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Abstract—The method of types is one of the key technical
tools in Shannon Theory, and this tool is valuable also in other
fields. In this paper, some key applications will be presented in
sufficient detail enabling an interested nonspecialist to gain a
working knowledge of the method, and a wide selection of fur-
ther applications will be surveyed. These range from hypothesis
testing and large deviations theory through error exponents for
discrete memoryless channels and capacity of arbitrarily varying
channels to multiuser problems. While the method of types is
suitable primarily for discrete memoryless models, its extensions
to certain models with memory will also be discussed.

Index Terms—Arbitrarily varying channels, choice of decoder,
counting approach, error exponents, extended type concepts,
hypothesis testing, large deviations, multiuser problems, universal
coding.

I. INTRODUCTION

ONE of Shannon’s key discoveries was that—for quite
general source models—the negative logarithm of the

probability of a typical long sequence divided by the number of
symbols is close to the source entropy; the total probability
of all -length sequences not having this property is arbitrarily
small if is large. Thus “it is possible for most purposes
to treat long sequences as though there were just of
them, each with a probability ” [75, p. 24]. Shannon
demonstrated the power of this idea also in the context of
channels. It should be noted that Shannon [75] used the term
“typical sequence” in an intuitive rather than technical sense.
Formal definitions of typicality, introduced later, need not
concern us here.

At the first stage of development of information theory, the
main theoretical issue was to find the best rates of source
or channel block codes that, assuming a known probabilistic
model, guarantee arbitrarily small probability of error (or toler-
able average distortion) when the blocklengthis sufficiently
large. For this purpose, covered by the previous quotation from
Shannon [75], typical sequences served as a very efficient and
intuitive tool, as demonstrated by the book of Wolfowitz [81].

The limitations of this tool became apparent when interest
shifted towards the speed of convergence to zero of the error
probability as . Major achievements of the 1960’s
were, in the context of discrete memoryless channels (DMC’s),
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the “random coding” upper bound and the “sphere packing”
lower bound to the error probability of the best code of a given
rate less than capacity (Fano [44], Gallager [46], Shannon,
Gallager, and Berlekamp [74]). These bounds exponentially
coincide for rates above a “critical rate” and provide the exact
error exponent of a DMC for such rates. These results could
not be obtained via typical sequences, and their first proofs
used analytic techniques that gave little insight.

It turned out in the 1970’s that a simple refinement of the
typical sequence approach is effective—at least in the discrete
memoryless context—also for error exponents, as well as for
situations where the probabilistic model is partially unknown.
The idea of this refinement, known as the method of types, is
to partition the -length sequences into classes according to
type (empirical distribution). Then the error event of interest is
partitioned into its intersections with the type classes, and the
error probability is obtained by summing the probabilities of
these intersections. The first key fact is that the number of type
classes grows subexponentially with. This implies that the
error probability has the same exponential asymptotics as the
largest one among the probabilities of the above intersections.
The second key fact is that sequences of the same type are
equiprobable under a memoryless probabilistic model. Hence
to bound the probabilities of intersections as above it suffices
to bound their cardinalities, which is often quite easy. This
informal description assumes models involving one set of
sequences (source coding or hypothesis testing); if two or more
sets of sequences are involved (as in channel coding), joint
types have to be considered.

In this paper, we will illustrate the working and the power
of the method of types via a sample of examples that the
author considers typical and both technically and historically
interesting. The simple technical background, including con-
venient notation, will be introduced in Section II. The first
key applications, viz. universally attainable exponential error
bounds for hypothesis testing and channel block-coding, will
be treated in Sections III and IV, complete with proofs. The
universally attainable error exponent for source block-coding
arises as a special case of the hypothesis testing result. A
basic result of large deviations theory is also included in
Section III. Section V is devoted to the arbitrarily varying
channel (AVC) capacity problem. Here proofs could not be
given in full, but the key steps are reproduced in detail
showing how the results were actually obtained and how
naturally the method of types suggested a good decoder. Other
typical applications are reviewed in Section VI, including
rate-distortion theory, source-channel error exponents, and
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multiuser problems. Although the method of types is tailored
to discrete memoryless models, there exist extensions of the
type concept suitable for certain models with memory. These
will be discussed in Section VII.

The selection of problems and results treated in this paper
has been inevitably subjective. To survey all applications of
the method of types would have required a paper the size
of a book. In particular, several important applications in
Combinatorics are not covered, in this respect the reader
should consult the paper of Körner and Orlitsky in this issue.

While historical aspects were taken seriously, and a rather
large list of references has been included, no attempts were
made to give a detailed account of the history of the method
of types. About its origins let us just make the following brief
comments.

The ingredients have been around for a long time. In
probability theory, they appear in the basic papers of Sanov
[72] and Hoeffding [53] on large deviations, cf. Section
III below. A similar counting approach had been used in
statistical physics even earlier, dating back to Boltzmann
[18]. A remarkable example is the paper of Schrödinger [73]
that predates modern large deviations theory but remained
unknown outside the physics community until recently. Infor-
mation theorists have also used ideas now considered pertinent
to the method of types. Fano’s [44] approach to the DMC error
exponent problem was based on “constant composition codes,”
and Berger’s [13] extension of the rate-distortion theorem to
sources with partially known and variable statistics relied upon
his key lemma about covering a type class. Later, in the 1970’s,
several authors made substantial use of the concept now called
joint type, including Blahut [16], Dobrushin and Stambler [40],
and Goppa [48].

While the ideas of the method of types were already around
in the 1970’s, this author believes that his research group
is fairly credited for developing them to a general method,
indeed, to a basic tool of the information theory of discrete
memoryless systems. The key coworkers were János K̈orner
and Katalin Marton. A systematic development appears in the
book of Csisźar and K̈orner [30]. Were that book written now,
both authors would prefer to rely even more extensively on
types, rather than typical sequences. Indeed, while “merging
nearby types, i.e., the formalism of typical sequences has
the advantage of shortening computations” [30, p. 38], that
advantage is relatively minor in the discrete memoryless
context. On the other hand, the less delicate “typical sequence”
approach is more robust, it can be extended also to those
models with memory or continuous alphabets for which the
type idea apparently fails.

II. TECHNICAL BACKGROUND

The technical background of the method of types is very
simple. In the author’s information theory classes, the lemmas
below are part of the introductory material.

will denote finite sets, unless stated otherwise;
the size of is denoted by . The set of all probability
distributions (PD’s) on is denoted by . For PD’s and

, denotes entropy and denotes information

divergence, i.e.,

with the standard conventions that ,
if . Here and in the sequel the base

of and of is arbitrary but the same; the usual choices
are or .

The type of a sequence and the joint
type of and are the PD’s
and defined by letting and be
the relative frequency of among and of
among , respectively, for all ,

. Joint types of several -length sequences are defined
similarly. The subset of consisting of the possible types
of sequences is denoted by .

Lemma II.1:

Proof: Elementary combinatorics.

