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Abstract—The method of types is one of the key technical the “random coding” upper bound and the “sphere packing”
tools in Shannon Theory, and this tool is valuable also in other |ower bound to the error probability of the best code of a given
fields. In this paper, some key applications will be presented in 510 |egg than capacity (Fano [44], Gallager [46], Shannon,
sufficient detail enabling an interested nonspecialist to gain a .
working knowledge of the method, and a wide selection of fur- Gallager, and Berlekamp [74]). These bounds exponentially
ther applications will be surveyed. These range from hypothesis coincide for rates above a “critical rate” and provide the exact
testing and large deviations theory through error exponents for error exponent of a DMC for such rates. These results could

discrete memoryl_ess channels and ca_pacity of arbitrarily varying not be obtained via typical sequences, and their first proofs
channels to multiuser problems. While the method of types is used analytic techniques that gave little insight.

suitable primarily for discrete memoryless models, its extensions . , . .
to certain models with memory will also be discussed. It turned out in the 1970’s that a simple refinement of the

L . . typical sequence approach is effective—at least in the discrete
Index Terms—Arbitrarily varying channels, choice of decoder, rxzmor quss conte)E)tp also for error exponents. as well as for
counting approach, error exponents, extended type concepts, y il P '

hypothesis testing, large deviations, multiuser problems, universal Situations where the probabilistic model is partially unknown.
coding. The idea of this refinement, known as the method of types, is

to partition then-length sequences into classes according to
type (empirical distribution). Then the error event of interest is
partitioned into its intersections with the type classes, and the
ONE of Shannon’s key discoveries was that—for quitrror probability is obtained by summing the probabilities of
general source models—the negative logarithm of thgese intersections. The first key fact is that the number of type
probability of a typical long sequence divided by the number @fasses grows subexponentially with This implies that the
symbols is close to the source entrafly the total probability error probability has the same exponential asymptotics as the
of all n-length sequences not having this property is arbitrarily,yest one among the probabilities of the above intersections.
small if » is large. Thus ‘it is possible for most purpose§he second key fact is that sequences of the same type are
to treat long sequences as th(;{ugh there were 3tst of o inrobable under a memoryless probabilistic model. Hence
them, each with a probabilitg™™"" [75, p. 24]. Shannon , g the probabilities of intersections as above it suffices
demonstrated the power of this idea also in the context of yong their cardinalities, which is often quite easy. This
Sha_nnels. It shoul'(,j.be no.ted. t.hat Shannon [75] US?d the (4R mal description assumes models involving one set of
typical sequencein an |_ntU|_t|ve _rather than technical Sens?equences (source coding or hypothesis testing); if two or more
Formal definitions of typicality, introduced later, need noéets of sequences are involved (as in channel coding), joint

concern us here. .
: . . types have to be considered.
At the first stage of development of information theory, thé’ In this paper, we will illustrate the working and the power

main theoretical issue was to find the best rates of sour €the method of types via a sample of examples that the
or channel block codgs that, assuming a known probabilis ithor considers typical and both technically and historically
model, guarantee arbitrarily small probability of error (ortoleri-nteresting The simple technical background, including con-
able average distortion) when the blocklengtis sufficiently : Lo . : : ] )
larae. For this purpose. covered by the brevious quotation fr vn%nlent notation, will be introduced in Section Il. The first
Sh%n-non [75] 2yp[i)cal s’equences )s/erve[()j as a ve?y officient %ﬁa& applications, viz. universally attainable exponential error
intuitive tool, as demonstrated by the book of Wolfowitz [81] ounds for hypothesis testing and channel block-coding, will

The limitations of this tool became apparent when intereg?. treated in Sections Il and 1V, complete with proofs. The

shifted towards the speed of convergence to zero of the er%‘pversally attainqble error exponent for source b_Iock-coding
probability asn — c. Major achievements of the 1960'sr1ses as a special case of the hypothesis testing result. A

were, in the context of discrete memoryless channels (DMC’ ?.SiC result of large deviations theory is also included in
ection Ill. Section V is devoted to the arbitrarily varying

channel (AVC) capacity problem. Here proofs could not be
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multiuser problems. Although the method of types is tailoredivergence, i.e.,
to discrete memoryless models, there exist extensions of the

type concept suitable for certain models with memory. These H(P)= - Z P(a) log P(a)
will be discussed in Section VII. e

The selection of problems and results treated in this paper D(P||Q) = Z P(a) log P(a)
has been inevitably subjective. To survey all applications of Jopy Q(a)

the method of types would have required a paper the size
of a book. In particular, several important applications iWith the standard conventions thatog 0 = 0 log 0/0 = 0,
Combinatorics are not covered, in this respect the readetog (p/0) = oo if p > 0. Here and in the sequel the base
should consult the paper oftiner and Orlitsky in this issue. Of log and ofexp is arbitrary but the same; the usual choices
While historical aspects were taken seriously, and a ratt€ 2 or c.
large list of references has been included, no attempts werd he type of a sequence = z; --- z, € X" and the joint
made to give a detailed account of the history of the methé¢gPe ofz andy =y, --- y, € Y™ are the PD'sl; € P(X)
of types. About its origins let us just make the following brieRNdFzy € P(X'xY) defined by letting;(a) and Fey(a, b) be
comments. the relative frequency of amongz, ---, x, and of (a, b)
The ingredients have been around for a long time. RMONG(z1, y1), -~+, (%n, ¥n), respectively, for alla € X,
probability theory, they appear in the basic papers of Sand V. Joint types of severat-length sequences are defined
[72] and Hoeffding [53] on large deviations, cf. Sectiofimilarly. The subset oP(X') consisting of the possible types
Il below. A similar counting approach had been used ifif sequences € A™ is denoted byP, ().
statistical physics even earlier, dating back to Boltzmann | emma 1.1
[18]. A remarkable example is the paper of Satinger [73] ,
that predates modern large deviations theory but remained [P ()| = <”+ X[ - 1),
unknown outside the physics community until recently. Infor- [ =1
mation theorists have also used ideas now considered pertinent pyoof: Elementary combinatorics.
to the method of types. Fano's [44] approach to the DMC error . ] )
exponent problem was based on “constant composition codes,The probability thatn independent drawings from a PD
and Berger's [13] extension of the rate-distortion theorem fg € P(<) give z € A, is denoted byQ" (). Similarly, the
sources with partially known and variable statistics relied updtiobability of receivingy € Y™ whenz € ™ is sent over
his key lemma about covering a type class. Later, in the 19708 PMC with matrix W, is denoted by (y|z). Clearly, if
several authors made substantial use of the concept now caffed X" have typeP and (z, y) have joint typeP
joint type, including Blahut [16], Dobrushin and Stambler [40], noon nP(a
and Goppa [48]. @ (@) = 1&_[1 Q)"
While the ideas of the method of types were already around o=
in the 1970’s, this author believes that his research group - eXp{_n[H(P)Jrl?(P”Q)]} (1.3)
is fairly credited for developing them to a general method, W"(ylz) = [[ W (tla)""*?
indeed, to a basic tool of the information theory of discrete acX,bcy
memoryle_ss systems. The key _coworkers werrod Kﬁrne_r = exp{—n[H(P) — H(P) +D(P||W)]. (11.2)
and Katalin Marton. A systematic development appears in the . .
book of Csisar and Korner [30]. Were that book written now, Here D(P||W) is defined for any?” € P(X x V) by
both authors would prefer to rely even more ext.ens‘i‘vely on D(P||W) :D(PHP < W)
types, rather than typical sequences. Indeed, while “merging
nearby types, i.e., the formalism of typical sequences has (P x W)(a, b) = P(a)W(bla) (I1.3)
the advanta_ge of s_hortenir_19 co_mputations” [30, p. 38], th\%ereP denotes thet-marginal of P.
advantage is relatively minor in the. dlsc‘r‘ete. memoryless,We will wiite P < Q, respectivelyP < W, to denote
context. Or_1 the other hand, Fhe less delicate “typical Sequence : p or P is 0 for eacha € A’ or (a,b) € X x Y with
approach.ls more robust, it can be extended also t.o th ga) — 0 or W(bla) = O respectively. The divergences in
models with memory or continuous alphabets for which t 1) and (11.2) are finite iff P < Q, respectively,P < W',

type idea apparently fails. For P € P,(X), the type clas§z € A™, P, = P} will
be denoted by 2. Similarly, for P € P, (X x Y) we write

Il. TECHNICAL BACKGROUND I ={zy)zec A" yec )" Py =P}

The technical background of the method of types is very Lemma Il.2: For any typeP € Py (&)

simple. In the author’s information theory classes, the lemmas -1 n

below are part of the introductory material. Pl exp{nH(P)} < |75] < exp{nH(P)} - (114)
X, Y, - will denote finite sets, unless stated otherwiseind for any PDQ < P(X)

the size of X" is denoted by|X|. The set of all probability

distributions (PD’s) ot is denoted by?(X). For PD'sPand  [Pa(X)|™" exp{-nD(PQ)} <Q"(7p)

(), H(P) denotes entropy anf( P||) denotes information < exp{—nD(P|Q)}. (II.5)
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Proof. Equation (II.1) with@ = P gives maximum-likehood estimate of the entrof(()) based upon
i n the observed sequenae
PY(Tp) = 17| exp{—nH(P)}.

Hence (11.4) follows because I1l. SOURCE BLoCK CODING, HYPOTHESIS

1>P"(7p)= max P"(1p) TESTING, LARGE DEVIATION THEORY
T e i Th king of the method of types is particularly simpl
N e working of the method of types is particularly simple
1 n n
2 [Pn(X)] Z P (Tp) in problems that involve only one set of sequences, such as
PIEPn(X) source coding and hypothesis testing. Theorems 1111 and I11.2
=|Pa(X)|7* below establish the existence of source block codes and tests

where the first equality can be checked by simple algebroé. (in general, composite) hypotheses, universally optimal i.n
Clearly, (I1.1) and (I1.4) imply (I1.5). t e sense of error exponents. Thet_)rem ]Il.l appgared as a first
illustration of the method of types in Cs&zand Korner [30,
Remark: The bounds (I1.4) and (I1.5) could be sharpenegd. 37], cf. also Longo and Sgarro [63]. Formally, as pointed
via Stirling approximation to factorials, but that sharpening isut below, it is a special case of Theorem IIl.2. The latter is

seldom needed. effectively due to Hoeffding [53].

