies the first constraint in (36).

SinceV, (g, a, 1) is, by definition, the smallest solution of (29), the funati{g, o, n, 1) —
1 is positive fory € [0, ¥,(g, @, n7)). Thus, the first constraint in (36) can be replaced by the
more stringent constraint

f(g: «, 1, w> - w > O: Vw € [0: n + 63)7 V77 € [51: 62} (41)

1 (40)
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As desired, (41) is a collection of linear constraintseorparametrized by ands,.

In practice, the linear constraints corresponding to (4&) @btained by sampling on an
appropriate grid of points the trapezioidal region defingd/be [0, n + d3), n € [d1, ds], IN
the (¢, n)-plane. This may produce a large number of constraints. Akmapproach consists
of requiring that (29) has a single solution. ThenVifg, o, n) = ¥,(g, ¢, n) is the unique
solution of (29), then the condition (38) holds and the cgponding linear constraint is given

by
ZJ: / (1= tanh? (y/ulom) + wlgim)) ) (1 - tanh (2\/g;01+ 53) + g;(n + 63) )) 1
2 R 1 — tanh? (y\/m + ,u(gjn)) tanh? (z\/m +gj(n+ 63)) 0T
(42)
By replacing the first constraint in (36) by (42), the veator found by linear programming
corresponds to a valid receiver SNR distributio®if= f(g, a*, 7, ¥) has a unique solution for
all » € [0, 1]. This can be checked a posteriori, i.e., by solving the lipeagram given by (42),
finding a candidatex* and checking the uniqueness of the solution of the fixedtmmjnation.
Fortunately, for practically relevant choices of the cdtiand of the target BER (notably, in
all numerical results presented here) we found that theisaolof (29) for the candidate optimal
a* IS unique.

As an example of the above optimization technique, condiigr 6, showing the DE-
GA mapping function¥(g, a, n7) for the exact BP decoder, load = 4.5, maximum free-
distance 64-state rate 1/3 convolutional user codes witlergeors(133, 145, 175)s (see [36]),
and(E,/Ny)sys = 6 dB. The curve corresponding to constant receiver SNR vyigtds: 0.1,
i.e., the iterative decoder applied to this system yieldy p@or performance for all users (10
dB degradation with respect to their single-user perforcean On the contrary, the system
with optimized SNR distribution yields* ~ 1.0, i.e., each user attains its single-user perfor-
mance after a sufficiently large number of iterations. TheRSHptimized curve in Fig. 6 is
obtained by linear programming by using the constraint (4Rforced over grid of points in
[0, = 0,4, = 0.5], equally spaced b§.01, and by lettingd; = 0.01.

Fig. 7 shows the achievable spectral effciencat target BER10~°, for coded CDMA
systems based on the convolutional code with generét88s 145, 175)s and different iterative
decoders, with optimized received SNR distribution. Far fake of comparison, we show
also the spectral efficiency achievable by optimal Gaus@aibinary) codebooks with joint
detection (given by (7), with linear MMSE detection (optirsaparate detection for Gaussian
inputs) and with (suboptimal) linear SUMF detection (theseves have been presented in [4].

Fig. 8 compares the spectral efficienegt target BERLO° for the same system described
above with the performance of a system with the same usesamtk constant receiver SNR,
with iterative detection and with separate detection @gponding to the performance of the
iterative decoders after the first iteration).
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5

Based on these results, the following remarks are in order:

All spectral efficiencies of the convolutionally-coded &ras are zero fofE,/Ny)sys <
3.94 dB, that is the value of’,/ N, needed for a single user to achieve BER0°. This
limit depends on the user code alone, and can be improveddnscig a more powerful
code.

As said in Section 1, for both Gaussian and binary inputstsglexfficiency is maximized
by infinite load and vanishing per-user rate. On the conttas/spectral efficiency curves
for the convolutionally-coded CDMA system with iterativeuttiuser joint decoding re-
ported in Figs. 7, 8 correspond to per-user r&te= 1/3 bit/symbol and finitex users
per chip. In this sense, these curves are much more meahingfu the viewpoint of
practical CDMA design.

For large(E,/Np)sys, the iteratively-decoded systems with optimized SNR itigtion
are not interference limited, in the sense that their sped@ifficiency increases with
(Ey/Ny)sys- Remarkably, for the exact BP and the MMSE-IC decoders tigedgE, / Ny ) sys
slope of spectral efficiency is (close to) optimal, at leasthe considered range of

(Eb/NO)sys-

CDMA systems with constant receiver SNR are basically fatence limited, and it-
erative joint decoding provides a significant gain with mspto conventional separate
multiuser detection and single-user decoding only for $i#8)/ Ny ) sys-

The unconditional MMSE-IC yields spectral efficiency vehlyse to exact BP with much
smaller complexity with respect to both exact BP and cooddl MMSE-IC. This makes
the unconditional MMSE-IC decoder a good candidate for+ggHormance low-complexity
iterative multiuser decoding. This point will be elaboxhfarther in the next section.