The probability that independent drawings from a PD
give , is denoted by . Similarly, the

probability of receiving when is sent over
a DMC with matrix , is denoted by . Clearly, if

have type and have joint type

(II.1)

(II.2)

Here is defined for any by

(II.3)

where denotes the -marginal of .
We will write , respectively , to denote

that or is for each or with
or respectively. The divergences in

(II.1) and (II.2) are finite iff , respectively, .
For , the type class will

be denoted by . Similarly, for we write
: , , .

Lemma II.2: For any type

(II.4)

and for any PD

(II.5)
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Proof: Equation (II.1) with gives

Hence (II.4) follows because

where the first equality can be checked by simple algebra.
Clearly, (II.1) and (II.4) imply (II.5).

Remark: The bounds (II.4) and (II.5) could be sharpened
via Stirling approximation to factorials, but that sharpening is
seldom needed.

In the sequel, we will use the convenient notationsand
for inequality and equality up to a polynomial factor, i.e.,

means that for all , where
is some polynomial of , and means

that both and . When and
depend not only on but on other variables as well,

it is understood that the polynomial can be chosen
independently of those. With this notation, by Lemmas II.1
and II.2, we can write

(II.6)

Random variables (RV’s) with values in , , etc., will
be denoted by (often with indices). Distributions,
respectively, joint distributions of RV’s are denoted by ,

, etc. It is often convenient to represent types, particularly
joint types, as (joint) distributions of dummy RV’s. For dummy
RV’s with or , etc.,
we will write , , etc., instead of , , etc. Also, we
will use notations like : .

Lemma II.3: For representing a joint type, i.e.,
, and any and channel

(II.7)

Proof: As is constant for , it equals
. Thus the first assertion follows from (II.4), since

. The second assertion follows
from the first one and (II.2).

The representation of types by dummy RV’s suggests the
introduction of “information measures” for (nonrandom) se-
quences. Namely, for , , we define the (non-
probabilistic or empirical) entropy , conditional entropy

, and mutual information as , ,
for dummy RV’s whose joint distribution

equals the joint type . Of course, nonprobabilistic
conditional mutual information like is defined
similarly. Notice that on account of (II.1), for any
the probability is maximum if . Hence the
nonprobabilistic entropy is actually the

maximum-likehood estimate of the entropy based upon
the observed sequence.

III. SOURCE BLOCK CODING, HYPOTHESIS

TESTING, LARGE DEVIATION THEORY

The working of the method of types is particularly simple
in problems that involve only one set of sequences, such as
source coding and hypothesis testing. Theorems III.1 and III.2
below establish the existence of source block codes and tests
of (in general, composite) hypotheses, universally optimal in
the sense of error exponents. Theorem III.1 appeared as a first
illustration of the method of types in Csiszár and K̈orner [30,
p. 37], cf. also Longo and Sgarro [63]. Formally, as pointed
out below, it is a special case of Theorem III.2. The latter is
effectively due to Hoeffding [53].

Theorem III.1: Given , the sets :
satisfy

(III.1)

and for every PD

(III.2)

where

if (III.3)

Moreover, for any sequence of sets satisfying (III.1),
we have for all

(III.4)

Interpretation: Encoding -length sequences by
assigning distinct codewords to sequences of empirical en-
tropy , this code is universally optimal among those of
(asymptotic) rate , for the class of memoryless sources: for
any source distribution of entropy less than , the error
probability goes to exponentially, with exponent that could
not be improved even if the distribution were known.

For a set of PD’s, and , write

(III.5)

Further, for and , denote by the
“divergence ball with center and radius ,” and for

denote by the “divergence -neighborhood”
of

(III.6)
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Theorem III.2: Given any set of PD’s and
, let be the set of those whose type

is in the complement of if , respectively,
in the complement of if where ,

. Then

(III.7)
and for every

if

if
(III.8)

where denotes the closure of .
Moreover, for arbitrary and in and any sequence

of sets

implies

(III.9)

and

implies

(III.10)

Interpretation: For testing the null-hypothesis that the true
distribution belongs to , with type 1 error probability required
to decrease with a given exponential rate or just go to zero, a
universally rate optimal test is the one with critical region
(i.e., the test rejects the null-hypothesis iff ). Indeed, by
(III.9), (III.10), no tests meeting the type 1 error requirement
(III.7), even if designed against a particular alternative,
can have type 2 error probability decreasing with a better
exponential rate than that in (III.8) (when , this follows
simply because

by (III.5) and (III.6); in the case , one needs the
observation that

for every ). In particular, for such that the exponent
in (III.8) is , the type 2 error probability cannot exponen-
tially decrease at all. The notion that the null-hypothesis is
rejected whenever the type of the observed sampleis outside
a “divergence neighborhood” of is intuitive enough. In
addition, notice that by Lemma II.1 the rejection criterion

is equivalent to

Hence the above universally rate optimal tests are what statis-
ticians call likehood ratio tests.

Remarks:

i) One sees from (III.9) that in the case , the type 2
error probability exponent (III.8) could not be improved
even if (III.7) were replaced by the weaker requirement
that

for each

ii) In the case , the requirement (III.7) could be
relaxed to

for each

provided that ; the latter always
holds if for each but not necessarily
otherwise.

A particular case of this result is known as Stein’s
lemma, cf. Chernoff [20]: if a simple null-hypothesis

is to be tested against a simple alternative, with
an arbitrarily fixed upper bound on the type 1 error
probability, the type 2 error probability can be made to
decrease with exponential rate but not better.

iii) Theorem III.2 contains Theorem III.1 as the special case
, , where is the uniform

distribution on .

Proof of Theorem III.2:Suppose first that . Then
is the union of type classes for types not belonging

to whenever . By the definition (III.6) of
, for such we have and hence, by

Lemma II.2, for each . This
gives by Lemma II.1

for (III.11)

establishing (III.7) (the notation has been defined in Sec-
tion II). Further, is the union of type classes for
types that belong to , thus satisfy

. Hence we get as above

(III.12)

and this gives

(III.13)

To complete the proof in the case , it suffices to
prove (III.9). Given any , the assumption in (III.9)
implies for sufficiently large that

for all

(III.14)

Indeed, else would hold for some
. Since sequences in the same type

class are equiprobable, the latter would imply by Lemma II.2
that

contradicting the assumption in (III.9).
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Given any , take such that

and take such that

(possible for large ). Then by (III.14) and (II.6)

(III.15)

As was arbitrary, (III.15) establishes (III.9).
In the remaining case , (III.11) will hold with

replaced by ; using the assumption , this
yields (III.7). Also (III.12) will hold with replaced by .
It is easy to see that implies

hence we get

(III.16)

To complete the proof, it suffices to prove (III.10). Now,
implies, for large , that

for some

(III.17)

Indeed, else would hold for
all , implying

For large , this contradicts , since
implies by Lemmas II.1 and II.2 that

the -probability of the union of type classes with
goes to as .

Pick satisfying (III.17), then

(III.18)

Here by assumption, and this implies
. Thus (III.18) gives (III.10).

Large Deviations, Gibbs’ Conditioning Principle

Large deviation theory is concerned with “small probability
events,” typically of probability going to zero exponentially.
An important example of such events is that the type of an in-
dependent and identically distributed (i.i.d.) random sequence

belongs to a given set of
PD’s on that does not contain the distributionof the RV’s

. In this context, the type of is called the empirical
distribution . Thus

(III.19)

Theorem III.3: For any

(III.20)

and if has the property that

(III.21)

then

(III.22)

Corollary: If satisfies (III.21) and a unique
satisfies then for any fixed , the
conditional joint distribution of on the condition

approaches as .