In the sequel, we will use the convenient notatichsind ~ Theorem IIl.1: Given 0 < R < log ||, the sets4d,, = {z:
~ for inequality and equality up to a polynomial factor, i.e. H(z) < R} C X™ satisfy
f(n) = g(n) means thatf(n) < p(n)g(n) for all n, where
p(n) is some polynomial ofn, and f(n) = g(n) means 1 log |An| — R (1.1)
that both f(n) < g(n) and g(n) < f(n). When f(n) and n
g(n) depend not only om but on other variables as well,
it is understood that the polynomial(n) can be chosen @nd for every PDQ € P(X)
independently of those. With this notation, by Lemmas 1.1

and I.2, we can write 1 log Q"(A;,) — —eq(R) (11.2)
n
75| = exp{nH (P)}
N where
Q"(1p) = exp{—nD(P||Q)}. (11.6)
Random variables (RV’s) with values i, ), etc., will c(B) = 15(13'1’1)>R D(P|Q)
be denoted byX, Y, --. (often with indices). Distributions, co(R) > 0, if H(Q) < R. (111.3)

respectively, joint distributions of RV’s are denoted By,
Pxy, etc. It is often convenient to represent types, particularly - L.
joint types, as (joint) distributions of dummy RV's. For dummyMoreover, forany sequence of sets C A™ satisfying (II1.1),
RV's with Py = P € P,(X) or Pxy = Pe Pn(X %), etc., we have for allQ € P(X)

we will write 7¢, 7¢y, etc., instead of 7, 77, etc. Also, we 1 B

will use notations Iike‘Tng(z) =1y (=, ¥9) € T} liminf — log Q"(A;) > —eq(R). (1.4)

n—oo 1,

Lemma I.3: For X, Y representing a joint type, i.e.,

Pxy € P,(X x V), and anyz € 77 and channelv’ Interpretation: Encodingn-length sequences € A™ by
assigning distinct codewords to sequences of empirical en-
|7y x ()] = exp{nH (Y]X)} tropy <R, this code is universally optimal among those of

wn( v"|x(fl‘)|-’17) ~ exp{—nD(Pxy||[W)}. (1.7) (asymptotic) rateR, for the class of memoryless sources: for
any source distributior} of entropy less thamk, the error

Proof: As |7y (x)| is constant forz € 73, it equals probability goes td) exponentially, with exponent that could
|7%y1/|73]. Thus the first assertion follows from (I1.4), sincenot be improved even if the distributiod were known.
H(Pxy)— H(Px)= H(Y|X). The second assertion follows For a setll C P(X) of PD’s, and@ € P(X), write
from the first one and (l1.2).

The representation of types by dummy RV’s suggests the DI)|Q) = inf D(P||Q). (111.5)

introduction of “information measures” for (nonrandom) se- pcll

guences. Namely, faz € A", y € V", we define the (non-
o o " Further, for P € P(X) and « > 0, denote byB(P, «) the
probabilistic or empirical) entropy (x), conditional entropy “divergence ball with centeP and radiusa,” and for IT ¢

H(y|x), and mutual informatiod(z Ay) asH(X), H(Y|X), e o y
I(X AY) for dummy RV's X, Y whose joint distribution Z))f(?/[) denote byB(ll, @) the “divergencen-neighborhood
Pxy equals the joint typels,. Of course, nonprobabilistic
conditional mutual information likel(z A y|2) is defined I y
similarly. Notice that on account of (ll.1), for amy € A'™ B(P, o) ={P": D(P||P) < o}

the probability Q”(x) is maximum if Q = P,. Hence the B, )= | B(P, o). (111.6)
nonprobabilistic entropyH(z) = H(F.) is actually the pem
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Theorem II.2: Given any setll ¢ P(&X) of PD's and Hence the above universally rate optimal tests are what statis-
a >0, let A, C X" be the set of those € X" whose type ticians call likehood ratio tests.
P, is in the complement oB(1I, «) if & > 0, respectively,

in the complement oB(1l, «,,) if &« = 0 wherew,, — 0, Remarks:
ann/log n — cco. Then i) One sees from (1I.9) that in the case> 0, the type 2
1 error probability exponent (l11.8) could not be improved
Is)g% P"(A,) — 0, limsup - log Is}é% P*"(A,) € —« even if (I1l.7) were replaced by the weaker requirement
(I11.7) that )
and for every@ € P(X) limsup — log P"*(4,) < —a, for eachP € II.
. n—oo N
i L log Q"(A°) = { _D(E(H’ )l@),  ifa>0 ii) In the casea = 0, the requirement (I11.7) could be
n—oo n " —D(1)|Q), if «a=0 relaxed to
(111.8)

limsup P"(A,) < 1, for eachP € 11

wherell denotes the closure df.

Moreover, for arbitrary? andQ in P(X’) and any sequence provided thatD(Il[|Q) = D(11||Q); the latter always

of setsA, C A™ holds if P <« @ for each P € II but not necessarily
1 } otherwise.
limsup — log P*"(4,) < —a <0 A particular case of this result is known as Stein’'s
nooo 1 lemma, cf. Chernoff [20]: if a simple null-hypothesis
implies P is to be tested against a simple alternatVe with

an arbitrarily fixed upper bound on the type 1 error
probability, the type 2 error probability can be made to
decrease with exponential rafe( P||()) but not better.

lim in % log Q™(A5) > —D(B(P, a)|Q)  (IIL9)

n—0o0

and
. . iiiy Theorem I11.2 contains Theorem Ill.1 as the special case
limsup P*(4,) <1 Il = {P}, a = log|X]| — R, whereP, is the uniform
o e distribution on ..
implies

1 } Proof of Theorem 111.2: Suppose first thatr > 0. Then

liminf — log Q"(A%) > —D(P||Q). (I.10) A, is the union of type classégy for typesP’ not belonging
nTmee _ _ to B(P, o) wheneverP € II. By the definition (I11.6) of
Interpretation: For testing the null-hypothesis that the tru%(P a), for suchP’ we haveD(P'||P) > « and hence, by

7

distribution belongs téI, with type 1 error probability required Lemma 1.2, P(T3) < exp(—na) for eachP € IL This
to decrease with a given exponential rate or just go to zerog@,es by Lemma I1.1

universally rate optimal test is the one with critical regidp
(i.e., the test rejects the null-hypothesisifE A,,). Indeed, by P"(An) s exp(—na),  for Pell (1.11)
(111.9), (111.10), no tests meeting the type 1 error requiremendstablishing (11.7) (the notatiors has been defined in Sec-
(I1.7), even if designed against a particular alternattYe tion I). Further, A is the union of type classeg}, for

can have type 2 error probability decreasing with a bettgfpes P/ that belong toB(II, «), thus satisfyD(P’||Q) >
exponential rate than that in (I11.8) (when> 0, this follows  p( (11, «)||Q). Hence we get as above

simply because Q'(45) < ep{-nD(BL Q) (1.12)
D(B(T, )|Q) = inf D(B(P, a)||Q) and this gives

by (ll.5) and (lll.6); in the casea = 0, one needs the lim sup 1 log Qn(A%) < —D(B(IT, )||Q).  (I1.13)
n

observation that n—oo
PriA) — PriA To complete the proof in the case > 0, it suffices to
b 4 (4) = Isjé% (4) prove (I11.9). Given any0 < &’ < «, the assumption in (111.9)

) implies for n sufficiently large that

for every A C A™). In particular, for@ such that the exponent - Lin , , ,
in (111.8) is 0, the type 2 error probability cannot exponendZr M Anl 2 3|77, for all " € B(P, o) N Pn(X).
tially decrease at all. The notion that the null-hypothesis is (1n.14)
rejected whenever the type of the observed samjgeoutside
a “divergence neighborhood” oflI is intuitive enough. In
addition, notice that by Lemma II.1 the rejection criterio
P, ¢ B(1l, «) is equivalent to

Indeed, else|73 N A,| > $175| would hold for some
P’ e B(P, o) N P,(X). Since sequences in the same type
Rass are equiprobable, the latter would imply by Lemma 11.2

that
sup P"(x) PY(A,) > PY(T3 N A,)
L:exp —n inl D(F||P) ¢ < exp(—na). S LIpneTny . _aD(P 1P = o
wp T jnf, > LP"(T3) ~ exp{—nD(P||P)} = exp(~nat)

PeP(x) contradicting the assumption in (111.9).
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Given anye > 0, takea’ < « such that
D(B(P, a)||Q) < D(B(P, a)||Q) +
and takeP’ € B(P, /) N P,(&X) such that
D(P'|Q) < D(B(P, a)||Q) +¢
(possible for larger). Then by (111.14) and (11.6)

QM(A3) ZQ"(Th N A7) > 3Q™(Tp)
~ exp{—nD(F'|Q)}

> exp{—n(D(B(P, o)||Q) — 2¢)}. (111.15)

As £ > 0 was arbitrary, (111.15) establishes (111.9).

In the remaining caser = 0, (111.11) will hold with «
replaced by, ; using the assumption,,n/log n — oo, this
yields (111.7). Also (I11.12) will hold with « replaced byc,,.
It is easy to see thak,, — 0 implies

D(B(IL, a,)]|Q) — D(II|Q)

hence we get

limsup — log Q"(45) < ~ D(TT|Q).

n—oo

(lll.16)

To complete the proof, it suffices to prove (111.10). Now,

P"(A,) < 1— ¢ implies, for largen, that

|75 N A2| > §|T[J,|, for someP’ € B(P, a,) N Pu(X).

(I1.17)

Indeed, els€7% N A,| > (1 — (¢/2))|7;%| would hold for
all P’ € B(P, oy) N Pr(X), implying

2.

P'CB(P, a) NP (X)

£ n n
2(1-3)r ( U ”’)'
P'EB(P, ) NPy, (X)

For large n, this contradicts P"(4,) <

P(A,) > P(A, N TH)

1 — &, since

apnflogn — oo implies by Lemmas 1.1 and 1.2 that

the P"-probability of the union of type classes witR’ ¢
B(P, «,,) goes to0 asn — oo.
Pick P/, € B(P, a,,) N P,(X) satisfying (111.17), then

QMAL) 2 QM(TH N AL 2 S QTR

~ exp{—nD(P.|Q)}. (I11.18)

Here D(P!||P) < «, — 0 by assumption, and this implies

D(P}||Q) — D(P||Q). Thus (l11.18) gives (l1.10).

2509

Large Deviations, Gibbs’ Conditioning Principle

Large deviation theory is concerned with “small probability
events,” typically of probability going to zero exponentially.
An important example of such events is that the type of an in-
dependent and identically distributed (i.i.d.) random sequence
X" = (X, -+, X,,) belongs to a given sdil C P(X) of
PD’s on&’ that does not contain the distributi6hof the RV’s
X;. In this context, the type ofX™ is called the empirical
distribution P,. Thus

Pr{P, € I} = Q"({z: P, € 11}). (111.19)
Theorem I11.3: For anyIl C P(X)
lim sup % log Pr{P, € I} < —D(11|Q) (11.20)
and if IT has the property that
Jlim DL P()Q) = D(IQ)  (1.21)
then
lim. % log Pr{P, € I} = —D(11)|Q). (11.22)

Corollary: If II satisfies (I1.21) and a uniqué* € II
satisfies D(P*||@Q) = D(Il||Q) then for any fixedk, the
conditional joint distribution ofX3, - - -, X3 on the condition
P, € II approache** asn — oc.