Low-complexity implementation

In the previous section we showed that the unconditional MMIS iterative decoder provides
a good trade-off between spectral efficiency performanceduthe optimized received SNR
distribution) and complexity. Nevertheless, complexgystill fairly larger than conventional
CDMA receivers, since it requires the computation of a bahkKdVIMSE filters (complexity
O(K?) per user per iteration) at each decoder iteration. A satutported in the literature [40]
consists of using the standard linear MMSE detector for tis¢ fiew iterations and, assuming
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that the decoder is able to eliminate multiple access iaterice, switch to the standard SUMF
filter when the residual interference symbol variancesggivy

vp =1— E [tanh® (L3%/2)], k=1,....K (43)

are below a certain threshold. This approach achieves @datpD(K) per user per iteration,
but it does not take into account the fact that, under optBINRR distribution, users are received
at different SNR levels and the evolution of their residuahbol variances with the decoder
iterations may be very different. Indeed, we may expectubats received at higher SNR levels
are correctly estimated and canceled much faster than tesssived at low SNR.

In order to illustrate the above intuition, consider the S#8iRribution in Fig. 9, optimized
by linear programming for the unconditional MMSE-IC recaiwith o = 4.5, convolutional
code with generatordl 33, 145, 175)s and(Ej,/Np)sys = 6.29 dB. The distribution is composed
by J = 3 SNR levels, denoted by, g, g5. Fig. 10 shows the evolution of the multiuser
efficiency (left) and the residual user symbol variancegh@)i for the three classes of users vs.
the decoder iterations. We notice that the three user damseremoved in sequence, starting
from the highest-SNR class: after 10 iterations, the powerdlass 3 users is reduced by 10
dB, after 22 iterations class 2 users are reduced by 10 dBewusohtually, after 40 iterations
all users are removed from the received signal, meaningethett user is decoded as if it was
alone on the channel (the multiuser efficiency converges 19. Intuitively, we may say that
the iterative decoder (under optimized received SNR diistion) performsmplicit stripping of
the different classes of users.

Fortunately, for the class of convolutional codes and theeadecoders considered in this
paper and for a surprisingly large range of system paraméteser coding rates,£,/No)sys
and loadx) the optimal SNR distribution consists of a small numlesf discrete SNR levels,
as in the example above. Next, we take advantage of this dacbtain a low-complexity
iterative multiuser decoding algorithm which performsyelose to unconditional MMSE-IC
with complexityO(K), comparable to that of conventional CDMA receivers.

Consider again the CDMA channel model (1) and an IC-baseatite decoder that, at a
certain iteratior?, produces the-th observable for the SISO decoder of users

N

T
A0 = (1) (y0 - SWRY + sl (44)

S0Our receiver algorithm applies to the so-calleeriodic random spreading.e., where the user spreading
sequences are randomly generated and used for a long seqferariewords (blocks aV symbols). We hasten
to say that rather different approaches based on matrixnpohyals should be considered for low-complexity
algorithms in the case @periodic random spreadingvhere a new set of spreading sequences is used on every
symbol interval (see [10, 41]).
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Wherezﬂs‘fﬁl is the current estimate of theth user symbol given the SISO decoders output mes-
sages at the previous iteration, that for the binary antjpedse considered here is given by
Tjn = tanh(L5% /2) (see (20)), ancﬂ,ga is an appropriately chosen filter.

The unbiased unconditional MMSE criterion leads to (213f this rewritten by using sim-
ple matrix identities as

(o _ [STVOST +1] s,

= = (45)
s; [STVOST + 1] sy,
where we defind@ 2 diag(v1, - . ., vx) and the residual symbol covariance matrix at iteration
as
VO 2 E|[(x, = R0) (x0 - %0)"| = diag(vf”, ... o}7) (46)

Notice thatV () is exactlydiagonal in the limit for large blocklengtN’ becausé'” are obtained

from the SISO decodeestrinsic informatior{17]. g

Under the optimized received SNR distribution, we shallass that the users are grouped
intoJ < K classes of siz&(;, ..., K;. Userk in classj is received at SNR leve}, = g;. Asin
Section 4, we le; < --- < g; and enumerate the users such that users(X; ,+1,...,K;}
belongs to clasg, whereX, = 0 andX; = K,

The proposed low-complexity approach makes usg bfiear detectors. Detector number
j at iteration/ assumes user SNRs given by

(4)
0) { f(é)’}/k’l)k] for k= 1;2;---;g<j (47)

g = _
0 for k—%j+1,g<j+2,...,K

whereé) is an iteration-dependent scaling factor common to allsigter be specified later)
and/; is an iteration index that characterizes thth detector. In matrix form, we define the
diagonal matriXZ; such that its:-th diagonal element is zeroAfbelongs to a class larger than
j and one otherwise, and let the diagonal matrirominalreceived SNRs for thg-th detector
be given by

Ul = ¢Orvitz, (48)

J
Equation (48) is meaningful only far> /;. As it will be clear in the following, detectors are
used in the ordej = J,J — 1,...,1 and the indiceg; determine the detector switch points,
i.e., thej-th detector is used fof = /¢;,...,/;_; — 1, wherel; = 0 and/, is the maximum
number of iterations.