Remarks:

i) The condition (III.21) is trivially satisfied if is an open
subset of or, more generally, if each with

is contained in the closure of the set of those
for which all sufficiently close to

belong to . In particular, (III.8) for is an
instance of (III.22). Hoeffding [53] considered sets of
PD’s such that (III.21) holds with rate of convergence

. For such , (III.22) can be sharpened to

(III.23)

ii) The empirical distribution can be defined also for
RV’s taking values in an arbitrary (rather
than finite) set , cf. Section VII, (VII.21). Theorem
III.3 and its extensions to arbitrary are referred to as
Sanov’s theorem, the first general result being that of
Sanov [72], cf. also Dembo and Zeitouni [39].

iii) The Corollary is an instance of “Gibbs’ conditioning
principle,” cf. [39].

Proof: By (III.19) we have

(III.24)

By Lemma II.2 and (III.5), this gives

(III.25)

whence Theorem III.3 follows.
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To prove the Corollary, notice first that for any type
the conditional probability of

on the condition is the same as the probability of
the following: given an urn containing balls marked with
symbols , where the number of balls marked by
equals , if balls are drawn without replacement their
consecutive marks will be . Clearly, this probability
approaches that for drawing with replacement, uniformly in
the sense that the difference is less than any fixed for

sufficiently large depending on and only. Thus

if

(III.26)

Let

for each (III.27)

be a small neighborhood of . As is closed there
exists with , and
by the assumed uniqueness of this implies

for some
(III.28)

The Corollary follows since

where for sufficiently large the absolute value term is
arbitrarily small if with small, by (III.26)
and (III.27), while the conditional probability factor is less
than if , by (III.28), Lemma II.2,
and (III.22).

IV. ERROR EXPONENTS FORDMC’S

A first major success of the method of types was to gain
better insight into the error exponent problem for DMC’s.
Theorem IV.1, below, due to Csiszár, Körner, and Marton
[32], shows that the “random coding” error exponent for
constant composition codes is attainable universally, i.e., by
the same encoder and decoder, for all DMC’s for which it
is positive. An important feature of the proof is that, rather
than bounding the expectation of the error probability for
an ensemble of codes (and conclude that some code in the
ensemble meets the obtained bound), the error probability is
bounded for a given codeword set and a given decoder. The
role of “random coding” reduces to show the existence of
a “good” codeword set. We will also reproduce the simple
“method of types” proof of the “sphere packing” bound for
constant composition codes (Theorem IV.2, cf. Csiszár and

Körner [30, p. 181]) establishing that the previous universally
attainable error exponent is often (though not always) the best
possible even for a known channel. This optimality holds
among codes with a fixed codeword type, while the type
yielding the best exponent depends on the actual channel.

Lemma IV.1: For any and type , there
exist sequences in such that
for every joint type with

(IV.1)

(cf. Section II for notation).

Remark: Equation (IV.1) implies that for
each . In particular, are distinct sequences
if .

Proof: By a simple random coding argument. For com-
pleteness, the proof will be given in the Appendix.

Theorem IV.1:For any DMC , a code with
codeword set as in Lemma IV.1 and decoder

defined by

if for each
if no such exists

(IV.2)
has maximum probability of error satisfying

(IV.3)

where

(IV.4)

and

(IV.5)

is the “random coding” exponent for codeword type.

Remarks:

i) Denote by the mutual information
when . Clearly,
iff . Thus the channel-independent codes
in Theorem IV.1 have exponentially decreasing error
probability for every DMC with ; it
is well known that for channels with
no rate- codes with codewords in have small
probability of error. The exponent is best
possible for many channels, namely, for those that satisfy

, cf. Remark ii) to Theorem
IV.2.

ii) It follows by a simple continuity argument that for any
DMC
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is also an attainable error exponent with rate-codes,
though no longer channel-independent ones (as the max-
imizing depends on ). This exponent is positive
for every less than the channel capacity

. It was first derived by Fano [44], and
then in a simple way by Gallager [46], in algebraic forms
different from that given above.

iii) The “empirical mutual information decoder” (IV.2) was
first suggested by Goppa [48] as one not depending on
the channel and still suitable to attain channel capacity.
This decoder could be equivalently defined, perhaps
more intuitively, by minimizing the “entropy distance”

of the codewords from the received. Lemma
IV.1 may be visualized as one asserting the existence
of codes with good entropy distance distribution. As
Blahut [16] observed, among sequences in a single
type class the entropy distance satisfies the axioms of
a metric, except that it may vanish for certain pairs of
distinct sequences.

Proof of Theorem IV.1:As is constant for
, we may write, using (II.7)

(IV.6)

where the summation is for all joint types
with .

This and other sums below will be bounded in thesense
by the largest term, without explicitly saying so.

To bound the cardinality ratios in (IV.6), notice that by the
definition (IV.2) of , iff there exists such that
the joint type of is represented by dummy RV’s

with

(IV.7)

Thus, denoting by the set of joint types

with given , with , and satisfying (IV.7),

(IV.8)

By Lemma II.3

(IV.9)

Since only when , (IV.1)
and (IV.9) imply that

(IV.10)

This bound remains valid if is replaced by
, since the left-hand side is always . Hence

(IV.8) gives

(IV.11)

where the last inequality holds by (IV.7). Substituting (IV.11)
into (IV.6) gives (IV.3), completing the proof.

Theorem IV.2:Given arbitrary , , and DMC
, every code of sufficiently large blocklength

with codewords, each of the same type,
and with arbitrary decoder, has average probability of error

(IV.12)

where

(IV.13)

is the “sphere packing” exponent for codeword type.

Remarks:

i) It follows from Theorem IV.2 that even if the codewords
are not required to be of the same type, the lower bound
(IV.12) to the average probability of error always holds
with replaced by

The latter is equal to the exponent in the “sphere
packing bound” first proved by Shannon, Gallager, and
Berlekamp [74]. The first simple proof of the sphere
packing bound was given by Haroutunian [52]. The
author is indebted to Haroutunian for the information
that he had been aware also of the proof reproduced
below but published only his other proof because it was
not restricted to the discrete case.

ii) Both and are con-
vex functions of , positive in the same interval

; they are equal if where
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is the abscissa of the leftmost point where
the graph of as a functions of meets
its supporting line of slope . The same holds for

and which are (positive and)
equal in an interval . For in this
interval, their common value is the exact error exponent
for rate- codes. For smaller rates, the exact error
exponent is still unknown.

iii) Dueck and Körner [42] showed that for codes
with codeword set and rate

with , the
average probability of correct decoding goes to zero
exponentially with exponent not smaller than the
minimum of for

satisfying . This result
follows from (IV.16) by Lemma II.3. In [42] also its
tightness was proved.