Remarks:

i) The condition (l11.21) is trivially satisfied ifI is an open
subset of P(&X") or, more generally, if eacl e II with
P <« @ is contained in the closure of the set of those
P <« @ for which all P <« P sufficiently close to
P belong toIL In particular, (I11.8) fora > 0 is an
instance of (111.22). Hoeffding [53] considered sets of
PD’s 11 such that (I11.21) holds with rate of convergence
O (log n/n). For suchll, (1l1.22) can be sharpened to

Pr{P, € II} ~ exp{—nD(II||Q)}. (111.23)

ii) The empirical distribution?,, can be defined also for
RV's X4, ---, X,, taking values in an arbitrary (rather
than finite) sett, cf. Section VII, (VII.21). Theorem
I11.3 and its extensions to arbitraty’ are referred to as
Sanov’s theorem, the first general result being that of
Sanov [72], cf. also Dembo and Zeitouni [39].

iiiy The Corollary is an instance of “Gibbs’ conditioning
principle,” cf. [39].

Proof: By (Ill.19) we have

Pr{P,ell}= > QUTp). (111.24)
PETINP,, (X)
By Lemma 1.2 and (l1l.5), this gives
Po(X)] " exp{—nD(IL N P (X)[|@Q)}
< Pr{P, cII}
< [Pu(X)] exp{—nD(I1 N P (X)[|Q)}  (IlI.25)

whence Theorem 1.3 follows.
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To prove the Corollary, notice first that for any typec Korner [30, p. 181]) establishing that the previous universally
P, (X) the conditional probability ofX; = ay, ---, X = a;  attainable error exponent is often (though not always) the best
on the conditionP, = P is the same as the probability ofpossible even for a known channel. This optimality holds
the following: given an urn containing balls marked with among codes with a fixed codeword type, while the type
symbolsa € &', where the number of balls marked ly yielding the best exponent depends on the actual channel.
equalsnP(a), if £ balls are drawn without replacement their
consecutive marks will bey, -- -, az. Clearly, this probability
approaches that for drawing with replacement, uniformly
the sense that the difference is less than any fixed 0 for

n > ng sufficiently large depending oh and= only. Thus {j:5 #4, (@ 2;) € TR M < exp{n(R - I(X /\X))},
i=1,---,N (IV.1)

Lemma IV.1: For anyR > 0 and typeP € P,(X), there
iexistN ~ exp (nR) sequences, ---, x5 in 7 such that
for every joint typePy ¢ € P,(&X x &) with Py = Py = P

k
Pr{X; =ay, -+, Xxg =ax|P, = P} = [[ Plai)| <

i=1 (cf. Section Il for notation).
if Remark: Equation (IV.1) implies that (z; A z;) < R for
n > nolk, ¢). (111.26) _eachi # 4. In particular,z,, -- -, xx are distinct sequences
if R < H(P).
Let

Proof: By a simple random coding argument. For com-
Us = {P: |P(a) — P*(a)| < § for eacha € X} (lll.27) pleteness, the proof will be given in the Appendix.

be a small neighborhood df*. As II N U is closed there ~ Theorem IV.1:For any DMC{W: & — Y}, a code with

existsP** e II N Ug with D(P**||Q) = DI N Ug||Q), and codeword sef{z;, -+, &y} as in Lemma 1V.1 and decoder
by the assumed uniqueness Bf this implies : Y — {0, 1, ---, N} defined by
DI N Ug||Q) = D(P*||Q) +n,  for somen > 0. oly) = b if I(z; Ay) > I(z; Ay) for eachj # i
(11.28) 0, if no such: exists
The Corollary follows since (IV.2)

has maximum probability of error satisfying

k
Pr{Xy=ay, -, Xp = x| P, € 11} = [] P*(a2)

L < _
i=1 12(?% ¢i < exp{—nE.(R, P, W)} (IV.3)
S Z |PI‘{X1:G/17 7Xk:ak|Pn:P} Where
rellnp, |
e = W"({y: v(y) # i}le:) (IV.4)

1] 2@ Pe( = PIP, € 1)

=1

and

where for sufficiently largen the absolute value term ispg. (R, P, W)
arbitrarily small if P € II n Us with é small, by (I11.26) _ : D(Pu W (X AY) — RIF1 (IV5
and (l11.27), while the conditional probability factor is less pxyér#(r}yxy)[ (P W) + 11 ) "1 (V-5)
thanexp (—nn/2) if P € II N Ug, by (11.28), Lemma 11.2, Px=P

and (I11.22). is the “random coding” exponent for codeword type

Remarks:

i) Denote byI(P, W) the mutual information/(X A Y)
when Pxy = P x W. Clearly, E.(R, P, W) > 0

iff R < I(P, W). Thus the channel-independent codes
in Theorem IV.1 have exponentially decreasing error
probability for every DMC with I(P, W) > R; it

is well known that for channels witd(P, W) < R

no rate codes with codewords ir¥; have small
probability of error. The exponerf,.(R, P, W) is best
possible for many channels, namely, for those that satisfy
R..(P, W) < R < I(P, W), cf. Remark ii) to Theorem

IV. ERROR EXPONENTS FORDMC'’s

A first major success of the method of types was to gain
better insight into the error exponent problem for DMC's.
Theorem V.1, below, due to Csigz Korner, and Marton
[32], shows that the “random coding” error exponent for
constant composition codes is attainable universally, i.e., by
the same encoder and decoder, for all DMC’s for which it
is positive. An important feature of the proof is that, rather
than bounding the expectation of the error probability for
an ensemble of codes (and conclude that some code in the
ensemble meets the obtained bound), the error probability is

. ) IV.2.
bounde(j for a given _COS'eW‘”d set and a given de_coder. Th?i) It follows by a simple continuity argument that for any
role of “random coding” reduces to show the existence of DMC

a “good” codeword set. We will also reproduce the simple
“method of types” proof of the “sphere packing” bound for E.(R, W)= max E.(R.P, W)
constant composition codes (Theorem V.2, cf. Caisand PeP(X)
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is also an attainable error exponent with ratesodes, SinceT (=, z;) # 0 only when(z;, z;) € 77, (IV.1)
though no longer channel-independent ones (as the maxd (IV.9) imply that
imizing P depends oni¥). This exponent is positive
for every R less than the channel capaci€(WV) = ‘U T (i, z))
maxp I(P, W). It was first derived by Fano [44], and |~ “YIxXX\*7"7 ™
then in a simple way by Gallager [46], in algebraic forms
different from that given above. | YlX( i)l
iii) The “empirical mutual information decoder” (IV.2) was = Z Hi:d # i, (@i, 2;) € T ¢}
first suggested by Goppa [48] as one not depending on Py 2 €Pn(¥xX)
the channel and still suitable to attain channel capacity. Px=Pg=r
This decoder could be equivalently defined, perhaps ~exp{—n[I(XAY) —I(XAX)]}
more intuitively, by minimizing the “entropy distance” < exp{—n[I(X AY) - R]}. (IV.10)

H(z,|y) of the codewords from the receivgdLemma

IV.1 may be visualized as one asserting the existent@is bound remains valid iﬂ(X AY) — R is replaced by

of codes with good entropy distance distribution. Aq;](f(/\y)_}zﬁ, since the left-hand side is alwaysl. Hence
Blahut [16] observed, among sequences in a singlg/.8) gives

type class the entropy distance satisfies the axioms of __ ) .
a metric, except that it may vanish for certain pairs of |2y ix (&) N 1y (y) # i}

distinct sequences. | y|x( ;)|
Proof of Theorem IV.1:As W"(y|z;) is constant for < exp {_n min (X AY)— R|+}
Yy €< Tglx(xi), we may write, using (11.7) Py 3y € (XY)

<exp{-n|[(X AY) - R|"} (IV.11)

ZW" T x (@) N {y: o(y) # i}|:) . . -
where the last inequality holds by (1V.7). Substituting (1V.11)
~ Z x (@) 0 {y: (y) # i} into (IV.6) gives (IV.3), completing the proof.
Ty x (24)]

Theorem IV.2:Given arbitraryR > 0, 6 > 0, and DMC
-exp{—nD(Pxy|W)} (IV.6) {w:x — Y}, every code of sufficiently large blocklength
with N > exp{n(R+5)} codewords, each of the same tyBe

where the summation is for all joint typdcy € Pu(X X V)  and with arbitrary decodep, has average probability of error

with Px = P.
This and other sums below will be bounded in thesense N

by the largest term, without explicitly saying so. N Z ¢; 2 exp{—n[Esp(R, P, W) + 8]} (vV.12)
To bound the cardinality ratios in (IV.6), notice that by the =1

definition (1V.2) of p, ¢(y) # ¢ iff there existsj # ¢ such that where

the joint type of(z;, x;, ¥) is represented by dummy RV’s )

XXY with By (R, P, W) = P n D(Pxy||W) (IV.13)

. Px=P, I(XAY)<R

I(XAY)<I(XAY). wv.7 )
is the “sphere packing” exponent for codeword tyipe

Thus, denoting byl,,(XY') the set of joint types

Remarks:
Pygy € Pa(X X X x V) i) It follows from Theorem IV.2 that even if the codewords
are not required to be of the same type, the lower bound
with given Pxy-, with Pz = P, and satisfying (IV.7), (IV.12) to the average probability of error always holds

with E,,(R, P, W) replaced by
TP x (@) N {y: o(y) # i}

= U U Zxx(@iz). (v.8)

Py 2y €T (XY) j: ji The latter is equal to the exponent in the “sphere
packing bound” first proved by Shannon, Gallager, and
Berlekamp [74]. The first simple proof of the sphere
packing bound was given by Haroutunian [52]. The
author is indebted to Haroutunian for the information

E (R, W)= max E, (R, P,W).

By Lemma 1.3

| Y|XX(a:i’ ;)| N exp{nH(Y|XX)}

|7y x (@) " exp{nH(Y|X)} that he had been aware also of the proof reproduced
— exp{—nI(X AY|X)} below bu_t published only his other proof because it was
_ exp{—n[I(X AXY) = I(X A X)]} not restricted to the discrete case.

. N i) Both E,,(R, P, W) and E,.(R,P,W) are con-
<exp{-n[[(XAY) - I(X AX)]} vex functions of R, positive in the same interval
(1IV.9) [0, I(P, W)); they are equal iR > R...(P, W) where
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R..(P, W) is the abscissa of the leftmost point wheréor joint typesPxy € P,.(X xV) with I{XAY) < R+6/2. A
the graph ofE,,(R, P, W) as a functions ofR meets simple continuity argument shows that for sufficiently large
its supporting line of slope-1. The same holds for the minimum ofD(Pxy ||W) for these joint types is less than
E.,(R, W) and E,.(R, W) which are (positive and) the minimum in (IV.13) pluss, and this completes the proof.
equal in an intervalR..(W), C(W)). For R in this

interval, their common value is the exact error expone®elated Further Results

for rateR codes. For smaller rates, the exact error
exponent is still unknown.

Dueck and KkKorner [42] showed that for codes
with codeword set{z:,---,zxy} C 75 and rate
(I/n)log N > R+ 6 with R > I(P, W), the
average probability of correct decoding goes to ze
exponentially with exponent not smaller than th
minimum of D(Pxy||W) + |R — I(X A Y)|T for
Pxy € P(X x )Y) satisfying Px = P. This result
follows from (IV.16) by Lemma I1.3. In [42] also its
tightness was proved.