S\We usef,gf) instead ofh; as in Section 2 in order to stress the fact that here the filbescdot coincide
necessarily with the unconditional MMSE filter (21). Moreomve specify explicitly the iteration indeksince it
is relevant in the definition of the low-complexity algorith
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In order to obtain a computationally efficient form for thh detector, we decompose the
spreading matrix as

S=SZ;+S(I-Z)) (49)
——

g,
and replace thérue SNR diagonal matrixt'V(® in (45) by ng). We introduce the singular
value decomposition

1/2

s(rv%z,)’” = ®D;0T, (50)

such that®; and®, are unitary andD; is diagonal up to some additional columns or rows
which are all zero. We define

P2

Q, = &S (51)

= D07 2 (V)L $TS) (52)

Note that, though (52) looks more complicated, it may regjtewer computing effort than (51)
due to the diagonal structure of the matrid@s T', and V(%) and the zero columns if;. By
using (51) and (48) in (45) and in (44), we can write kil detector filter for usek at iteration
t=1V,....0;_;—1as

- 2D g 53
T qf [€9DF 1] qys

whereq, ;, denotes thé-th column ofQ;, and itsn-th output as

S0 _
zk,n -

T [eOD2 1] @7

Lk [5 Dt I} T % (y — SWx® 4+ Skwkﬁ?g) >
— n n n

qzjk [5(4)D5 + I] qj,k

T [eOD2 4]
- D (0, QR an)
a, [EOD2 +1]7 qju

T feOp2 4]

ql, [€9D2 + 1] qju 4

240
,dn i

GivenQ; and the singular value decomposition (50), (54) has conitglé€x(K') per user per
iteration: notice that the calculation dﬁaj involves O(K?)/K operations per user, since it
is common to all users. The other operations are just innalymts of vectors with diagonal
kernels. This brings the computational effort per user penation from quadratic to linear.
Costly computations are needed only when a switch from tatgcto detector; + 1 takes
place. Then, a singular value decomposition (50) and a xnaduitiplication (51) or (52) are
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needed. The impact of this computations is not very larggpical situations with optimized
SNR distribution. In the example at the end of this sectioa,have] = 3 swtich points and
total iterations/, = 55, therefore the complexity of SVD per user per iteration gD (K?),
but it is multiplied by a factoB/55. In general, our approach is very effective for smatnd

a large number of decoder iterations (typical of heavilydieé systems attaining large spectral
efficiency).

Two questions have been left open: how to determine the etswitch points; and how
to choose the scaling factét’). They will be addressed in the following.

For the time being, lef(¥) be a given function of the iteration index and of the othetesys
parameters (including the received signal bld¢ck that can be easily computed in real-time
along the decoder iterations. The filtéfk) can be regarded asraismatchedVIMSE filter
that assumes user received SNRs given by the diagonal aiemfddgz) rather than the exact
values given byr'V(©. In order to determine an effective switching criterion, meke use
of the following result characterizing the multiuser efioscy of an MMSE filter with power
mismatch:

Proposition 7. Consider the CDMA system with™ users and spreading factbrdefined by
y = SP'/?x 4 v wherev ~ N(0,I) and the usual assumptions on random spreading made in
Section 3 hold. LeP 2 diag P,,. .., Px) such thatnax, P, < P, and let(U,,...,Ux) be
an arbitrary sequence of positive numbers such ithiat, U, > U, whereP andU are fixed,
finite and positive constants independentiof Assume that, a& — oo, the joint empirical
distribution of the pairg P, Uy,), defined by
(K) NERS

F (p:u)—?gl{Pkgp:ngu}
converges almost everywhere to a given distributen; (p, u). Then, by letting’ — oo with
K/L = «, the multiuser efficiency of a linear detector obtained &NWMSE filter assuming
received user powers given BY;. } instead of the true valugs’, } converges almost surely for
all userk to the values given by

bt [
o — (14+nU) (55)
1+ OéEpU |:(1—|—]7;U)2:|
wheren is the solution to
1 U
—=1+aFE 56
Ul Y [1 +nU } (50)

and wherely; || and Ep ;|| denote expectations with respect(i® U) ~ Fpy(p, u).
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Proof. The proof of the above proposition follows as a corollary loé¢ {oroof of the main
result of [8]. A concise and self-contained scketch of pri@iipping technicalities on almost-
sure convergence) is given in Appendix B. O

Proposition 7 is the key for a simple and effective switchimigerion. Before illustrating
it, we take a short detour for the following interesting dtary. Notice thaty given in (56) is
the multiuser efficiency of a MMSE filter matched to pow¢ts, } rather than{ P, }. Hence, it
can be regarded as theminalmultiuser efficiency of the mimatched detector, whilgiven by
(55) is thetrue multiuser efficiency of the mismatched detector. We sayttitehominal powers
{U,} areadaptedo the actual power§P; } if the two sequence§P, } and{U;} can be sorted
in non-decreasing order by the same permutation and havgathe sum. We say thét/, } is
aconservativehoice of the nominal powers if it is adapted{t, } and yieldsx > 7, i.e., the
actual detector performance is better than what can be tegh&che users had powefd/, }
instead of{ P,}. The following result gives a sufficient condition for a censtive nominal
power assignment.