Proof of Theorem IV.2:Given a codeword set

and arbitrary decoder , write

(IV.14)

For every joint type with

(IV.15)

Hence, supposing , it follows by (II.6)
and (II.7) that

(IV.16)

In particular, if and (sufficiently
large), the left-hand side of (IV.16) is less than , say, and
hence

if (IV.17)

On account of (IV.4) and (IV.14), it follows from (IV.17) and
Lemma II.3 that

(IV.18)

for joint types with . A
simple continuity argument shows that for sufficiently large
the minimum of for these joint types is less than
the minimum in (IV.13) plus , and this completes the proof.

Related Further Results

The proof technique of Theorem IV.1 has lead to various
further results. Already in Csiszár, Körner, and Marton [32]
a stronger result than Theorem IV.1 was proved, with an
exponent better for “small rates” than . With
the channel-dependent maximum-likehood decoder, a similar
derivation yields an even better exponent for small rates
that, when optimized with respect to the codeword type,
gives the exponent of Gallager’s [46] “expurgated bound”
(cf. [30, pp. 185, 193]). In [32] the problem of separately
bounding the erasure and undetected error probabilities was
also addressed; a decoder yields
an erasure if , while an undetected error occurs
if equals a message index but not the
correct one. Using a (still channel-independent) modification
of the decoder (IV.2), jointly attainable exponents for erasure
and undetected error probabilities were obtained (cf. [30, pp.
174–177]). Csisźar and K̈orner [28] derived exponential error
bounds attainable with (a codeword set as in Lemma IV.1
and) decoders defined similarly to (IV.2) but with
instead of for an arbitrary function on ,
possibly channel-dependent. Recently Telatar and Gallager
[77] used channel-dependent decoders of a somewhat more
general kind to derive jointly attainable exponents for erasure
and undetected error probabilities improving upon those in
[32].

A particular class of -decoders received considerable atten-
tion recently. They are the-decoders defined by minimizing
a “distance”

a given function on (IV.19)

setting if for all , and
if no such exists. Here the term “distance” is

used in the widest sense, no restriction onis implied. In this
context, even the capacity problem is open, in general. The
-capacity of a DMC is the supremum of rates of codes with

a given -decoder that yield arbitrarily small probability of
error. In the special case when or according as

or , -capacity provides the “zero undetected
error” capacity or “erasures-only” capacity. Shannon’s zero-
error capacity can also be regarded as a special case of
-capacity, and so can the graph-theoretic concept of Sperner

capacity, cf. [35].
A lower bound to -capacity follows as a special case

of a result in [28]; this bound was obtained also by Hui
[55]. Balakirsky [12] proved by delicate “type” arguments
the tightness of that bound for channels with binary input
alphabet. Csisźar and Narayan [35] showed that the mentioned
bound is not tight in general but its positivity is necessary for
positive -capacity. Lapidoth [59] showed that-capacity can
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equal the channel capacity even if the above lower
bound is strictly smaller. Other recent works addressing the
problem of -capacity or its special case of zero undetected
error capacity include Merhav, Kaplan, Lapidoth, and Shamai
[67], Ahlswede, Cai, and Zhang [9], as well as Telatar and
Gallager [77].

V. CAPACITY OF ARBITRARILY VARYING CHANNELS

AVC’s were introduced by Blackwell, Breiman, and
Thomasian [15] to model communication situations where
the channel statistics (“state”) may vary in an unknown and
arbitrary manner during the transmission of a codeword,
perhaps caused by jamming. Formally, an AVC with (finite)
input alphabet , output alphabet , and set of possible states

is defined by the probabilities of receiving
when is sent and is the state. The corresponding
probabilities for -length sequences are

(V.1)

The capacity problem for AVC’s has many variants accord-
ing to sender’s and receivers’s knowledge about the states,
the state selector’s knowledge about the codeword, degree
of randomization in encoding and decoding, etc. Here we
concentrate on the situation when no information is available
to the sender and receiver about the states, nor to the state
selector about the codeword sent, and onlydeterministic codes
are permissible.

For a code with codeword set and decoder
, the maximum and average proba-

bility of error are defined as

(V.2)

where

(V.3)

The supremum of rates at which transmission with arbitrarily
small maximum or average probability of error is possible,
is called the -capacity or -capacity , respectively.
Unlike for a DMC, is possible, and may be
zero when the “random coding capacity” is positive. Here

is the supremum of rates for which ensembles of codes
exists such that the expectation of over the ensemble is
arbitrarily small for and all . Already
Blackwell, Breiman, and Thomasian [15] showed that

where (V.4)

and gave an example where .
Below we review the presently available best result about
-capacity (Theorem V.1; Csiszár and K̈orner [29]), and

the single-letter characterization of-capacity (Theorem V.2;
Csisźar and Narayan [33]). Both follow the pattern of Theorem
IV.1: for a “good” codeword set and “good” decoder, the

error probability is bounded via the method of types. A
remarkable feature is that the very error-bounding process
naturally suggests a good decoder.

Given an AVC defined by

as above, for input symbols and we write if there
exists PD’s and on such that

for all

(V.5)

The AVC is symmetrizable if there exists a channel
such that

for all (V.6)

It has long been known that iff for all
in [57], and that the right-hand side of (V.9) below is

always an upper bound to [10]. Ericson [43] showed that
symmetrizability implies .

Theorem V.1:For write

where (V.7)

and

subject to (V.8)

Then is an achievable rate for the max-
imum probability of error criterion, for each .
Hence

(V.9)

if the maximum is attained for some with .

Theorem V.2:For a nonsymmetrizable AVC, .

Remarks: The first strong attack at -capacity was that
of Dobrushin and Stambler [40]. They were first to use
large deviations arguments (including Chernoff bounding for
dependent RV’s) as well as “method of types” calculations
to show that for randomly selected codes, the probability
that is not small for a fixed goes
to zero doubly exponentially, implying the same also for.
Unfortunately, as the method of types was not yet developed
at that time, much effort had to be spent on technicalities. This
diverted the authors’ attention from what later turned out to
be a key issue, viz., the choice of a good decoder, causing the
results to fall short of a complete solution of the-capacity
problem. Not much later, Ahlswede [2] found a shortcut to that
problem, proving by a clever trick that whenever

; however, a single-letter necessary and sufficient
condition for remained elusive. Remarkably, the
sufficiency of nonsymmetrizability for does not seem
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easier to prove than its sufficiency for . The strongest
result about -capacity preceding [29] was that of Ahlswede
[4] who proved (V.9) for AVC’s such that never holds
when . He used large deviations arguments similar to
those of Dobrushin and Stambler [40], and was first to use a
sophisticated decoder (but not the one below). A full solution
of the -capacity problem appears a long way ahead; one of
its special cases is Shannon’s celebrated zero-error capacity
problem.

Proof of Theorems V.1 and V.2:First one needs an ana-
log of Lemma IV.1 about the existence of “good” codeword
sets. This is the following

Lemma V.1:For any , , and sufficiently large
, for each type with there exist

sequences in such that for all
joint types and all

(V.10)

(V.11)

for some

if (V.12)

if (V.13)

This lemma can be proved by random selection, although
more refined arguments are needed to get (V.10)–(V.12) than
those in the proof of Lemma IV.1. One has to show that only
with probability going to zero faster than exponentially will the
randomly selected codewords violate (V.10)–(V.12), for any
fixed , and in (V.10). This can be done by Chernoff
bounding. One difficulty is that in case of (V.12) dependent
RV’s have to be dealt with; this can be overcome using an idea
of Dobrushin and Stambler [40]. For details, cf. [29] and [33].