The proof technique of Theorem V.1 has lead to various
further results. Already in Csifz, Korner, and Marton [32]

a stronger result than Theorem IV.1 was proved, with an
exponent better for “small rates” thah,.(R, P, W). With

the channel-dependent maximum-likehood decoder, a similar
Serivation yields an even better exponent for small rates
?hat, when optimized with respect to the codeword type,
gives the exponent of Gallager's [46] “expurgated bound”
(cf. [30, pp. 185, 193]). In [32] the problem of separately
bounding the erasure and undetected error probabilities was
also addressed; a decoder Y* — {0, 1,---, N} yields

Proof of Theorem 1V.2:Given a codeword set an erasure ifp(y) = 0, while an undetected error occurs

and arbitrary decodep, write

if ©(y) equals a message index < ¢ < N but not the
{€1, 2Ny CTp correct one. Using a (still channel-independent) modification
of the decoder (1V.2), jointly attainable exponents for erasure
and undetected error probabilities were obtained (cf. [30, pp.
D; = {y: o(y) =i}, i=1,---,N. (IV.14) 174-177]). Csisar and Korner [28] derived exponential error
bounds attainable with (a codeword set as in Lemma IV.1

For every joint typePxy € P,(X x V) with Px = P and) decoders defined similarly to (IV.2) but with( Py,)

N

I x(@:) N D <

i=1

N instead ofl (« A y) for an arbitrary functiony on P(X x }),

U Ty"|x(-’l‘i) < |72 (V.15) possibly channel-dependent. Recently Telatar and Gallager

Pae} - [77] used channel-dependent decoders of a somewhat more
general kind to derive jointly attainable exponents for erasure

Hence, supposingv > exp{n(R + 6)}, it follows by (11.6) and undetected error probabilities improving upon those in

and (II.7) that [32].
1T (@) N D | A particular class ofv-decoders received considerable atten-
YixXA™ 1 exp{nH(Y)} tion recently. They are thé-decoders defined by minimizing
N —~ |1y (=) SN exp{nH(Y]X)} a “distance”
<exp{n(I(X AY)—R-§)}. 1>
(IV.16) d(z, y) = o Z d(zi, ¥i),
=1
In particular, if (X AY) < R+6§/2 andn > n(8) (sufficiently d(z, y) a given function ot x Y (IV.19)
large), the left-hand side of (1V.16) is less thaf2, say, and setting (y) = i if d(zi, y) < d(z;,y) for all j # i, and
hence . Y J o "
¢(y) = 0 if no suchs exists. Here the term “distance” is
|TY|X z;) N DE| g used in the widest sense, no restrictiondis implied. In this
—_— > _ . . .
N Z Y|X ;)| 9’ context, even the capacity problem is open, in general. The

On account of (IV.4) and (1V.14), it follows from (IV.17) and W (y

d-capacity of a DMC is the supremum of rates of codes with
if (XAY)<R+ é, n >ne(6). (IV.17) a given d-decoder that yield arbitrarily small probability of
2 error. In the special case whelz, y) = 0 or 1 according as
x) > 0 or =0, d-capacity provides the “zero undetected

Lemma 11.3 that error” capacity or “erasures-only” capacity. Shannon'’s zero-

1
NZZ‘

N N error capacity can also be regarded as a special case of

Z "(D¢|z;) d-capgcity, and so can the graph-theoretic concept of Sperner
capacity, cf. [35].

N A lower bound tod-capacity follows as a special case

X

>

Y|X (z;) N DE|a;) of a result in [28]; this bound was obtained also by Hui
[55]. Balakirsky [12] proved by delicate “type” arguments
| Y|X(‘”z) N De| the tightness of that bound for channels with binary input
= N — o WY x () |:) alphabet. Csiszr and Narayan [35] showed that the mentioned
i=1 | YIX( i)l bound is not tight in general but its positivity is necessary for

~ exp{—nD(Pxv||W)} (IV.18) positive d-capacity. Lapidoth [59] showed thdtcapacity can
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equal the channel capacitg(W) even if the above lower error probability is bounded via the method of types. A
bound is strictly smaller. Other recent works addressing themarkable feature is that the very error-bounding process
problem ofd-capacity or its special case of zero undetectathturally suggests a good decoder.

error capacity include Merhav, Kaplan, Lapidoth, and ShamaiGiven an AVC defined by

[67], Ahlswede, Cai, and Zhang [9], as well as Telatar and B
Gallager [77]. {W(ylz, s),z € X,s € S,y € V}

as above, for input symbols andz we write z ~ Z if there
V. CAPACITY OF ARBITRARILY VARYING CHANNELS exists PD’s@Q and ¢ on S such that

AVC’'s were introduced by Blackwell, Breiman, and;:me s ZWWU $)O(s), for all ye .

Thomasian [15] to model communication situations wherge=3 pyye

the channel statistics (“state”) may vary in an unknown and (V.5)
arbitrary manner during the transmission of a codeword,

perhaps caused by jamming. Formally, an AVC with (finite]he AVC is symmetrizable if there exists a chanbielt’ — S
input alphabetY’, output alphabed’, and set of possible statessuch that

S is defined by the probabilitied’ (y|x, s) of receivingy € Y

whenz € X' is sentant € S is tr(1e| stat)e. The corresponding Z Wylz, U Z Wylz, 5)U(sl)

probabilities forn-length sequences are °es

forallz,z e X, ye ). (V.6)

(y|z, 8) H W (yi|zi, s:)- (V.1) It has long been known thaf,, = 0 iff z ~ & for all
xz, & in X [57], and that the right-hand side of (V.9) below is
glways an upper bound 1G,,, [10]. Ericson [43] showed that

The capacity problem for AVC’s has many variants accor%%mmetrlzablhty impliesC, = 0.

ing to sender’s and receivers’s knowledge about the stat
the state selector's knowledge about the codeword, degre@heorem V.1:For P € P(X) write
of randomization in encoding and decoding, etc. Here we

concentrate on the situation when no information is available® (") = pxscp(ﬁnxl%) PP (X AY)
to the sender and receiver about the states, nor to the state where Py sy = Pxs x W (V.7)
selector about the codeword sent, and afdyerministic codes
are permissible. and

For a code with codeword sétv}, -+, zy} and decoder D(P) = min I(X A X)
o: Y — {0, 1, ---, N}, the maximum and average proba- ) .
bility of error are defined as subject toPy = Py = P, Pr{X ~ X} =1 (V.8)

1 X Then min[C(P), D(P)] is an achievable rate for the max-
e =max max e¢;(8) €= max — Z ei(s) (V.2) imum probability of error criterion, for eact? € P(X).
sc8" 1<i<N sCS™ ¢
i=1 Hence
where Cpn = max C(P) (V.9)
. PEP(X)
ci(s) = W"({y: ¢(y) # i}z, 3). (V.3)

if the maximum is attained for some with C(P) < D(P).
The supremum of rates at which transmission with arbitrarily
small maximum or average probability of error is possible,
is called them-capacityC,, or a-capacityC,, respectively. =~ Remarks: The first strong attack at-capacity was that
Unlike for a DMC, C,,, < C, is possible, and”, may be of Dobrushin and Stambler [40]. They were first to use
zero when the “random coding capacit§;. is positive. Here large deviations arguments (including Chernoff bounding for
C, is the supremum of rates for which ensembles of coddependent RV’s) as well as “method of types” calculations
exists such that the expectation @fs) over the ensemble isto show that for randomly selected codes, the probability

Theorem V.2:For a nonsymmetrizable AVQ;, = C,.

arbitrarily small fori = 1, ---, N and alls € S". Already that N='3".¢;(s) is not small for a fixeds € S™ goes
Blackwell, Breiman, and Thomasian [15] showed that to zero doubly exponentially, implying the same also #or
. Unfortunately, as the method of types was not yet developed
Cr = PrePi) Pach(s) X AY) at that time, much effort had to be spent on technicalities. This
where Pysy = Py x Ps x W (V.4) diverted the authors’ attention from what later turned out to
be a key issue, viz., the choice of a good decoder, causing the
and gave an example whe€g. > C, = 0. results to fall short of a complete solution of thecapacity

Below we review the presently available best result aboptoblem. Not much later, Ahlswede [2] found a shortcut to that
m-capacity (Theorem V.1; Csidz and Korner [29]), and problem, proving by a clever trick that, = C,. whenever
the single-letter characterization efcapacity (Theorem V.2; C, > 0; however, a single-letter necessary and sufficient
Csisar and Narayan [33]). Both follow the pattern of Theoremondition for C, > 0 remained elusive. Remarkably, the
IV.1: for a “good” codeword set and “good” decoder, theufficiency of honsymmetrizability fo€’, > 0 does not seem
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easier to prove than its sufficiency f6f, = C,.. The strongest codeword sent is negligible. Indeed, we have by Lemmas Il.1
result aboutn-capacity preceding [29] was that of Ahlswedeand 11.3, writingP,, as a shorthand foP,,(X x S x ))

[4] who proved (V.9) for AVC’s such that ~ & never holds
whenz # #. He used large deviations arguments similar to
those of Dobrushin and Stambler [40], and was first to use aV" U
sophisticated decoder (but not the one below). A full solution Pxsv P, \II™ (n)
of the m-capacity problem appears a long way ahead; one of

its special cases is Shannon’s celebrated zero-error capa@ig—using also (V.16) and (V.11)—

problem.
1 &
vew( U

Px sy €Pp\11%(n)
1 1
SN|{i5I($i/\3)>5}|+N E

i I(w;A8)<e
. |17Tl ( l
Pxs (fpn\Hm(n 5)

T;LlXS(:Ei, s)|x;, s) =< exp(—nn)

(V.17)

Proof of Theorems V.1 and V.Zirst one needs an ana-
log of Lemma IV.1 about the existence of “good” codeword
sets. This is the following

T};LlXS(‘Ti’ 3) |‘Ti’ 3)

Lemma V.1:For anye > 0, R > ¢, and sufficiently large
n, for each typeP € P,(X) with H(P) > R there exist
N = exp (nR) sequences, ---, zy in 75 such that for all

joint typesPy ¢o € Pp(X x X x V) and alls € S™ Ty |xs(®i, 8)|zi, 3)

[{d: (i, 25, 8) € T M < exp{n[|[R—I(XSAX)[T+e]},
i=1,---,N (V.10)

% {i: I(z; A 8) > e}| < exp(—ne/2) (V.11)

1. .
N |{'L: (.'l‘i, z;, 3) € TXXS
if I(XAXS)>|R-I(XAS)|T+e¢

if 4 £ j.

for somej #£i}| <exp(—ne/2),

(V.12)
(V.13)

=< exp(—ne/2) + exp(—n(n — €)). (v.18)