Corollary 7.1. Let{U,} be adapted t¢ P, }. Then, in the limit for largek, {U} } is a conser-
vative choice of the nominal powers{if’,} majorizes{U;}.’

Proof. See Appendix B. O
Corollary 7.1 generalizes the result of [10] that, rephdaseour terminology, states that
{Ux = % Zle P; : k =1,...,K} is a conservative nominal power assignment for any

received power sequen¢@, }, since it is well-known that an{/P, } majorizes its corresponding
constant mean-value sequence [42].

Going back to the detector switching problem, a sensibteroin to switch from detector
j to detectorj — 1 at a given iteratiorf consists of choosing the detector with largest ME. Let
j be the current detector index. At each iteratiowe decide if using detectgror switching
to detector; — 1 by comparing their MEsegZ) and/a;ﬁ1 via the large-system formula (55). For

’A sequencd P } is said to majorize [42] a sequen{E} } if

k k
ZU(j) ZZP(]‘), Vk=1,...,K
Jj=1 j=1

with equality fork = K, where{ P} and{U,} denote the non-decreasing arrangementsiqf} and{Uy },
respectively.
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detector; we have

)
X Oy, 7
L+ )

H(f) o 1+n(‘)g(f)7 vyd)y2
CT + Z“i wi“ + K N0
B=1 (1O O k= +1 Tk Uk
(45)
1 Vkv
;i k=1 1+ 77 Ok U

while for detector; — 1 we have

©
Kj-1 Yk Vg
L4+ 520 )

P - n(é) = a2
j_l - j_l 9{', 5 ’U([) ( )
L4302 W e % _1+1 Tk
1 Xj-1 ’Yk'U(Z)
_ k
O RDY PRGN (58)
-1 k=1 T —17kVy,
If x ( ) < /-c] 1» then/,_, is set equal td and the detector is switched frofto j — 1.

In writing (58) we implicitly assumed that®) = 1 at each switch point (in particular, for
¢ = ¢;_,). Optimizing the detector with respect ¢’ appears to be a hard problem. A very

effective heuristic choice enforcing the conditigty) = 1 forall j = J,.J —1,...,1 is given
by
ZK: v J4
ngﬁ, for (=10;,0;4+1,...,6;_1—1 (59)
k=1 "k

In order to illustrate the behavior of the proposed low-ctewrjy iterative scheme, we consider
again the system and SNR distribution of Fig. 9. Fig. 11 shibw®volution of the multiuser ef-
ficiency (left) and the residual user symbol variances ()itgr the three classes of users vs. the
decoder iterations, for the low-complexity algorithm désed above. The dash-dotted curves
show the evolution of the nominal user symbol variancesrassiuby the low-complexity de-
tector. The detector switch points, determined by the aladgerithm, occur at, = 10 and

¢, = 26. In this case, the low-complexity algorithm achieves thesgerformance of the un-
conditional MMSE-IC decoder with 55 instead of 43 iterasom general, a small degradation
in achievable performance may be expected, due to the suadjpy of the low-complexity
linear detector.
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6 Concluding remarks

In this work we have extended the DE-GA analysis approactecdtive multiuser joint decod-
ing of [17] to the exact BP algorithm. As a byproduct, we haxterded the analysis of [9]
of the I0-MUD in the large-system limit to the case of nonfarn symbols prior probabili-
ties. Based on the DE-GA performance characterization®gttact BP iterative decoder and
of its IC-based approximations, we have formulated the lpralof optimal user received SNR
distribution in terms of simple linear programming. Thisoaled us to compute the achiev-
able spectral efficiency of convolutionally-coded CDMA fyiven user codes and target BER.
We showed that by optimizing the SNR distribution very siigaint gain in terms of spectral
efficiency can be achieved, especially for lafd&/Ny)sys. Interestingly, the simple uncondi-
tional MMSE-IC algorithm performs very close to the exact@gorithm in terms of achievable
spectral efficiency. Driven by this observation and by tret faat the optimal SNR distribution
consists of a small number of discrete SNR levels, we pralateapproximated version of the
unconditional MMSE-IC algorithm achieving complexity cparable to conventional CDMA
receivers (essentially linear in the number of users orivadgntly, constaniper decoded infor-
mation bit) with very small degradation. As a byproduct of thevelopment of the proposed
low-complexity algorithm, we obtained an interesting gahexpression for the multiuser effi-
ciency of an MMSE filter with mismatched user powers, in thrgéasystem limit.