We will use a codeword set as in Lemma V.1, with a
decoder whose exact form will be suggested by the very
error-bounding process.

Denote by and the family of those joint
distributions that satisfy

(V.14)

respectively,

(V.15)

Notice that since

(V.16)

A codeword and a received sequencemay be con-
sidered “jointly typical” if there exists such that
the joint type of belongs to or . The
contribution to the maximum or average probability of error
of output sequencesnot jointly typical in this sense with the

codeword sent is negligible. Indeed, we have by Lemmas II.1
and II.3, writing as a shorthand for

(V.17)
and—using also (V.16) and (V.11)—

(V.18)

Motivated by (V.17) and (V.18) we will consider

for some (V.19)

as the list of candidates for the decoder output , where
denotes or according as the maximum or

average probability of error criterion is being considered.
Dobrushin and Stambler [40] used, effectively, a decoder

whose output was if was the only candidate in the
above sense (with ), while otherwise an error
was declared. This “joint typicality decoder” has been shown
suitable to achieve the-capacity for some but not all
AVC’s. To obtain a more powerful decoder, when the list
(V.19) contains several messages one may reject some of them
by a suitable rule. If only one remains unrejected,
that will be the decoder output. We will consider rejection
rules corresponding to sets of
joint distributions as follows: a candidate is
rejected if for every with there exists
in such that the joint type of belongs to

. To reflect that and that for some
(as ), we assume that consists of such joint

distributions whose marginals and satisfy

is the marginal of some (V.20)

A set of joint distributions with the properties (V.20) will
be called permissible if for each , the rejection rule
corresponding to leaves at most one unrejected.
Then is set equal to the unrejected , at if
no such exists. For such a decoder, preliminarily with an
unspecified , the maximum or average
probability of error can be bounded via standard “method of
types” technique. The result will suggest a natural choice of
that makes the bound exponentially small under the hypotheses
of Theorems V.1 and V.2. The calculation is technical but
instructive; it will be given in the Appendix.
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Further Developments

By the above approach, Csiszár, and Narayan [33] also de-
termined the -capacity for AVC’s with state constraint

. The latter means that only those are permissible
state sequences that satisfy for a given
cost function on . For this case, Ahlswede’s [2] trick does
not work and, indeed, may happen.
Specializing the result to the (noiseless) binary adder AVC
( if )
with , the intuitive but nontrivial result was obtained
that for , the -capacity equals the capacity
of the binary symmetric DMC with crossover probability.
Notice that the corresponding-capacity is the maximum rate
of codes admitting correction of each pattern of no more than

bit errors, whose determination is a central open problem
of coding theory. The role of the decoding rule was further
studied, and -capacity for some simple cases was explicitly
calculated in Csisźar and Narayan [34].

While symmetrizable AVC’s have , if the decoder
output is not required to be a single message indexbut a list
of candidates the resulting “list code capacity”
may be nonzero already for . Pinsker conjectured
in 1990 that the “list-size-” -capacity is always equal to

if is sufficiently large. Contributions to this problem,
establishing Pinsker’s conjecture, include Ahlswede and Cai
[7], Blinovsky, Narayan, and Pinsker [17], and Hughes [54].
The last paper follows and extends the approach in this
section. For AVC’s with , a number called the
symmetrizability is determined, and the list-size--capacity
is shown to be for and equal to for . A
partial analog of this result for list-size- -capacity is that
the limit of the latter as is always given by (V.9),
cf. Ahlswede [6].

The approach in this section was extended to multiple-
access AVC’s by Gubner [50], although the full analog of
Theorem V.2 was only conjectured by him. This conjecture
was recently proved by Ahlswede and Cai [8]. Previously,
Jahn [56] determined the-capacity region of a multiple-
access AVC under the condition that it had nonvoid interior,
and showed that then the-capacity region coincided with the
random coding capacity region.

VI. OTHER TYPICAL APPLICATIONS

A. Rate-Distortion Theory

The usefulness for rate-distortion theory of partitioning-
length sequences into type classes was first demonstrated by
Berger [13]. He established the following lemma, called the
type covering lemma in [30].

Lemma VI.1: Given finite sets and a nonnegative
function on , for and let

denote the minimum number of “-balls of radius
”

(VI.1)

needed to cover the type class , where is
defined by (IV.19). Then

as

(VI.2)
where

subject to (VI.3)

is the “rate-distortion function.”
This lemma is seen today as a consequence of a sim-

ple general result about coverings known as the John-
son–Stein–Lov́asz theorem, cf. Cohenet al. [21, p. 322]. The
latter is useful in information theory also in other contexts,
cf. Ahlswede [3].

An immediate consequence of Lemma VI.1 is that the
minimum (asymptotic) rate of source block codes admitting
the reproduction of each by some with
distortion , is equal to .
Berger [13] also used this lemma to derive the rate-distortion
theorem for arbitrarily varying sources.

As another application of Lemma VI.1, Marton [64] deter-
mined the error exponent for the compression of memoryless
sources with a fidelity criterion. In fact, her error exponent is
attainable universally (with codes depending on the “distortion
measure” but not on the source distribution or the
distortion threshold ). Thus the following extension of
Theorem III.1 holds, cf. [30, p. 156]: Given

there exist codeword sets such that

(VI.4)

and for every PD and every

(VI.5)

where

(VI.6)

Moreover, for any sequence of sets satisfying (VI.4)
the liminf of the left-hand side of (VI.5) is .
Remarkably, the exponent (VI.6) is not necessarily a contin-
uous function of , cf. Ahlswede [5], although as Marton
[64] showed, it is continuous when is the normalized
Hamming distance (cf. also [30, p. 158]).

Recently, several papers have been devoted to the redun-
dancy problem in rate-distortion theory, such as Yu and Speed
[82], Linder, Lugosi, and Zeger [61], Merhav [65], Zhang,
Yang, and Wei [83]. One version of the problem concerns the
“rate redundancy” of -semifaithful codes. A -semifaithful
code is defined by a mapping such that

for all , together with an assignment
to each in the range of of a binary codeword of length
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, subject to prefix condition. Yu and Speed [82] showed
that for a memoryless source with generic distributionthere
exist -semifaithful codes whose rate redundancy

(VI.7)

is less than a constant times , moreover, such codes
may be given universally (not depending on). They also
conjectured that the rate redundancy (VI.7) can never be less
than a constant times , under a technical condition that
excludes the case . Zhang, Yang, and Wei [83] proved
that conjecture, and also determined the exact asymptotics of
the “distortion redundancy” of the best rate-block codes,
again under some technical condition. This result of [83] says
that for a memoryless source with generic distribution, the
minimum of

(VI.8)

for mappings with is
asymptotically equal to constant times , with an explic-
itly given constant. Here is the inverse function of

defined by (VI.3), with fixed. Both papers [82] and
[83] heavily rely on the method of types. The latter represents
one of the very few cases where the delicate calculations
require more exact bounds on the cardinality and probability
of a type class than the crude ones in Lemma II.2.

