
CCAM: A Connectivity-Clustered Access Method for Networks andNetwork ComputationsShashi Shekhar and Duen-Ren LiuAbstractCurrent Spatial Database Management Systems (SDBMS) provide e�cient access methods and operatorsfor point and range queries over collections of spatial points, line segments, and polygons. However, it isnot clear if existing spatial access methods can e�ciently support network computations which traverse line-segments in a spatial network based on connectivity rather than geographic proximity. The expected I/O costfor many network operations can be reduced by maximizing theWeighted Connectivity Residue Ratio (WCRR),i.e., the chance that a pair of connected nodes that are more likely to be accessed together are allocated to acommon page of the �le. CCAM is an access method for general networks that uses connectivity clustering.CCAM supports the operations of insert, delete, create, and �nd as well as the new operations, get-A-successorand get-successors, which retrieve one or all successors of a node to facilitate aggregate computations onnetworks. The nodes of the network are assigned to disk pages via a graph partitioning approach to maximizethe WCRR. CCAM includes methods for static clustering, as well as dynamic incremental reclustering, tomaintain high WCRR in the face of updates, without incurring high overheads. We also describe possiblemodi�cations to improve theWCRR that can be achieved by existing spatial access methods. Experiments withnetwork computations on the Minneapolis road map show that CCAM outperforms existing access methods,even though the proposed modi�cations also substantially improve the performance of existing spatial accessmethods.Keywords: Access Methods, Geographic Information Systems, Network Computations, Spatial Databases, Spa-tial Networks

1 IntroductionSpatial network databases [19, 29, 43] are the kernel of many important applications, including transportationplanning; air tra�c control; water, electric and gas utilities; telephone networks; urban management; sewermaintenance, and irrigation canal management. The phenomena of interest for these applications are structuredas spatial networks, which consist of a �nite collection of the points (i.e. nodes), the line-segments (i.e. edges)connecting the points, the location of the points, and the attributes of the points and line-segments. For example, aspatial network database for transportation applications may store road intersection points and the road segmentsconnecting the intersections. Network computations perform connectivity-based computations including routeevaluation, path computation, tour evaluation and location-allocation evaluation [15, 29].There has been a great deal of research within the database area in the design and evaluation of spatial accessmethods for point and range queries over collections of points, line-segments, and polygons. Considerable researchhas also been carried out within the database area in the design and evaluation of algorithms for the shortest pathcomputation. However, there has been little work on the design and evaluation of storage and access methodsfor network data and for aggregate queries on networks, in which the connectivity relationship is more importantthan the proximity relationship. E�cient access methods are available for a severely restricted class of networks,namely directed acyclic graphs [5, 10, 20, 28] and directed graphs with limited cycles [4], which do not adequatelymodel many networks of interest, including road-maps.This paper shows that the expected I/O cost of many network computations can be reduced by maximizingthe weighted connectivity residue ratio (WCRR). We propose a connectivity-clustered access method, CCAM, toe�ciently support aggregate queries over general networks such as road maps. We use the spatial network dataand network computation queries from the domain of Intelligent Vehicle Highway Systems (IVHS) to evaluatethe ideas. IVHS is also known as Intelligent Transportation Systems (ITS).1.1 Example Application : IVHS and Network AnalysisWe are particularly interested in transportation applications such as Advanced Traveler Information Systems(ATIS) and Intelligent Vehicle Highway Systems (IVHS). IVHS [1] is currently being developed to improve thesafety and e�ciency of automobile travel. ATIS is one facet of IVHS which assists travelers with trip planning,navigation perception, analysis and decision-making to improve the convenience, safety and e�ciency of travel [8,39]. An important component of IVHS and ATIS is a spatial network database containing road maps, publictransportation routes, and current travel time for segments of the transportation network, which is updatedfrequently. As shown in Figure 1, ATIS obtains information from di�erent sources, including tra�c reports,1

scheduled tra�c events, sensors and maps, etc. Periodic sensor data might lead to high update rates. Theclients of the database include travelers, commuters, drivers on the road, mobile persons with hand-held orportable personal communication devices (PCDs), and users who access information via computers at home,o�ces, shopping malls, or information centers.
ATIS

Database

Road Maps
City Maps
Construction
Schedule
Business Directory

Drivers

Based
Sensors

Highway

Traffic
Report

Personal
Communication

Devices

Office, Home
Shopping Mall

Information CenterFigure 1: Spatial Network Management in ATIS (Genesis Project at Minnesota)For ATIS and other applications, an e�cient and e�ective spatial network database is needed to supportnetwork analysis [38, 43]. Network analysis represents frequent aggregate queries on spatial networks, such asroute evaluation and path computation [43], etc. Route evaluation is concerned with aggregating attribute dataover route-units. A route-unit represents a collection of arcs with common characteristics (e.g. name) [29].Route evaluation yields summary information for decision-support applications. For example, utility companiesmay track the volume of gas/electricity owing through major pipeline route-units in their networks. Routeevaluation for daily commuters often consists of comparing a set of familiar routes based on the current travel-time, congestion, restrictions and other attributes of the transportation networks. Other interesting problems innetwork analysis include path computation [19, 29, 43], which models problems such as shortest path analysis andminimum travel-time route computation, etc.1.2 Related Work and Our ContributionsWe discuss some of the existing access methods, including proximity-based spatial access methods and connectivity-based access methods, which may be adapted for spatial network databases.Linear-clustering based spatial access methods order the points in multiple dimensions by a space-�llingcurve, with a speci�c resolution of the space, and use a one-dimensional access method with this ordering. They2