We wish to conclude this work by pointing out some observetiabout the practical rele-
vance of our findings in CDMA system design:

e For given user codes, decoding algorithm, target BER @dN,)sys, the resulting op-
timal received SNR distribution can be regarded as the tafigtribution of SNR that
somepower controlalgorithm should enforce at the receiver. Notice that saathgpower
control aims at inducing a constant SNR distribution at #eeiver, which we have seen
to be strongly suboptimal with iterative joint detection.

¢ In a near-far environment, where users are affected by vifflgreint propagation channel
gains (due to distance from the base-station and to othgragedion factors such as
fading), in order to induce the optimal received SNR disitidn it is convenient to assign
the users with largest channel gain to the highest SNR lewélsa forth, so that each
user can attain its required received SNR level with minitrexhsmit power. This goes
precisely in the opposite direction of conventional powanteol, that requires that users
with the smallest channel gain transmit at the largest pdewa, in order to render the
received SNR of all users constant. Under a reasonable iyadslsumption, for which
the channel gain of each user is an ergodic process varyirggtione scale much larger
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than the duration of a codeword, the optimal received SNRildigion will also provide
longer battery life to the user terminals with respect tovesrtional power control.

e For the same reason, in a multi-cell environment the optiisialgle-cell) SNR distribu-
tion is expected to provide a smaller total emitted energgnfeach cell, thus reducing the
inter-cell interference (not taken into account by theatmse joint decoder at each base-
station). Therefore, the impact of iterative multiusemjodlecoding with optimal SNR
distribution on the spectral efficiency of a cellular systemght be even more evident
than in the standard multiple-access (single-cell) secemasamined in this work.

Although very interesting, the issue of a power control alfpon inducing the required received
SNR distribution while maximizing the user battery life &mdminimizing the total inter-cell
interference is out of the scope of this work and is left fdufe investigation.

APPENDIX

A Proof of Proposition 2

The proof of Proposition 2 follows closely the analysis teiciue of the I0-MUD develped
in [9] for uniform symbol a priori probabilities and constarser power, and extended in [43] to
the case of an arbitrary user power distribution. This tégpina is based on thReplica Method
which is a common tool in statistical mechanics [44]. Themdiiference between [9] and
the case at hand is that here, at any given iteration 0, the 10-MUD (15) for usel: treats
the messageS&;‘;f : j # k} provided by the SISO decoders at the previous iterationaas (|
ratios) prior probabilities for the interfering user synidoTherefore, Proposition 2 is proved
by simply extending the result of [9] to the case of arbitrsyynbol prior probabilities under the
assumption that, a8 — oc, the empirical distribution of these prior probabilitiesnverges
almost everywhere to some deterministic distirbution. Rune similarity of our proof and [9],
we shall give the details of the different steps, while wetbyioutline the common parts.

With reference to the channel model (1), the pdf of the chhaugputy, conditioned on

the spreading sequencgss proportional to
1 2
Z(yn,S) = Z Pr(x,) exp (—@b’n — SWx,,| ) (60)
xp €{F1}K

if the fictious noise variance? is set to the true noise varianeg. Moreover (60) is independent
of n since the input is assumed to be stationary. Thus, the tidexinis dropped ana is used



G. Caire, R. Miller and T. Tanakaubmitted to IEEE IT Trans., March 2003. 29

for different purpose in the rest of this section. In statetmechanics, the quantity

Ti(y,S) = 108 7(y.S) (61)

is called thefree energy One of the fundamental principles of statistical mechamsahat the
free energy is self-averaging in the large system limit.tTiha

lim Fx(y,S) = lim E[Fk(y,S) = F (62)
K—x K—o00
with probability 1, where averaging is with respect to thadem spreading sequences and
the channel noise. A standard trick used in statistical raeicis in order to comput is the
Replica Method. This consists of re-writing the free enargthe following way
.1 . 0
F = lim — lim —log (E[Z"(y,S)]) (63)

K—oo K n=0 0On

with the advantage that the expectation operator has movedhe argument of the logarithm.
Now, the free energy is evaluated for integeland the results is assumed to generalize to
positive realn. Further discussion about the Replica Method and its joatibn is provided
in [44, 9].