B. Source-Channel Error Exponent

When a memoryless source with alphabetand generic
distribution is transmitted over a DMC using
a source-channel block code with encoder and
decoder , the probability of error is

(VI.9)

Using techniques as in the proof of Theorem IV.1, Csiszár
[22] showed that by suitable source-channel codes of block-
length , not depending on , the error probability
(VI.9) can be made exponentially small whenever

, with exponent (cf. (III.3)
and the remarks to Theorems IV.1 and IV.2 for notation). This
exponent is best possible if the minimum is attained for some

. For further results in this direction, including
source-channel transmission with a distortion threshold, cf.
Csisźar [24].

C. Multiterminal Source Coding

Historically, the first multiuser problem studied via the
method of types was that of the error exponent for the
Slepian–Wolf [76] problem, i.e., separate coding of (memo-
ryless) correlated sources. Given a source pair with generic
variables , the error probability of an -length block
code with separate encoders and common decoder is

(VI.10)

where represents independent repetitions of
. Csisźar, Körner, and Marton proved in 1977

(published in [27], cf. also [30, pp. 264–266]) that for suitable
codes as above, with encoders that map and into
codeword sets of sizes

(VI.11)

the error probability (VI.10) goes to zero exponentially as
, with exponent

(VI.12)

whenever is in the interior of the achievable rate
region [76]

(VI.13)

This assertion can be proved letting be the “minimum
entropy decoder” that outputs for any pair of codewords
that pair whose nonprobabilistic entropy

is minimum among those having the given codewords
(ties may be broken arbitrarily). Using this, the incorrectly
decoded pairs belong to one of the following three sets:

for some with

for some with

for some and

with

It can be seen by random selection that there existand
satisfying (VI.11) such that for each joint type

Hence the assertion follows by Lemmas II.1 and II.2.
The error exponent (VI.12) for the Slepian–Wolf problem

is attainable universally, i.e., with codes not depending on the
distribution of . This result is a counterpart of Theorem
IV.1 for DMC’s. The counterpart of Theorem IV.2 was also
established by Csiszár, Körner, and Marton,loc cit: For no
source pair can the error probability of codes satisfying (VI.11)
decrease faster than with exponent

(VI.14)
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The functions in (VI.12) and (VI.14) are equal if is
close to the boundary of . For such rate pairs, their
common value gives the exact error exponent.

Remark: For the intrinsic relationship of source and chan-
nel problems, cf., e.g., Csiszár and K̈orner [30, Secs. III.1 and
III.2], Csiszár and Körner [28], and Ahlswede [3, Part II].

The above results have been extended in various ways.
Extensions to more than two correlated sources are straight-
forward, cf. [27], or [30, pp. 267, 268]. Csiszár and K̈orner
[28] showed that good encoders can be obtained, instead of
random selection, also by a graph-theoretic approach. Another
contribution of [28], in retrospect the more important one,
was to apply the method of types to study the performance
of various decoders, and to improve the exponent (VI.12) for
“large” rates. Csisźar [23] showed that the exponent (VI.12) is
(universally) attainable also with linear codes, i.e., constraining

and be linear maps (to this, and have to be fields,
but that can always be assumed, extending the alphabets by
dummy symbols of zero probability if necessary). Also in [23],
linear codes were shown to give better than the previously
known best exponent for certain rate pairs. More recently,
Oohama and Han [70] obtained another improvement for
certain rate pairs, and Oohama [69] determined the exact
exponent for a modified version of the problem. That mod-
ification admits partial cooperation of the encoders, which,
however, does not affect the achievable rate region (VI.13)
nor the upper bound (VI.14) to achievable error exponents.
On the other hand, the modification makes the exponent in
(VI.14) achievable for all rate pairs in the interior
of , even universally.

D. Multiterminal Channels

The first application of the method of types to a multi-
terminal channel coding problem was the paper of K¨orner
and Sgarro [58]. Using the same idea as in Theorem IV.1,
they derived an error exponent for the asymmetric broadcast
channel, cf. [30, p. 359] for the definition of this channel.

Here let us concentrate on the multiple-access channel
(MAC). A MAC with input alphabets , , and output
alphabet is formally a DMC , with
the understanding that there are two (noncommunicating)
senders, one selecting the-component the other the -
component of the input. Thus codes with two codewords
sets and are
considered, the decoder assigns a pair of message indices

to each , and the average probability of error is

(VI.15)

The capacity region, i.e., the closureof the set of those
rate pairs to which codes with ,

, and exist, is characterized as follows:
iff there exist RV’s , with taking

values in an auxiliary set of size , whose joint

distribution is of form

(VI.16)

and such that

(VI.17)

The capacity region was first determined (in a different
algebraic form) by Ahlswede [1] and Liao [60]. The maximum
probability of error criterion may give a smaller region, cf.
Dueck [41]; a single-letter characterization of the latter is not
known.

For in the interior of , can be made exponen-
tially small; Gallager [47] gave an attainable exponent every-
where positive in the interior of. Pokorny and Wallmeier [71]
were first to apply the method of types to this problem. They
showed the existence of (universal) codes with codewords
and whose joint types with a fixed are arbitrarily
given and such that the
average probability of error is bounded above exponentially,
with exponent depending on , , and ; that exponent
is positive for each with the property that for
determined by (VI.16) with the given and , (VI.17)
is satisfied with strict inequalities. Pokorny and Wallmeier [71]
used the proof technique of Theorem IV.1 with a decoder
maximizing . Recently, Liu and Hughes [62]
improved upon the exponent of [71], using a similar technique
but with decoder minimizing . The “maximum
mutual information” and “minimum conditional entropy” de-
coding rules are equivalent for DMC’s with codewords of the
same type but not in the MAC context; by the result of [62],
“minimum conditional entropy” appears the better one.

VII. EXTENSIONS

While the type concept is originally tailored to memoryless
models, it has extensions suitable for more complex models,
as well. So far, such extensions proved useful mainly in the
context of source coding and hypothesis testing.

Abstractly, given any family of source models with alphabet
, a partition of into sets can be regarded

as a partition into “type classes” if sequences in the same
are equiprobable under each model in the family. Of course, a
subexponential growth rate of is desirable. This general
concept can be applied, e.g., to variable-length universal
source coding: assign to each a binary codeword of
length , the first bits
specifying the class index, the last bits identifying

within . Clearly, will exceed the “ideal codelength”
by less that , for each source model

in the family.
As an example, consider the model family of renewal

processes, i.e., binary sources such that the lengths ofruns
preceeding the ’s are i.i.d. RV’s. Define the renewal type of
a sequence as where denotes
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the number of ’s in which are preceeded by exactly
consecutive ’s. Sequences of the same renewal
type are equiprobable under each model in, and renewal
types can be used for the model family much in the
same way as standard types for memoryless sources. Csisz´ar
and Shields [37] showed that there are
renewal type classes, which implies the possibility of universal
coding with redundancy for the family of renewal
processes. It was also shown in [37] that the redundancy bound

is best possible for this family, as opposed to finitely
parametrizable model families for which the best attainable
redundancy is typically .