Motivated by (V.17) and (V.18) we will consider

L{y) = {i: Py,sy € 11 for somes € S™} (V.19)

as the list of candidates for the decoder outp(y), where

II denotesII™(n) or II*(n) according as the maximum or

average probability of error criterion is being considered.
Dobrushin and Stambler [40] used, effectively, a decoder

This Igmma can be proved by random selection, althougvl}\ose output was if ¢ was the only candidate in the
more refined arguments are needed to get (V.10)—(V.12) th ove sense (withl = I1°(x)), while otherwise an error

th_ose in the_ _proof_of Lemma IV.1. One has to sh_ow th"’?t ON¥as declared. This “joint typicality decoder” has been shown
with probability going to zero faster than exponentially WllltheSLJitable to achieve the-capacity C, for some but not all

randomly selected codewords violate (V.10)—(V.12), for aN/c's To obtain a more powerful decoder, when the list

fixed s € 5", andi in (V.10). This can be done by Chernoff V.19) contains several messages one may reject some of them
bounding. One difficulty is that in case of (V.12) dependerﬁ) 19) ! v g yrel

RV’s have to be dealt with; this can be overcome using an id

of Dobrushin and Stambler [40]. For details, cf. [29] and [33

We will use a codeword set as in Lemma V.1, with

decodery whose exact form will be suggested by the ve

error-bounding process.
Denote byIl™(n) and II*(n) the family of those joint
distributions Px sy € P(X x § x )) that satisfy

D(Pxsy||Pxs xW)<mn,  Px=P (V.14)
respectively,
D(Pxsy||Px x Ps x W)<n, Pxy=P  (V.15)
Notice thatIl’(n) c II™(n) since
D(Pxsy||Px x Ps x W)
= D(Pxsy||[Pxs X W)+ I(X A S). (V.16)

A codewordz; and a received sequengemay be con-
sidered “jointly typical” if there existss € &™ such that
the joint type of(z;, s, ) belongs toll™ (%) or I1%(n). The

t will be the decoder output. We will consider rejection
les corresponding to setd C P(X x & x & x V) of

ﬁ%a suitable rule. If only oné € L(y) remains unrejected,

r?}int distributions Py ; ¢, as follows: a candidatec L(y) is
e

jected if for everys € 8™ with P, € 1l there existg # ¢
in L(y) such that the joint type ofz;, z;, s, ¥) belongs to
V. To reflect thatFy,sy € 11 and thatFy 3, € 11 for some
8 € 8" (asj € L(y)), we assume tha¥ consists of such joint
distributionsPy ¢ o;- Whose marginal$’x sy and Pz satisfy

Pxsy €1l

Pgy is the marginal of somé&’; 2y € Il (V.20)

A set W of joint distributions with the properties (V.20) will

be called permissible if for eacpp € V", the rejection rule
corresponding tol' leaves at most oné € L(y) unrejected.
Then ¢(y) is set equal to the unrejectede L(y), at 0 if

no suchi exists. For such a decoder, preliminarily with an
unspecifiedl C P(X x &’ xS x V), the maximum or average
probability of error can be bounded via standard “method of
types” technique. The result will suggest a natural choic& of
that makes the bound exponentially small under the hypotheses

contribution to the maximum or average probability of erroof Theorems V.1 and V.2. The calculation is technical but
of output sequenceg not jointly typical in this sense with the instructive; it will be given in the Appendix.
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Further Developments needed to cover the type clag$ C &A™, whered(z, y) is

By the above approach, Csisz and Narayan [33] also de-d€fined by (IV.19). Then

termined thez-capacityC, (A) for AVC’s with state constraint 1

A. The latter means that only thosec S™ are permissible /%%, |, 108 Nu(P, D)= R(P, D) =0, asn— oo

state sequences that satisfy' >", 4(s;) < A for a given (VI1.2)

cost functionf on S. For this case, Ahlswede’s [2] trick doeswhere

not work and, indeedp < C,(A) < C.(A) may happen. .

Specializing the result to the (noiseless) binary adder AVC R(P, D) = min (X AY)

X¥=85§=Y={0,1},W(y|z,s) =1if y =2+ smod?2) subjecttoPx =P Fd(X,Y)<D (VL.3)

with ¢(s) = s, the intuitive but nontrivial result was obtained . . . -

that for A < 1/2, the a-capacityC,(A) equals the capacity IS thg rate—dlstgrtlon function. .

of the binary symmetric DMC with crossover probability This lemma is seen today as a consequence of a sim-

Notice that the corresponding-capacity is the maximum rate ple gen_eral [esult about coverings known as the John-

of codes admitting correction of each pattern of no more th an—S_tem—Loas_z t_heorem,_ cf. Coheet al. [2.1 , P. 322]. The

An bit errors, whose determination is a central open probleﬁmtter is useful in information theory also in other contexts,

of coding theory. The role of the decoding rule was furthéij' Ahl'swede. [3]. :

studied, andz-capacity for some simple cases was explicitl)(n_A_n immediate consequence of Lemma VI.1 is that_ ';he

calculated in Csiszr and Narayan [34]. inimum (asymptotlc) rate of sgurce block codesn ad_mlttmg
While symmetrizable AVC's hav€’, = 0, if the decoder th_e re_producUon of eac_h: € A™ by somey € )" with

output is not required to be a single message indest a list diStortion d(z, y) < D, is equal tomaxpepcy) K(P, D).

of k candidatesy, - -, iy, the resulting “list code capacity” Berger [13] also used this lemma to derive the rate-distortion

may be nonzero already fok = 2. Pinsker conjectured thiorem f?]r arb|tri5.1r|ly. varyllnLg sourc\e/sl.l M 641 d
in 1990 that the “list-size#" a-capacity is always equal to S @nother application of Lemma V1.1, Marton [64] deter-

C,. if k is sufficiently large. Contributions to this problem,mineOI the error exponent for the compression of memoryless

establishing Pinsker’'s conjecture, include Ahlswede and urces with.a fidelity criterion. In fact, h(_ar error ex‘;‘Jo.nentl Is
[7], Blinovsky, Narayan, and Pinsker [17], and Hughes [54 .ttalnablf universally (with codes deper_ldlr?g on the “distortion
The last paper follows and extends the approach in t easure d but not on the source d'St.”bUt'oQ or the
section. For AVC's withC,. > 0, a numberM called the istortion thresholdD). Thus the foIIo_vvmg extension of
symmetrizability is determined, and the list-sizex-capacity Theorem 1111 holds, cf. [30, p. 156]: Given
is shown to be) for & < M and equal toC,. for & > M. A 0<R< max R(P, D)
partial analog of this result for list-size-m-capacity is that PeP(X)
the limit of the latter ask — oo is always given by (V.9), there exist codeword set§, c J™ such that
cf. Ahlswede [6]. )

The approach in this section was extended to multiple- Zlog |C| — R (V1.4)
access AVC's by Gubner [50], although the full analog of n
Theorem V.2 was only conjectured by him. This conjecturand for every PD() € P(X) and everyD > 0
was recently proved by Ahlswede and Cai [8]. Previously,
Jahn [56] determined the-capacity region of a multiple- 1 "
access AVC under the condition that it had nonvoid interior,, log @ (( U
and showed that then thecapacity region coincided with the
random coding capacity region. where

By, D)) ) — —F(R, Q, D) (VI.5)

yCCy

F(R,Q, D)= inf D(P||Q). (VI1.6)
P: R(P,D)>R
VI. OTHER TYPICAL APPLICATIONS o
Moreover, for any sequence of séts C V" satisfying (V1.4)

the liminf of the left-hand side of (VI.5) i —F(R, @, D).
A. Rate-Distortion Theory Remarkably, the exponent (VI.6) is not necessarily a contin-
The usefulness for rate-distortion theory of partitionimg Uous function ofR, cf. Ahlswede [5], although as Marton
length sequences into type classes was first demonstrated@} showed, it is continuous whe#(z, ) is the normalized
Berger [13]. He established the following lemma, called thdamming distance (cf. also [30, p. 158]).
type covering lemma in [30]. Recently, several papers have been devoted to the redun-
_ . . dancy problem in rate-distortion theory, such as Yu and Speed
Lemma VI.1: Given finite setsX’, Y and a nonnegative [82], Linder, Lugosi, and Zeger [61], Merhav [65], Zhang,
function d(z, y) on X' x y for P & P () :amdD 20 Igt Yang, and Wei [83]. One version of the problem concerns the
Nu(P, D) denote the minimum number of*balls of radius .« 4te redundancy” ofb-semifaithful codes. AD-semifaithful
D code is defined by a mapping: A" — Y" such that
d(z, f(z)) < D for all x € X, together with an assignment
B(y, D) ={z: d(z,y) < D} (VI.1) to eachy in the range off of a binary codeword of length
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£(y), subject to prefix condition. Yu and Speed [82] showedhere (X™, Y™) representsn independent repetitions of
that for a memoryless source with generic distributipthere (X, Y'). Csisar, Korner, and Marton proved in 1977

exist D-semifaithful codes whose rate redundancy (published in [27], cf. also [30, pp. 264—266]) that for suitable
1 codes as above, with encoders that mEp and Y" into
= > QM @)(f(x) — R(Q, D) (VI.7) codeword sets of sizes
n o
zCA If]l = exp(nRy)  ||g]| = exp(nRy), (VI.11)

is less than a constant timésg n/n, moreover, such codeSihe error probability (VI.10) goes to zero exponentially as
may be given universally (not depending @)). They also ,, _. . \with exponent

conjectured that the rate redundancy (VI.7) can never be less _

than a constant timesg n/n, under a technical condition that1 (£, B2, X, Y) = U [D(Pgy || Pxy)

excludes the casP = 0. Zhang, Yang, and Wei [83] proved A o -
that conjecture, and also determined the exact asymptotics of +[min(fy — H(X]Y), Ry - H(Y|X),

the “distortion redundancy” of the best rakeblock codes, Ry + Ry — H(XY))[*]
again under some technical condition. This result of [83] says (VI.12)
that for a memoryless source with generic distributignthe . o i
minimum of whenever(R;, R;) is in the interior of the achievable rate
region [76]
2 Q@da J@)=DQE) M8 R Y) = (R, Re)i Ry 2 HOXY), R 2 HYIX)

Ri+ Ry > H(X, Y)}. (VI1.13)
for mappingsf: X" — C, C Y™ with |C,| < exp(nR) is
asymptotically equal to constant timleg » /n, with an explic-
itly given constant. Herd)(Q), R) is the inverse function of

This assertion can be proved letting be the “minimum
entropy decoder” that outputs for any pair of codewords

. . . that pair(z, ¥) € A" x Y™ whose nonprobabilistic entropy
E(Q, D) defined by (V1.3), withy fixed. Both papers [82] and s(x, y) is minimum among those having the given codewords

[83] heavily rely on the method of types. The latter represen es may be broken arbitrarily). Using this the incorrectly

one of the very few cases where the delicate calculatio (Sacoded airéz, ) belong to one of the following three sets:
require more exact bounds on the cardinality and probability P Y 9 9 |

of a type class than the crude ones in Lemma 11.2. Dy ={(z,y): H',y) < H(z, y)
for somez’ # z with f(z') = f(x)}