In passing, we notice thata 3"\02:03 + %log 2oy is the large-system differential entropy
of the outputy per dimension. The mutual information (in nat) per dimensggiven by

1 1
J=—-a 3"\02:(,3 + 5 log 2mop — 5 log 2meo; = —a 3"\02:03 ~ 3 (64)

Following [9], by using theReplica Symmetrgssumption (see [9, 43]), Cramér Theorem and
Varadhan Lemma [45], we get that the free energy can be esguless follows. Let(n) be
defined by the following saddle-point

&(n) = sup Lnf;{lG(m, q) — nmm — Maq + By [log ®(Vm, Vg, L)}} (65)

m,q "4 (Y 2

wheren is the replica order. Then,

F = lim L ¢(n) (66)

n—0 dn

In (65),V, L are random variables with joint distribution equal to thmitiof the empirical joint

distribution of
Pr(z, = +1)

Pr(z, = —1)
for K — oo, and®(m, ¢, L) is the moment-generating function of the random vector

Vi 2w, Ly = log

{zozp:a=1,...,n, 0<b<a}
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for z; i.i.d., with pmf defined byog - Pr( “”” = L, and computed in the arguments
m b=0,a#b
)\ab = ~
g b>0,a#b

This is given by

(I)(ﬁl: Zlva L) = Z (H Pr(xz)) exp <Z xaxb)\ab)

(20,21, yzn)E{E1} 7+ \i=0 bea

- X (f[ Pr(xn) exp (mz v (Z ) . 2&)

(Ioaxl ----- In)G{il}"+1 =0

" 2
= Z <HPr xz> 1—i_Texp mzxa ;] (Z«%) +
(T1,0yxn)E{E£1}7 =1 = a=1
1-T _ < q (< 2 —ni/2
+ 5 exXp | —m Zxa + 3 Zxa e ™ (67)

a=1

- > <ﬁPr(xi)> <#/ exp( (20/q + ) Zxa) Dz+

(T1,yeyzn)E{E1}r \i=1
1-T - i
+ 5 exp —(z\/c; +m) Zxa Dz |e ™ (68)
R a=1
where we have used the identity (Hubbard-Stratonovictstcam [9])
pAX?/2 _ / eEVAXZp
R

and we have define@ = tanh(L/2) so thatPr(zy = +1) = (1 +1)/2,Pr(zo = —1) =
(1-1T)/2.

In passing, we notice here thatd, is the extrinsic log-ratio provided by the SISO decoder
for userk with input SNRV,n/o? then, under the Gaussian Approximation, we have that for
givenV;,

Ly ~ N(2p(Vin/og), 4p(Vin/og))
Hence, the limiting joint distribution of, L is completely defined by’ /o3 ~ F, andL ~

N@u(Vn/ag), 4p(Vn/ag)) givenV.
Also, for later use we notice that, from (67), we have

o 1 0% _, _ _ n._ .
aq (m Q:L) - iwq)(ma%ﬁ‘) - gé(m,q,ﬁ;) (69)
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We can further simplify the expression of the moment-getivagdunction in (68) by notic-
ing that
~ ~ = 14+ T ~ - 1-=T =
Pr(z, = +1)e*VI™ + Pr(z, = —1)6_(z\/a+m) = ——; e?Vatm 4 5 e_(z\/a+m>
= cosh(z\/+ ) (1 + tanh(£/2) tanh(2/3 + rn))
cosh(z+/q + m + £/2)
cosh(L/2)

and, similarly,

I = - h(z\/q+m — L/2)
P 0= 1 (z\/g—i—m) P .= -1 Z\/&-I-m _ CcOS
r(z, = +1)e + Pr(x Je cosh(L/2)

Then, by rearranging the terms in the sum with respeat;to. ., x,, in (68) and summing by
using the two above identities, we obtain

fR[ +T) cosh™(2/q +m + L/2) + (1 — T) cosh™(2/q +m — £/2)| Dz

(m. 4, L) = 2 cosh™(L/2)

(70)
The functionG(m, ¢) in (65) does not depend on the symbols prior probabilitied ian
directly obtained from [9] as

Liog I+ 70 —g)" (71)

G(m,q) =
2 1+;—2(1—q)+””°(1+%(1—2m+q))

Let F(n,m,q, m,q) denote the argument of the extremization (sup-inf) in (6B)e saddle-
point condition is obtained by the set of equations

0 0 0 0
om dq ) q (72)
In order to obtain¥ we should: 1) find the solution of the system of equations;(22find
&(n) by substituting this solution inté'(n, m, ¢, m, q); 3) evaluate the derivative and the limit
in (66). As a matter of fact, from a continuity argument, ieguivalent (but easier) to solve for

the system of equations

0 0 0 0
iy ot = 0 lim 5 F =0, lm o B =0, lim -2k =0 (73)

and substitute the solution into

.0 , o~
Tllli)r(l)a_F(n:m7Q7m:®
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After some algebra, using (69), the saddle-point equa@ﬁ‘ﬁcan be put in the explicit form

m = Eyg [V/ {1+Ttanh( VvV +Vm+L/2>
R 2

q = Evge [V/ {1+Ttanh2< 2V +Vm+£/2>
R 2

~ 1 _ ot +a(l-2m+q)
mo= -3 ’ 7= 2

o2+ a(l —m) (02 4+ a(l —m))
Since we are interested in the 10-MUD, we et = o7 (see [9]) and find that, at the saddle-
point given by (74), the solution yields = ¢ andm = ¢. In this case, by following the
gauge-theory argument of [46], it is possible to show thatReplica Symmetry assumption
made before in order to obtain (65) is indeed valid for thélstaolutions of the IO-MUD with
arbitrary symbol priors.