Below we briefly discuss some more direct extensions of
the standard type concept.

A. Second- and Higher Order Types

The type concept appropriate for Markov chains is “second-
order type,” defined for a sequence as
the PD with

(VII.1)

In other words, is the joint type of and
. Denote by the set of all possible

second-order types of sequences with , and
for dummy RV’s representing such a second-order type
(i.e., ) let denote the type class

, , .
The analog of (II.1) for a Markov chain with

stationary transition probabilities given by a matrix is that
if and (with ) then

(VII.2)

where . The analog of Lemma II.2 is that
for

(VII.3)

(VII.4)

Of course, (VII.4) is a consequence of (VII.2) and (VII.3).
The simple idea in the proof of Lemma II.2 suffices only
for the part of (VII.3), the part is more delicate.
One way to get it (Boza [19]) is via the exact formula
for due to Whittle [80], an elementary proof of
which has been given by Billingsley [14]. An important
property of second-order types is that they have (equal or)
asymptotically equal marginals as . Indeed, for

the marginals and of

differ only at and , if , both differences being
. Moreover, denoting by the set of those

whose two marginals are equal, each irreducible
can be arbitrarily approximated by second-order

types with if is sufficiently large

( is called irreducible if the stationary Markov
chain with two-dimensional distribution is irreducible).

The above facts permit extensions of the results in Section
III to Markov chains, cf. Boza [19], Davisson, Longo, and
Sgarro [38], Natarajan [68], Csisz´ar, Cover, and Choi [26].
In particular, the following analog of Theorem III.3 and its
Corollary holds, cf. [26].

Theorem VII.1: Given a Markov chain with
transition probability matrix and , and a
set of PD’s such that for each ,
the second-order type of satisfies

(VII.5)

iff there exist second-order types
such that approaches the minimum in (VII.5).
Further, if the minimum in (VII.5) is attained for a unique

, and denotes a stationary Markov chain with
, for with ,

we have

(VII.6)

whenever (VII.5) holds for .

Remarks:

i) Let denote the set of those irreducible
for which all in a sufficiently small

neighborhood of belong to . The first assertion of
Theorem VII.1 gives that (VII.5) always holds if the
closure of equals .

ii) Theorem VII.1 is of interest even if are
i.i.d.; the limiting conditional distribution in (VII.6) is
Markov rather than i.i.d. also in that case.

As an immediate extension of (VII.1), theth-order type of
a sequence is defined as the PD with

(VII.7)

This is the suitable type concept for order- Markov
chains, in which conditional distributions given the past de-
pend on the last symbols. All results about Markov
chains and second-order types have immediate extensions to
order- Markov chains and th-order types.

Since order- Markov chains are also order-ones if ,
the analog of the hypothesis-testing result Theorem III.2 can
be applied to test the hypothesis that a process known to be
Markov of order is actually Markov of order for a given

. Performing a multiple test (for each ) amounts
to estimating the Markov order. A recent paper analyzing
this approach to Markov order estimation is Finesso, Liu, and
Narayan [45], cf. also prior works of Gutman [51] and Merhav,
Gutman, and Ziv [66].

“Circular” versions of second- and higher order types
are also often used as in [38]. Theth-order circular type
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of is the same as theth-order type of
, i.e., the joint type of the

sequences , .
A technical advantage of circular types is compatibility: lower
order circular types are marginals of the higher order ones.
The price is that expressing probabilities in terms of circular
types is more awkward.

B. Finite-State Types

A sequence of -valued RV’s is called a
unifilar finite-state source if there exists a (finite) setof
“states,” an initial state , and a mapping
that specifies the next state as a function of the present state
and source output, such that

(VII.8)

where is a stochastic matrix specifying the source output
probabilities given the states. As the state sequence

is uniquely determined by and the
initial state , so is the joint type . It will be called
the finite state type of , given the mapping and
the initial state , cf. Weinberger, Merhav, and Feder [79].
Notice that the th-order type (VII.7) of is
equal to the finite state type of for and

defined by ,
with .

Denote the set of finite-state types , , by
, and let denote the class of sequences

with . Then for , (VII.8)
gives

(VII.9)

Further, for the following analogs of
(VII.3) and (VII.4) hold:

(VII.10)

(VII.11)

These permit extensions of results about Markov chains and
second-order types to unifilar finite-state sources and finite-
state types. Weinberger, Merhav, and Feder [79] used this
type concept to study the performance of universal sequential
codes for individual sequences (rather than in the averaged
sense). They established a lower bound to the codelength,
valid for most sequences in any given type class ,
except for a vanishingly small fraction of the finite-state types

.
The finite-state model (VII.8) can be extended in various

ways. Let us consider here the extension when the “next
state” depends on the past sequence not
necessarily through and but, more generally,

where is an arbitrary mapping. Here
denotes the set of all finite sequences of symbols from,
including the void sequence; the initial state need not be
explicitly specified in this model, as it is formally given by

. The type concept adequate for the source model

(VII.12)

is the -type defined as the joint type , where
is determined by as in (VII.12). Of course, for the

corresponding -type classes we still have (VII.9) when
, and consequently also

(VII.13)

Unlike for the finite-state type classes , however, a
lower bound counterpart of (VII.13) cannot be established in
general.

An early appearance of this-type concept, though not of
the term, was in Csiszár and K̈orner [31], applied to DMC’s
with feedback. The encoder of a feedback code of blocklength

for messages is defined by mappings ,
, that specify the input symbols ,
, depending on the previous received symbols

, when messageis to be transmitted. Then
the received sequence in generated by a generalized
finite-state model as in (VII.12), with alphabet, state set

, and . In particular, the probability of receiving
an equals , cf.
(VII.9). Hence a decoder will correctly decode message
with probability

(VII.14)
where . Similarly to (IV.16), we have

(VII.15)

On account of (VII.13) (with replaced by ),
the left-hand side of (VII.15) is also . It
follows that if then

(VII.16)
Averaging the probability of correct decoding (VII.14) over
the messages , (VII.16) implies that the average
probability of correct decoding is

where the minimum is for all . Comparing
this with Remark iii) to Theorem IV.2 shows that feedback
cannot exponentially improve the probability of correct de-
coding at rates above channel capacity.

A recent combinatorial result of Ahlswede, Yang, and
Zhang [11] is also easiest to state in terms of-types. Their
“inherently typical subset lemma” says, effectively, that given

and , there is a finite set such that for sufficiently
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large , to any there exists a mapping
and an -type such that

(VII.17)

While this lemma is used in [11] to prove (the converse part of)
a probabilistic result, it is claimed to also yield the asymptotic
solution of the general isoperimetric problem for arbitrary
finite alphabets and arbitrary distortion measures.

C. Continuous Alphabets

Extensions of the type concept to continuous alphabets
are not known. Still, there are several continuous-alphabet
problems whose simplest (or the only) available solution relies
upon the method of types, via discrete approximations. For
example, the capacity subject to a state constraint of an AVC
with general alphabets and states, for deterministic codes and
the average probability of error criterion, has been determined
in this way, cf. [25].

At present, this approach seems necessary even for the
following intuitive result.