B. Source-Channel Error Exponent Dy ={(z,y): H(z, ) < H(z, y)
When a memoryless source with alphaksetand generic for somey’ # y with g(/) = g(y)}

distribution} is transmitted over a DMEW: X — Y} using

_ R / /
a source-channel block code with encoders™ — X™ and Ds={(z, y): H(z', ¢/) < H(z, y)

decodery: Y — 8™, the probability of error is for somez’ # z andy’ # y
with f(z') = f(2), 9(¥') = 9@)}-
(YW ({y: . V1.9
scz; @"(8) (y: o) # 811/ (3) ( ) It can be seen by random selection that there efisind

¢ satisfying (VI.11) such that for each joint typBs, €
Using techniques as in the proof of Theorem IV.1, CaiszP, (X x ))

[22] showed that by suitable source-channel codes of block- D, N T2, o
lengthn — oo, not depending or, the error probability ———XY < exp{—n|R — HX|Y)|"}
(V1.9) can be made exponentially small whenevé&(Q) < 735
C(W), with exponentming[co(R) + E.(R, W)] (cf. (111.3) |1D2 N TZc| o
and the remarks to Theorems IV.1 and IV.2 for notation). This ﬁ < exp{—n|Ry — H(Y|X)[T}
exponent is best possible if the minimum is attained for some D ri(YT" |
R > R..(W). For further results in this direction, including 7 Ixvl o exp{—n|Ry + Ry — H(XY)|*}.
source-channel transmission with a distortion threshold, cf. |T§y
Csisar [24]. Hence the assertion follows by Lemmas 1.1 and 11.2.
The error exponent (VI.12) for the Slepian—Wolf problem
C. Multiterminal Source Coding is attainable universally, i.e., with codes not depending on the

Historically, the first multiuser problem studied via thélistribution of (X', Y"). This result is a counterpart of Theorem
method of types was that of the error exponent for tH¥-1 for DMC’s. The counterpart of Theorem V.2 was also
Slepian-Wolf [76] problem, i.e., separate coding of (memé&stablished by Csiéz, Korner, and Martonjoc cit: For no
ryless) correlated sources. Given a source pair with genefRUrce pair can the error probability of codes satisfying (VI.11)
variables(X, Y), the error probability of am-length block decrease faster than with exponent
code with separate encodefsg and common decodes is E3(Ry, Ry, X,Y) = min  D(Pgy|Pxy)-

Pgs: (Ri,Ra)gR(X,T)
Pr{o(f(X™), g(Y™)) # (X", Y™)} (V1.10) (VI1.14)
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The functions in (VI.12) and (VI.14) are equal(i?;, R,) is distribution is of form
close to the boundary dR(X, Y). For such rate pairs, their
common value gives the exact error exponent. Poxyz(u, 2, y, 2)

= Py(uw)Pxs Py W (z|z, VI.16
Remark: For the intrinsic relationship of source and chan- v (W Pxju (@) Py () Wizle, y)- )

nel problems, cf., e.g., Csigzand Korner [30, Secs. lll.1 and gnd such that
[11.2], Csiszar and Korner [28], and Ahlswede [3, Part II].

The ab Its have b tended in vari B < I(X A ZYD)

e above results have been extended in various ways.

Extensions to more than two correlated sources are straight- B, SI(Y A Z|XU)

forward, cf. [27], or [30, pp. 267, 268]. Csiszand Korner Ry + Ry <I(XY A Z|U). (VI.17)
[28] showed that good encoders can be obtained, instea
random selection, also by a graph-theoretic approach. Anot %e

contribution of [28], in retrospect the more important oné

was to apply the method of types to study the performan pbability of error criterion may gi\_/e a smaller region, cf.
of various decoders, and to improve the exponent (VI.12) f rueck [41]; a single-letter characterization of the latter is not

L . know
“large” rates. Csisar [23] showed that the exponent (VI1.12) is . . .
9 isar [23] W P ( )i For (R, R») in the interior ofC, € can be made exponen-

(universally) attainable also with linear codes, i.e., constrainirtli%”y small: Gallager [47] gave an attainable exponent every
and g be linear maps (to thisY’ and Y have to be fields, A R i i
/ g ! ps ( : Y hav ! re positive in the interior af. Pokorny and Wallmeier [71]

but that can always be assumed, extending the aIphabetsV\@? first t v th thod of t 0 thi bl Th
dummy symbols of zero probability if necessary). Also in [23\{\' re Tirst 1o apply the method of types to this probiem. They
linear codes were shown to give better than the previou gowed the existence of (universal) codes with codewards

known best exponent for certain rate pairs. More recently, dyJPWhOSE;)JO';t t):‘p/)es V(‘;'}r) a f'X%d‘ ZU" are ar:?;:r?rtlr!y
Oohama and Han [70] obtained another improvement fgf/eN+uvx € n(UxX) andPyy € P, (U x V) such that the

certain rate pairs, and Oohama [69] determined the exQyerage probability of error is bounded above exponentially,

exponent for a modified version of the problem. That modV/th egt;:_)onefnt depeﬁg;nglﬁa, Foy, anthIt/r; t?‘? e;)(ponent
ification admits partial cooperation of the encoders, whicly POS!HVE for €achvy: wi € property that forf'v xy z

however, does not affect the achievable rate region (VI.1 termined by (V1.16) with the giveRyx and Py, (V1.17)
nor the upper bound (V1.14) to achievable error exponen{ 'sat|sf|ed with strict inequalities. Pokorny and Wallmeier [71]

On the other hand, the modification makes the exponentlfﬁed the proof technique of Theorem IV.1 with a decoder

(VI.14) achievable for all rate pair§R;, R,) in the interior maximizing I(z;y; A zu). Recently, Liu and Hughes [62]
of R(X, Y), even universally. improved upon the exponent of [71], using a similar technique

but with decoder minimizingH (z;y,|zu). The “maximum

mutual information” and “minimum conditional entropy” de-

coding rules are equivalent for DMC’s with codewords of the

same type but not in the MAC context; by the result of [62],
The first application of the method of types to a multi“minimum conditional entropy” appears the better one.

terminal channel coding problem was the paper afri€r

and Sgarro [58]. Using the same idea as in Theorem V.1, VII

they derived an error exponent for the asymmetric broadcast ] o )
channel, cf. [30, p. 359] for the definition of this channel.  While the type concept is originally tailored to memoryless

Here let us concentrate on the multiple-access chanﬁé‘i’dels' it has extensions suitable for more complex models,
(MAC). A MAC with input alphabets.X, Y, and output @S well. So far, such extensions proved useful mainly in the

alphabetZ is formally a DMC {W: X x ¥ — 2}, with context of source coding a_nd hypothesis testing._

the understanding that there are two (noncommunicating)Pstractly, given any family of source models with alphabet
senders, one selecting th&-component the other thg- <t. & partition _OfXT Into setsAy, -+, Ay, can be regarded
component of the input. Thus codes with two codeword$ @ Partition into “type classes” if sequences in the saime
sets{zy, -, &y} C X" and {y,, -, yy} C V" are are equiprobable under each model in the family. Of course, a

considered, the decoder assigns a pair of message indiceSUbexponential growth rate d¥, is desirable. This general
i, j to eachz € 2", and the average probability of error is €ONcept can be applied, e.g., to variable-length universal
) source coding: assign to eaghe A; a binary codeword of

Y capacity regiorC was first determined (in a different
gebraic form) by Ahlswede [1] and Liao [60]. The maximum

D. Multiterminal Channels

. EXTENSIONS

; MN length/(z) = [log, N, |+[log, |4:l]. the first[log, N, | bits
= — Z Z W™({z: (2) # (i, j) =i, ;). (V1.15)  specifying the class indeixthe last[log, | 4;[] bits identifying
MN = j=1 & within A;. Clearly, #(z) will exceed the “ideal codelength”

—log, P(z) by less thaflog, N, |+1, for each source model
The capacity region, i.e., the closufeof the set of those in the family.
rate pairs(R;, R,) to which codes withAM =~ exp nRy, As an example, consider the model fami® of renewal
N = exp nRs, ande — 0 exist, is characterized as follows:processes, i.e., binary sources such that the lengtisrafis
(Ry, Ry) € C iff there exist RV'sU, X, Y, Z, with U taking preceeding thé’s are i.i.d. RV's. Define the renewal type of
values in an auxiliary set/ of size [if| = 2, whose joint a sequencer € {0, 1}" as (ko, k1, ---) wherek; denotes
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the number ofl’s in z which are preceeded by exactly (P € P.(X?) is called irreducible if the stationary Markov
consecutivel’'s. Sequenceg € {0, 1}™ of the same renewal chain with two-dimensional distributio® is irreducible).
type are equiprobable under each modelRdn and renewal The above facts permit extensions of the results in Section
types can be used for the model famiy much in the Il to Markov chains, cf. Boza [19], Davisson, Longo, and
same way as standard types for memoryless sources.aCsi&gjarro [38], Natarajan [68], Csiaz Cover, and Choi [26].
and Shields [37] showed that there aw, = exp(O(y/n)) In particular, the following analog of Theorem I11.3 and its
renewal type classes, which implies the possibility of univers@lorollary holds, cf. [26].
e o 7 TG VL1 Ghen 8 Markoy chan, .. i

: Yhsition probability matrix¥/” andPr{X; = a} > 0, and a

O (y/n) is best possible for this family, as opposed to finitel , 9
parametrizable model families for which the best attainab%eet of PD'SIT C P(4) such thatP < W for eachP € 11,

, p(2) isfi
redundancy is typicallyO (log 7). the second-order typg,~’ of X, ---, X,, satisfies
. ) . . 1 .
Below we briefly discuss some more direct extensions of). Zlog Pr{P, €l X, =a}= — _min D(P||W)
the standard type concept. n—00 7, PENINP.(X?)
(VIL.5)

A. Second- and Higher Order Types ) . )
iff there exist second-order typeB, € Il N P," (X, a)

The type concept appropriate for Markov chains is “second;, .1, that D(P,||W) approaches the minimum in (VIL.5).

order type,” defined for a sequenge= z; --- xn € ™ 8 Eypher, if the minimum in (VIL5) is attained for a unique

(2) ; . L
the PD ;™ € Pp1(X?) with P*, and X7, X3, --- denotes a stationary Markov chain with
1 . Px.x» = P*, for (al, (AR ak) € X* with PX*(al) > 0,
P:E-Q)(av b) = n—1 |{Z: Ly =a, Li41 = b}| (VIL.1) Welhgve '

i - - — p(2) _
In other words PL? is the joint type ofe’ = 21 --- 2,1 and L Pr{X; =ap, -, X =@l Pp7 € 1L Xy = ar}

" =z -+ z,. Denote b)ﬂ?,(f)(X, a) the set of all possible =Pr{X] =az, -, Xj =ai|X{ = a1} (VILE)
second-order types of sequenees A™ with x; = a, and _

for dummy RV's X, Y representing such a second-order typ\évhenever (VII.5) holds for = a;.
(e, Pxy € P(X, a)) let T)?fa denote the type class Remarks:

{z: 2 € &A™, Pf) = Pxy, 1 = a}. i) Let II’ denote the set of those irreducibe € II N

The analog of (I1.1) for a Markov chaiX;, X, --- with P.(X?) for which all P" < P in a sufficiently small
stationary transition probabilities given by a matfix is that neighborhood ofP belong toll. The first assertion of
it P2 = Pyy andz, = a (with Pr{X; = a} > 0) then Theorem VII.1 gives that (VII.5) always holds if the

' ' closure ofIl‘ equalsIl N P.(X?).
Pr{X" = 2[X; = a} ii) Theorem VII.1 is of interest even if{y, X, --- are
= H W (b|a)n—DPxv(ab) i.i.d.; the limiting conditional distribution in (VII.6) is
(a, )2 Markov rather than i.i.d. also in that case.