Notice that, in (15), when computing the output message $er k1 only the symbol prior
probabilities of interfering userg # £ are used: the a priori pmf for the uskrsymbol is
uniform Pr(z, = 1) = 1/2. Therefore, the 10-MUD error probability for uséris given by
Pr(L(mlld < 0|z, = +1) even for arbitrary prior probabilities on the other users. al way
completely analogous to [9], we can show that in the largeesy limit

Pr(L™d < 0lz, =+1) =Q (\/ﬁlﬂ)i)

Hence,s2m (independent of the user indéy is the ME of the 10-MUD in the large-system
limit. By using the first and the third equation in the systef)( and replacing andq by m

andm, respectively, and by substituting = ¥ /o2 we obtain the implicit expression for the
ME of the I0-MUD with arbitrary prior probabilities on the sybols of the interfering users as

1 1 1+T
T - 1+Oz<—2—E%L[7/R{ 5 tanh<\/7\1f+’y\ll+ >+
To

Lo 5 tanh( \/vTIJJm\If—E)}DzD

) 1 — tanh (270 + 77)
a-1) [ :
R 1 — T?tanh (z\/*y\ll + *y\Il)

Finally, by using the fact that given~ is ~ N(2u(yn),4u(yn)) and by substituting” =
tanh(L/2) in (75) we obtain (29). By computinm,,_,o 2 F(n,m, ¢, m,q) in the saddle-
point solution given by (74), and rewriting the result innerof ¥, we obtain the corresponding
expression for the free enerdy. As a matter of fact, we prefer to give the result in terms of
the mutual informatiord that, after some algebra, can be put in the form (30), exptess
bit/dimension.

= 1+04E%L Y

(75)

S tanh (/77 + Vi - £2) } D]
tanh(\ﬁ+vm L/Q)} }

(74)
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From standard results in statistical mechanics [9], whén (as multiple stable solutions,
the performance of the I0O-MUD corresponds to the solutioximeing the free energy or,
equivalently, minimizing the mutual information. This pes all statements in Proposition 2.

B Proofs of Proposition 7 and of Corollary 7.1

Fix userk as the reference user. The nominal and the actual intederngins noise covariance
matrices are given by

2U = I+ Z UijS?
ik
Xp = I+ ) Psjs! (76)
i#k
respectively. The output SINR of the mismatched MMSE fil@r dserk that assumeX;

instead ofXp is given by e
o = Pk 3 (77)
kU <P~y Sk
From the standard result of [6] we have that, under the assangof Proposition 7, the nom-
inal ME 5 = sT';'s; converges with probability 1 to the unique fixed point of treeTHanly
equation (56).
We re-write the denominator of (77) in the large-systemtliasi

s, ZpE sy = si X, (Z Pjsjsjr) X, sk + 5L 2, sk
i#k
w.p, 1 . 1 —1 T —1 : 1 -2
5 lim (zU (Z Pjsjsj> ) ) + lim —tr (Z,°) (78)
J#k
where we used the result proved in [47]

w.p. 1

.1
I;me Ztr(AK) (79)

lim s; Agsy
K—o0

for a sequence ab x L random matriceg\ i statistically independent af. with well-defined
limiting eigenvalue distribution and finite maximum eigahwe. Notice that for all inverse
covariance matrices and powers thereof involved in (78),nttaximum eigenvalue is always
upper bounded by 1.
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Next, we evaluate the two limits in (78) separately. For th& fve have

- 1 -
—tr( <ZPS]]) ) = 7. Pss
ik ik

2

a 1 Uj
= '_E:Fﬁ? ?‘ T EUsﬂsz Sj
L o1+ Ustsgls, 7
2
[ U;isTS, s, -
= —ZP TZU]s] <1+Us Tyl s) SJTEU?JSJ
i#k { U3
2U., STEU]S] o
T Sj ~v,;Si
1+ Ujs; EU]S]
w.p. 1 . « P]B
= lim — —_—
1)2
PB
= E e 80
aluy p [(1+UA)2] (80)

where (a) follows from the matrix inversion lemma, by wrdix;; = U, s]s + Xy ;, where

2U,j =1+ Z []gSgS%1

£k 4]
we used repeadetly the lemma (79), and we defined the limits

1 _
A = lim Ztr(EU,lj)

K—x

— lim ot (Zp2) (81)

K—oo L
Under the assumptions of Proposition 7, the malix, X; andXp have all a well-defined
limiting eigenvalue distribution and are invertible withrgbpability 1, therefore, the limitsin (81)
exist and are immediately obtained from the limiting eigdne distributions.
For the second limitin (78) we have, again using lemma (79),

K—o0

lim %tr (27*) =B (82)

since the limiting eigenvalue distribution &f;; andX; ; coincide (notice that the two matrices
differ by the rank-1 matri>Ujsjs]T, that has no effect on the limiting eigenvalue distribujion
Let G()\) denote the limiting eigenvalue distribution ®f ; U;s;s] . Then, we can write

A = ——dG (A
[

B = / de(A) (83)
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Eventually, the last line of (78) is given by

P [ maxpdGO) ]+/ 1

(1+U [ t5dG(\) (1+1)?