Theorem VII.2 ([25]): Consider an AVC whose permissible
-length inputs satisfy , and the output

is where the deterministic sequence
and the random sequence with independent zero-

mean components may be arbitrary subject to the power
constraints , . This AVC has
the same -capacity as the Gaussian one where the’s are
i.i.d. Gaussian RV’s with variance .

For the latter Gaussian case, Csisz´ar and Narayan [36] had
previously shown that

if

if

(VII.18)

Discrete approximations combined with the method of types
provide the simplest available proof of a general form of
Sanov’s theorem, for RV’s with values in an arbitrary set

endowed with a -algebra (the discrete case has been
discussed in Section III).

For probability measures (pm’s) on , the -
divergence is defined as

(VII.19)

the supremum taken for partitions of
into sets . Here denotes the -quantization of
defined as the distribution on the finite
set .

The -topology of pm’s on is the topology in which
a pm belongs to the interior of a set of pm’s iff for some
partition and

(VII.20)

The empirical distribution of an -tuple
of -valued RV’s is the random pm defined by

(VII.21)

Theorem VII.3: Let be independent -valued
RV’s with common distribution . Then

(VII.22)

(VII.23)

for every set of pm’s on for which the probabilities
are defined. Here and denote the interior

and closure of in the -topology.
Theorem VII.3 is a general version of Sanov’s theorem.

In the parlance of large derivations theory (cf. Dembo and
Zeitouni [39]) it says that satisfies the large deviation
principle with good rate function (“goodness” means
that the sets are compact in the -
topology; the easy proof of this property is omitted).

Proof: (Groeneboom, Oosterhoff, and Ruymgaart [49])
Pick any , and and satisfying (VII.20). Apply
Theorem III.3 to the quantized RV’s with distribution

, where if , and to the set of those
distributions on for which ,

.
As the latter is an open set containing , it follows that

(VII.24)

The left hand side of (VII.24) is a lower bound to that of
(VII.22), by (VII.20). Hence, as has been arbitrary,
(VII.19) and (VII.24) imply (VII.22).

Notice next that for each partition, Theorem III.3 applied
to the quantized RV’s as above and to

gives that

(VII.25)

Clearly, (VII.23) follows from (VII.19) and (VII.25) if one
shows that

(VII.26)

The nontrivial but not too hard proof of (VII.26) is omitted.
The “discrete approximation plus method of types” ap-

proach works also for other problems that can not be entered
here. For extensions of the hypothesis testing results in Section
III, cf. Tusnády [78].

VIII. C ONCLUSIONS

The method of types has been shown to be a powerful tool
of the information theory of discrete memoryless systems. It
affords extensions also to certain models with memory, and
can be applied to continuous alphabet models via discrete
approximations. The close links of the method of types to
large deviations theory (primarily to Sanov’s theorem) have
also been established.
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Sometimes it is claimed that “type” arguments, at least for
models involving only one set of sequences as in hypothesis
testing, could be replaced by referring to general results from
large deviations theory. This is true for some applications
(although the method of types gives more insight), but in other
applications the explicit “type” bounds valid for all afford
stronger conclusions than the asymptotic bounds provided by
large deviations theory. It is interesting to note in this respect
that for the derivation of (VII.6) even the familiar type bound
was not sufficient, rather, the exact formula (of Whittle [80])
for the size of second order type classes had to be used.

Of course, the heavy machinery of large deviations theory
(cf. [39]) works for many problems for which type arguments
do not. In particular, while that machinery is not needed
for Sanov’s theorem (Theorem VII.3), it appears necessary
to derive the corresponding result for continuous alphabet
Markov chains. Indeed, although the method of types does
work for finite alphabet Markov chains (cf. Theorem VII.1),
extension to general alphabets via discrete approximations
does not seem feasible, since quantization destroys the Markov
property.

APPENDIX

Proof of Lemma IV.1:Pick sequences
from at random. Then, using Lemma II.2, we have for
any joint type with ,
and any ,

(A.1)

This implies that

(A.2)

Writing

(A.3)

it follows from (A.2) that

(A.4)
On account of (A.4), the same inequality must hold without
the expectation sign for some choice of , and
then the latter satisfy

(A.5)

for at least indices . Assuming without any loss of
generality that (A.5) holds for , it follows by
(A.3) that

(A.6)

for each and with
. As may be chosen such

that , this completes the
proof.

Proof of Theorems V.1, V.2 (continued):Consider a de-
coder as defined in Section V, with a preliminarily unspecified
permissible set . Recall that denotes

or defined by (V.14) and (V.15), according as
the maximum or average probability of error criterion is
considered, and each has to satisfy (V.20).

Clearly, for with we can have
only if for some and

. Using (II.7) and (V.10),
it follows that the fraction of sequences in with

is bounded, in the sense, by

where the sum and max are for all joint types
with the given marginal . Except

for an exponentially small fraction of the indices ,
it suffices to take the above sum and max for those joint types
that satisfy the additional constraint

(A.7)

Indeed, the fraction of indices to which a
exists with not satisfying (A.7), is

exponentially small by (V.12).
If the fraction of incorrectly decoded ’s within

is exponentially small for each
, it follows by (V.3) and (V.17)

that is exponentially small. Hence, writing

(A.8)

the maximum probability of error defined by (V.2)
will be exponentially small if a exists such that

whenever .
Similarly, if the fraction of incorrectly decoded’s within

is exponentially small for each
, except perhaps for an exponentially

small fraction of the indices , it follows by
(V.18) that is exponentially small, supposing,
of course, that . Hence the average probability of error

defined by (V.2) will be exponentially small if a
exists such that whenever (A.7) holds
and .
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Actually, in both cases suffices,
as in Lemma V.1 can always be chosen smaller than.

To complete the proof, it suffices to find a permissible set
of joint distributions such that

i) in case of Theorem V.1, has a pos-
itive lower bound subject to if

,
ii) in the case of Theorem V.2, has a

positive lower bound subject to and (A.7)
if

where

(A.9)

cf. (V.4), and the AVC is nonsymmetrizable.
Now, from (A.8),

if

(A.10)

Moreover, if (A.7) holds then implies
,

hence

if

(A.11)

If then is the marginal of some ,
cf. (V.20), where denotes or . In the first
case, implies by (V.14) that is
arbitrarily close to and hence any number less than

defined by (V.7) is a lower bound to if
is sufficiently small. Then (A.10) shows that the claim under
i) always holds when . In the second case

implies by (V.15) that is close to
and hence any number less than the minimum in

(A.9) is a lower bound to if is sufficiently small.
Then (A.11) shows that the claim under ii) always holds when

.
So far, the choice of played no role. To make the claim

under i) hold also when , chose as the set of
joint distributions satisfying ,
in addition to (V.20). It can be shown by rather straightforward
calculation using (V.8) and (V.13) that this is permissible
if , providing and are sufficiently small, cf.
[29] for details.

Concerning the claim under ii) in the remaining case
, notice that then (A.8) gives

because by (A.7). Hence
the claim will hold if is chosen as the set of those joint
distributions that satisfy in
addition to (V.20). It can be shown that thisis permissible if

the AVC is nonsymmetrizable and, are sufficiently small,
cf. [33] for details.
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