=exp{—(n — D[H(Y|X) 4+ D(Pxy|W)]} (VI.2) As an immediate extension of (VII.1), th¢h-order type of

a sequence € A™ is defined as the PIP{” € P(A™) with
where X" = X; --- X,,. The analog of Lemma II.2 is that

for Pxy € 777(,,2)(.?\’, a) P:!(:T)(alv o '71“7‘)
TR~ eplnHY|X) V3 T gl EE e s =adl (VILD)

Pr{X" € T)?fa|X1 =a} = exp{—nD(Pxy||W)}. (VIL4) This is the suitable type concept for order— 1) Markov
. chains, in which conditional distributions given the past de-
Of course, (VI.4) is a consequence of (VII.2) and (VII.3)yenq on the lastr — 1) symbols. All results about Markov

The simple idea in the proof of Lemma 1.2 suffices onlyp,ing and second-order types have immediate extensions to
for the < part of (VII.3), the = part is more delicate. order{r — 1) Markov chains andth-order types.

One way to get it (Boza [19]) is via the exact formula  gjnce order: Markov chains are also ordérenes if¢ > F,

for |7¢,,| due to Whittle [80], an elementary proof ofy,s analog of the hypothesis-testing result Theorem 111.2 can
which has been given by Billingsley [14]. An importani,e anplied to test the hypothesis that a process known to be
property of second-order types is that they have (equal §fh oy of orderk is actually Markov of ordek: for a given
asymptotically equal marginals as — oc. Indeed, forz = 4 1. performing a multiple test (for eadh< k) amounts

axy -+ wn-1b € Ty, the marginalsPx and Py of Pxy = 1 egtimating the Markov order. A recent paper analyzing
P differ only ata andb, if a # b, both differences being this approach to Markov order estimation is Finesso, Liu, and
(n — 1)~t. Moreover, denoting byP. (X?) the set of those Narayan [45], cf. also prior works of Gutman [51] and Merhav,
P € P(X?) whose two marginals are equal, each irreducibleutman, and ziv [66].

P € P.(X?) can be arbitrarily approximated by second-order “Circular” versions of second- and higher order types
typesP’ € P,(LQ)(A’, a) with P <« P if n is sufficiently large are also often used as in [38]. Th¢h-order circular type
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of z; ---x, € A" is the same as theth-order type of s; = F(\). The type concept adequate for the source model
Tl - Tn®l - Tr—1 € XML e, the joint type of the: N

Sequenc_:ele e Ty, T2 TnpT1, ", 3?1‘ s Tn e .-777,_1. Prix™ = .'l‘} — H W(-Tz|31)a Sip1 = F(.’IZZ) (V||12)

A technical advantage of circular types is compatibility: lower iy

order circular types are marginals of the higher order ones.

The price is that expressing probabilities in terms of circulds the F-type P defined as the joint typeP,,, where

types is more awkward. s is determined byz as in (VI.12). Of course, for the
correspondind’-type classeﬁ'g)’f we still have (VII.9) when
B. Finite-State Types T € T;}F, and consequently also
A sequence ofX-valued RV's X, X5, ... is called a |7;),(F| < exp{nH(X|S)}. (VI1.13)

unifilar finite-state source if there exists a (finite) setof
“states,” an initial state; € S, and a mapping’: Sx X — S Unlike for the finite-state type classeEy’, , however, a
that specifies the next state as a function of the present statger bound counterpart of (VI.13) cannot be established in
and source output, such that general.
n An early appearance of this-type concept, though not of
Pr{X" =z} = H W(zils:), sig1 = f(si, x;) (VI.8) the term, was in Csigz and Korner [31], applied to DMC's
with feedback. The encoder of a feedback code of blocklength
] ) ) o n for N messages is defined by mappings = V* — X,
where W is a stochastic matrix specifying the source output _ | ... A that specify the input symbols; = Fj,(y'—?)
probabiliti_es g?ven the statgs. As the state sequence , _ 1,---, n, depending on the previous received symbols
s1 -+ sp IS uniquely determined by =, ---x, and the ,i—1 . ..., | when messageis to be transmitted. Then
|n|t|all ;tate s1, SO is J:che joint typePsz. It will pe called ihe received sequenage V" in generated by a generalized
the finite state typel;’™ of z, given the mappingf and finite-state model as in (VI1.12), with alphab@t, state set
the_lnltlal states;, cf. Weinberger, Merhav, and Feder _[79]-2\’, and F = Fy. In particular, the probability of receiving
Notice that thefth—order type (VIL7) ofz = x; fn IS anye T;&Fk equalsexp{—n[H (Y |X) + D(Pxy |[W)]}, cf.
equal to the finite state type of. --- x, for S = A" and (/|| 9). Hence a decodep will correctly decode message
f: S x X — S defined byf(al cer Qe a) =a2 - Gr-1G,  with probability

=1

with S1 = T1 - Tp—1-
Denote the set of finite-state typed/'*', z € A™, by Z |75 0 D] exp{—n[H(Y|X)+D(Pxy|W)]}
PL(X, s1), and let ngg‘sl denote the class of sequencegy, cp,(x¥x))
z € X" with P/'** = Psx. Then forz € 7%/, , (VIL.8) o (VI1.14)
gives whereD;, = {y: ¢(y) = k}. Similarly to (IV.16), we have
n_ _ B N N
Pr{X" =z} = exp{—n[H(X|S) + D(Psx||[W)]}. (VIL.9) Z TP 1 Dy < U TP
k=1 k=1

Further, for Psx € PJ(X, s;) the following analogs of
(VI.3) and (VI1.4) hold:

|7§L)’(fs | ~ exp{nH(X|S)} (VI1.10) On account of_ (VI.13) (with_(S, X) replaced by(X, 1)),
) ! the left-hand side of (VII.15) is als& N exp{nH (Y|X)}. It
Pr{X™ e 75!, } m exp{—nD(Psx|W)}. (VIL11) follows that if N > exp(nR) then

<|TP| < exp{nH(Y)}. (VIL.15)

These permit extensions of results about Markov chains and ¥
second-order types to unifilar finite-state sources and finitg; > 1743 " N Di| < exp{n[H(Y|X)—|R—I(XAY)|T]}.
state types. Weinberger, Merhav, and Feder [79] used this ¥=1 (VI1.16)

type concept to study the performance of universal sequentA%l

codes for individual sequences (rather than in the averaq %e ﬁg'srfatr; Erokba<b|}|\tfy gjllci)(rir)ei?‘:] dI?eCSO?r']r;? t(h\gli\fe)r:\/:r
sense). They established a lower bound to the codelen ges = k= A, ' b 9

valid for most sequences in any given type clésg%’({csl, %rdbabmty of correct decoding is
except for a vanishingly small fraction of the finite-state types <exp{—n min[D(Pxy ||W)+ |R — I(X AY)|*]}
Psx € PTJ:(X, 81).

The finite-state model (VI1.8) can be extended in varioushere the minimum is for alPxy € P(X x )). Comparing
ways. Let us consider here the extension when the “nekis with Remark iii) to Theorem 1V.2 shows that feedback
state”s,,, depends on the past sequente= z; --- z; not cannot exponentially improve the probability of correct de-
necessarily througls; and x; but, more generallys;.+1 = coding at rates above channel capacity.

F(z%) where F: X* — & is an arbitrary mapping. Her&* A recent combinatorial result of Ahlswede, Yang, and
denotes the set of all finite sequences of symbols frtbm Zhang [11] is also easiest to state in termstofypes. Their
including the void sequenck the initial states; need not be “inherently typical subset lemma” says, effectively, that given
explicitly specified in this model, as it is formally given byx” ande > 0, there is a finite sef such that for sufficiently



2520 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

largen, to any A C A™ there exists a mappin§f: X* — S Theorem VII.3: Let X, X5, --- be independent’-valued
and anF-type Psx such that RV’s with common distribution?. Then

|A] = |A N 7255 > exp{n(H(X|S) —e)}.  (VIIL17)
While this lemma is used in [11] to prove (the converse part of)

a probabilistic result, it is claimed to also yield the asymptotic limsup — log Pr{P, € II} < — inf D(P||Q), (VI.23)
solution of the general isoperimetric problem for arbitrary "~ " Pel

liminf = log Pr{P, e II} > — Jnf D(PQ), (VII.22)
€

n—oo 1N

finite alphabets and arbitrary distortion measures. for every sefll of pm’s on(&’, F) for which the probabilities
. Pr{P, € II} are defined. Herél® andII denote the interior
C. Continuous Alphabets and closure ofiI in the 7-topology.