D = OéEU’p dG()\) (84)

Now, we use the result by Silverstain and Bai (see [6] andeefees therein) yielding'(\) in
terms of its Stieltjes transform:

me(z) 2 / L g6, iz} >0

A—2z
We have ]
me(z) = . (85)
—z+aby |:71+Um(;(z)j|
In particular, we have that defined in (56) is given by
1
n= /H—)\dG(A) = mg(—1) (86)
Furthermore,
[ o) = ma(a)| 2 mi(-1) ")
(14 X)? ~ eV L e

By substituting (86) and (87) in the SINR denominator (84 asing the result in the expres-
sion for the SINR (77) we can write the large-system ME of usejiven by, /Py, as

2

_ Ui
" o0 (1 0o [t o

Since for the matched MMSE receiver (i.e., oy = P;,j = 1,..., K), itmust ben = x, we
obtain

mig(—1) = -
1+ 0By | 75|
By using the above expression in (88) we obtain (55). Thickhates the proof of Proposition
7.

Next, we focus on the proof of Corollary 7.1. L&V, } be a nominal power assignment
adaptedo the true power§ P, }, in the sense thadf.,_, U, = Y1, P, and that the sequences
{P:} and {U,} are sorted in non-decreasing order by the same permutatfdithout loss
of generality, we assume th&P,} and {U,} are non-decreasing (i.e., the common sorting
permutation is the identity). The nominal powers are a coadize choice if > 7, wherex
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andn are the true and the nominal ME given by Proposition 7, respeg. From (55) we see
that this is verified if and only if

o) 2 e [ &)
Assume, for the time being, a finite number of users. Themuabty (89) becomes
1 & 1 &
XX; 1+77Uk z; 1+77Uk (%0)

We make use of the following lemma, proved in [48]:

Lemma. Leta, b andc be real vectors of dimensiali with non-decreasing components. If
b majorizesa, then

ZZ_ZZZ’_IC (91)

0
We apply the lemma to (90) by letting. = Uy, by = P, ande, = (1 + nU,)? and
we conclude that if P} majorizes{U}}, then (90) is verified. Finally, a standard continuity
argument extends the resultid — ~c.
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Figure 1: Coded CDMA with AWGN. User encoders may includeilgaving.
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a = 1.5 (left), « = 3.0 (right) constanty = 10 dB andn = 0. The intersections of the curves
with the straight line give the solutions of (29).
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Figure 4: BER vsE, /N, for « = 1.0, constant receiver SNR, convolutional code with genera-
tors (133, 171)g and different iterative decoding algorithms.
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Figure 5: BER vsE, /N, for o = 2.0, constant receiver SNR, convolutional code with genera-
tors (133, 171)g and different iterative decoding algorithms.
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Figure 6: DE-GA mapping functio (g, o, ) for the exact BP decodef,/N, = 6 dB,
constant and optimized SNR distributions,= 4.5 and convolutional code with generators
(133,145, 175)s.
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Figure 7: Spectral efficiency vz, /N, at BER< 10~° for convolutionally-code CDMA with
user codes with generatos33, 145, 175)s, optimized received SNR distribution and different
iterative decoding algorithms. Curves for joint detectad optimal codes (binary and Gaus-
sian input), and separated MMSE and SUMF detection and degd@Gaussian inputs) are
reported for the sake of comparison.
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Figure 8: Spectral efficiency vdz, /N, at BER< 10~° for convolutionally-code CDMA with
user codes with generatos33, 145, 175)g, optimized received SNR distribution and constant
received SNR distribution with iterative and separate ctedea and decoding. Each set of
curves shows the performance of exact BP, conditional MNISHinconditional MMSE-IC
and SUMF-IC (from top to bottom curve). Obviously, for segtardetection conditional and
unconditional MMSE coincide.
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Figure 9: Optimized SNR distribution for the unconditiohndMSE-IC receiver witha = 4.5,
convolutional code with generatof$33, 145, 175)s and £, /N, = 6.29 dB.
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Figure 10: Evolution of the multiuser efficiency (left) antktloe user residual symbol variances

(right) with the decoder iterations for the system of Fig. 9.
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Figure 11: Evolution of the multiuser efficiency (left) antkloe user residual symbol variances
(right) with the decoder iterations for the system of Fig. Bmthe low-complexity detector
algorithm.