Extensions of the type concept to continuous alphabetsTheorem VI1.3 is a general version of Sanov’s theorem.
are not known. Still, there are several continuous-alphadgtthe parlance of large derivations theory (cf. Dembo and
problems whose simplest (or the only) available solution relidgitouni [39]) it says that{ P, } satisfies the large deviation
upon the method of types, via discrete approximations. FBfinciple with good rate functiod(-||?) (“goodness” means
example, the capacity subject to a state constraint of an A¥@at the sets{P: D(P[|Q) < «} are compact in ther-
with general alphabets and states, for deterministic codes 4@Bology; the easy proof of this property is omitted).
the average probability of error criterion, has been determined Proof: (Groeneboom, Oosterhoff, and Ruymgaart [49])

in this way, cf. [25]. Pick any P € II°, and A and ¢ sat|sfy|ng (VI1.20). Apply
At present, this approach seems necessary even for fggorem II1.3 to the quantized RV'(;' with distribution
following intuitive result. Q4, where X' = j if X; € A;, and to the set of those

distributions? on {1, ---, k} for which |P(j) — P(4;)| < e,
Theorem VII.2 ([25]): Consider an AVC whose permissible; _ — 1,k

n-length inputsz € R" satisfy [|z]|> < nI", and the output
isy =z + z+ Z" where the deterministic sequengee
R™ and the random sequen@ﬁ with mo_lependent zero- lim = log Pr{|B,(A D= PA)|<e, j=1,---, k}
mean componentg; may be arb|trary subject to the power 7~ 7 A

constraints|z||2 < nAy, Y., E(Z?) < nl,. This AVC has 2 —D(P7|Q7). (VII.24)

the samen-capacity as the Gaussmn one where fs are The left hand side of (VII.24) is a lower bound to that of

i.i.d. Gaussian RV’s with varianca,. 0 .
: S (VI1.22), by (VI1.20). Hence, asP € II° has been arbitrary,
For the latter Gaussian case, Caisahd Narayan [36] had (VIL19) and (VI1.24) imply (VI1.22).

previously shown that Notice next that for each partitiod, Theorem 111.3 applied
1 r - to the quantized RV'sX/* as above and thl* = {P4: P ¢
“log (1 fI>A q i -
Ca—{20g<+A A2)’ hh= i
0,

As the Iatter is an open set containiiy', it follows that

(VI.18) 1II} gives that

if <Ay
= A A Al OA
Discrete approximations combined with the method of types hfff;ip log Pr{F! € I} < — D(IIY|1QY)
provide the simplest available proof of a general form of — — inf D(PYQM).
Sanov's theorem, for RV’'s with values in an arbitrary set
X endowed with ar-algebraF (the discrete case has been (VI1.25)
discussed in Section lI). .
For probability measures (pm'sl, Q on (X, F), the I- g:rl]((a)lesy,th(;/tll.za follows from (VII.19) and (VII.25) if one
divergenceD(P||Q) is defined as
inf D(P4||Q*) = inf sup D(PA(|Q™). :
D(PIQ) =sup DAY (vitag) SR iy PIPTIRT = Tug sup DEPTIIRT). - (V1126)
the supremum taken for partitiond = (A;, ---, A;) of X The nontrivial but not too hard proof of (VI1.26) is omitted.
into setsA; € F. Here P* denotes the4- quantlzatlon ofp  The “discrete approximation plus method of types” ap-
defined as the distributiofiP(A;), - - -, P(Az)} on the finite Proach works also for other problems that can not be entered
set {1, ---, k}. here. For extensions of the hypothesis testing results in Section

The-topology of pm’s on( X', F) is the topology in which Il cf. Tusnady [78].
a pm P belongs to the interior of a sét of pm’s iff for some
partition A = (A, ---, Ax) ande > 0 VIII. CONCLUSIONS

{P':|P'(A)) — P(4))] <, j=1,---, k} CIL The method of types has been shown to be a powerful tool
(VI1.20) of the information theory of discrete memoryless systems. It

A affords extensions also to certain models with memory, and

The empirical distribution 7, of an n-tuple X™ = can be applied to continuous alphabet models via discrete
(X1, ---, X,,) of A-valued RV’s is the random pm defined byapproximations. The close links of the method of types to
large deviations theory (primarily to Sanov’s theorem) have

. 1
Po(A) = - [{i: X; € A}, AeF. (VII.21) 450 been established.
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Sometimes it is claimed that “type” arguments, at least féor at least V indices . Assuming without any loss of
models involving only one set of sequences as in hypothegisnerality that (A.5) holds fof = 1, ---, N, it follows by
testing, could be replaced by referring to general results frai.3) that
large deviations theory. This is true for some applications
(although the method of types gives more insight), but in othet{7: J # %, (i, ;) € T{ ¢}
applications the explicit “type” bounds valid for all afford < 4N|7’n(ﬁ’)|2|7’n(2\’ x X)| exp{—nI(X A X)} (A.6)
stronger conclusions than the asymptotic bounds provided by
large deviations theory. It is interesting to note in this respefetr eachl < ¢ < N and Py¢ € P,(X x &) with
that for the derivation of (VI1.6) even the familiar type bound’x = P; = P. As N ~ exp(nR) may be chosen such
was not sufficient, rather, the exact formula (of Whittle [80jhat4 N [P, (X)|?|P,.(X x X)| < exp(nR), this completes the
for the size of second order type classes had to be used. proof.

Of course, the heavy machinery of large deviations theory Proof of Theorems V.1, V.2 (continuedfonsider a de-
(cf. [39]) works for many problems for which type argumentsoder as defined in Section V, with a preliminarily unspecified
do not. In particular, while that machinery is not needepermissible setr C P(X' x X xS xY). Recall thafll denotes
for Sanov's theorem (Theorem VII.3), it appears necessady”(n) or [1%(n) defined by (V.14) and (V.15), according as
to derive the corresponding result for continuous alphabiie maximum or average probability of error criterion is
Markov chains. Indeed, although the method of types doesensidered, and eachy ;¢ € ¥ has to satisfy (V.20).
work for finite alphabet Markov chains (cf. Theorem VII.1), Clearly, fory € 7"y o (%;, 8) with Px sy € I we can have
extension to general alphabets via discrete approximatiop&) # ¢ only if y € T;lxj(s(xi, x;, 8) for somej # ¢ and
does not seem feasible, since quantization destroys the Markay. ... ¢ U N P, (X x X x S x V). Using (11.7) and (V.10),
property. it follows that the fraction of sequences Ty,  s(;, 8) with

©(y) # i is bounded, in thes sense, by

Armenon {—nH(Y|XS)} Y exp{nH (VX XS)}
Proof of Lemma IV.1:Pick 2N sequenceszi, ---, Zan e eXpwn
from 72 at random. Then, using Lemma I1.2, we have for -exp{n[|R — I(XS A X)|* +€]}
any J.Oint‘ typebPX;( € Pn(X x X) with Px = Py = P, ~ max exp{—nl(X ANY|XS)+n|R—I(XSAX)|*
and any: # j, + ne}
Pr{(z;, z;) € T} = |T);f(2| where the sum and max are for all joint typé} ¢4, €
|75 ) U NP, (X xAXxSxY) with the given marginaPyx sy . Except
< exp{nH (X, X)} for an exponentially small fraction of the indicés< : < N,
= [|Pn(X)| L exp{nH(P)}]? it suffices to take the above sum and max for those joint types
= [P (X))? expl{—nI(X A X)}. (A1) that satisfy the additional constraint

I(XAXS)<|R—I(XAS)|t +e. (A7)

This implies that
R " Indeed, the fraction of indiced < i < N to which a
Elig:5 #4 (20 f]) € TexH } J # i exists with Py, = Py g Not satisfying (A.7), is
< 2N[Pp(X)]” exp{—nI(X A X)}. (A.2)  exponentially small by (V.12).
If the fraction of incorrectly decodedy’s within

Writing Ty xs(®i, s) is exponentially small for eachPxsy €
‘ I N P, (X x S x ), it follows by (V.3) and (V.17)
E(wla "'anI\T) . . ..
S . that ¢;(s) is exponentially small. Hence, writing
= Z H/ J 7£ ¢ (miv ‘TJ) € TX)}H . - -
Py 5 CPn (X XX) F(X,X,5Y)= I(X/\Y|XS)—|R—I(XS/\X)|+, (A.8)
Px=P4=P
cexp{nI(X A X))}, (A.3) th_e maximum p_robability qf errore defined by (V.2)
' ' will be exponentially small if a¢ > ¢ exists such that
it follows from (A.2) that F(X, X, 5,Y) = § wheneverPy ¢ o, € 0.
) Similarly, if the fraction of incorrectly decodegfs within
2N TngS(xi, 8) is exponentially small for eachPxsy €

4 . 2 2 :

E Z Fy(@, -, @2) S ANZ[Po(X)F Pl X X))]. 11%(17) N P, (X x S x V), except perhaps for an exponentially
=t (A.4) small fraction of the indiced < ¢ < N, it follows by

On account of (A.4), the same inequality must hold withodl/-18) that N1 37, ci(s) is exponentially small, supposing,

the expectation sign for some choice ®f, - --, 2oy, and ©f course, that < 5. Hence the average probability of error
then the latter satisfy ¢ defined by (V.2) will be exponentially small if & > ¢

exists such that"(X, X, S, Y) > ¢ whenever (A.7) holds
Fi(z1, -, 2an) SAN|PL(X)P[Pu(X x &) (A5) and Pygey € V.
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Actually, in both cased'(X, X, S, Y) > ¢ > 0 suffices, the AVC is nonsymmetrizable ang ¢ are sufficiently small,
ase > 0 in Lemma V.1 can always be chosen smaller t§an cf. [33] for details.

To complete the proof, it suffices to find a permissible set
of joint distributions¥ C P(X x & x § x }V) such that

i) in case of Theorem V.1F(X, X, S,Y) has a pos-
itive lower bound subject taPyzo, € W if R <
min[C(P), D(P)],

i) in the case of Theorem V.2F(X, X, s, Y) has a
positive lower bound subject By, ¢ o,- € ¥ and (A.7)
if

(1]
(2]

(3]
R«

min

I(X/\Y) wherePxsy = P x Ps x W,
PsCP(S)

A9 M

(5]
(6]

cf. (V.4), and the AVC is nonsymmetrizable.
Now, from (A.8),
F(X,X,8Y)=I(XAYXS)-R
>I(XAY)—R if (XSAX)<R.
(A.10)

(7]

(8]
Moreover, if (A.7) holds thgd(XAS) < RimpliesR+e >
I(XAXS)+I(XAS) =I(XAXS)+I(XAS) > I(XAXS),
hence (9]

I(XAYXS)—R—¢ (10]
IXAY)—R—¢ ifI(XAS)<R.

(A1l) 1y

If Py gy € VthenPg, is the marginal of som@s &, € 11,  [12]
cf. (V.20), wherell denotesII™(n) or II*(n). In the first
case, Pz, € II = II"™(n) implies by (V.14) thatP;zy is  [13]
arbitrarily close toP; z x W and hence any number less than
C(P) defined by (V.7) is a lower bound th(X A Y) if 5
is sufficiently small. Then (A.10) shows that the claim unddns]
i) always holds when/(XS A X) < R. In the second case
Py &y € 11 =11%(n) implies by (V.15) thatPs - is close to  [1g]
P x Pz x W and hence any number less than the minimum in
(A.9) is a lower bound td(X AY) if 5 is sufficiently small. 7]
Then (A.11) shows that the claim under ii) always holds when
I(XAS) <R (18]

So far, the choice ot played no role. To make the claim
under i) hold also whefi( X SAX) > R, chose? as the set of
joint distributions Py, 5 ¢,- satisfyingZ(X AY|XS) > ¢ >0, [19
in addition to (V.20). It can be shown by rather straightforwargg;
calculation using (V.8) and (V.13) that thik is permissible
if R < D(P), providingn and ¢ are sufficiently small, cf.
[29] for detalils.

Concerning the claim under ii) in the remaining cdsé’A
S) > R, notice that then (A.8) gives

F(X,X,8Y)=I(XAY|XS)
=I(X AYX|S) - I(X A X|S)
>IXAYX|S)—¢

[21]
[22]

(23]
[24]

[25]

becausel (X A X|S) < I(X A XS) < e by (A.7). Hence [26]
the claim will hold if ¥ is chosen as the set of those joint
distributions Py ¢ 5 that satisfy/(X A Y X|S) > £ > 0in [y
addition to (V.20). It can be shown that thisis permissible if
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