perform transformations on higher-order keys to impose total ordering. Example methods include Z-ordering [32]and Hilbert Curves [2, 11, 22]. Multidimensional B-trees [35] and K-dB-trees [33] establish a correspondencebetween the levels of the index and dimensions. These approaches limit the opportunities for clustering accordingto connectivity.Other spatial access methods capture the isotropic nature of proximity by recursively dividing the space, usinga splitting rule to construct a grid or a hierarchy of regions [17]. A survey of these methods can be found in [34].Some of the representative Isotropic Access Methods (ISM's) include grid �les [31], cell-trees [17], R-trees [18]and R+ trees [36]. Isotropic spatial access methods have traditionally been used to store vector-spatial datasuch as sets of polygons, and they allow exible policies which can be adapted to take advantage of connectivityinformation.The literature on transitive closure and recursive-query processing has evaluated algorithms for path compu-tations. A survey of the work can be found in [21]. The e�ect of e�cient storage and access methods on theperformance of path computations is currently being explored. Most of the proposed methods have looked atstoring the nodes of a directed acyclic graph in topological order [28], using a conventional index such as theB-tree. Path computations, such as graph traversal and transitive closure, can be carried out by scanning forwardin the �le, using a priority queue [28] or a FIFO queue [20]. Topological orders, including depth-�rst sequence andbreadth-�rst sequence, have been evaluated in [5] for their e�ectiveness in supporting di�erent graph-traversalproblems. Reverse-topological-ordering based methods have also been used to cluster related nodes in the samedata page to reduce I/O cost [21]. Finally, the topological ordering method has been extended to graphs with afew cycles in [4].The methods based on topological order or reverse topological order can be extended to graphs that havemany undirected edges as traversals, using the well-known depth-�rst or breadth-�rst search strategies. However,methods based on total ordering of nodes are not e�cient for general networks, since aggregate queries on networkscan no longer be done using a single scan of the data �le. Furthermore, none of the proposed access methodstakes full advantage of the connectivity properties of a network, due to their reliance on total ordering.Join-indices [42] can also be used to speed up iterative algorithms for computing transitive closure, and amaterialized view can also accelerate path computation. Transitive closure queries can be answered by a look-upin the materialized view. A survey of these techniques can be found in [4]. However, these techniques require aseparate structure for each path computation over the same graph and are not space e�cient. Meanwhile, staticschemes based on the graph-partitioning heuristic, albeit in a di�erent context, were recently used in [41]. Theissues involved in dynamic updating e�ects during insertion and deletion have not been discussed.3

Contributions: In the past, most research has focused on the modeling and evaluation of path-computationalgorithms. They have provided e�cient access structures, based on topological ordering, that support pathcomputations over networks which can be represented as directed graphs with a few cycles. However, little workhas been done to design an e�cient access method that can support aggregate queries, e.g. route evaluation, overgeneral networks such as road maps, which are strongly connected over the entire graph. Topological ordering-based access methods, when adapted to road maps, do not take advantage of the entire connectivity relationship.We propose a new access method, CCAM, to e�ciently support aggregate queries over general networks suchas road maps. CCAM supports the operations of Insert(), Delete(), Create(), and Find() as well as the newoperations, Get-A-successor() and Get-successors(), which retrieve one or all successors of a node to facilitateaggregate computations on networks. We adapt a heuristic graph-partitioning approach to cluster the nodes of anetwork into pages based on the connectivity relationship. Ideally, the clustering maximizes the WCRR, i.e., thechances that a pair of connected nodes that are more likely to be accessed together are allocated to a commonpage of the �le. Analysis and experiments show that the proposed method leads to reduced I/O costs and ahigher WCRR for many interesting networks.The literature in the area of graph partitioning [6, 7, 13, 25] has only focused on partitioning static graphswithout considering dynamic updates. We address the following two issues. First, the static graph-partitioningapproach is not e�cient when the entire network cannot �t into main memory. In general, road-maps are verylarge databases [3, 26], and thus may not �t inside main memory. Second, maintaining a high WCRR in the faceof Insert() and Delete() operations, without complete reorganization, is a critical problem. To solve the abovetwo issues, we propose dynamic reclustering strategies to handle dynamic updating e�ects. Alternate heuristicmethods are identi�ed and evaluated which maintain a high WCRR without incurring a high reorganization costduring insertion and deletion. An Incremental Create() operation is designed to cluster and store networks whichcannot �t into main memory. Experiments show that the proposed incremental-create operation is competitivewith the static-create operation.In this paper, we formally describe the CCAM access method by detailing the clustering algorithm, data �le andprocedures used to implement the operation and dynamic reclustering strategies. We provide algebraic analysisas well as experimental evaluation of CCAM. We focus on a comparative performance study of access methods fornetwork computations over spatial networks. We characterize the structure of network computations over spatialnetworks to show that maximizing the WCRR reduces the expected cost of many network computations. Wedescribe simple ways of improving the performance of traditional spatial access methods for network computations,based on this fundamental insight. We evaluate representative access methods using spatial network data fromthe domain of IVHS. The experiments show that the WCRR is an e�ective predictor of the expected I/O cost of4

network computations and the performance of various access methods for network computations. Experiments alsoshow that CCAM outperforms traditional access methods, although their performance is improved signi�cantlyby the ideas proposed in this paper.Outline: Section 2 describes the spatial networks, operations and aggregate queries. We also describe ourproblem formulation. Section 3 de�nes the CCAM access method. Section 4 presents an algebraic analysis.Section 5 describes the experiment design, and Section 6 presents the experimental observations and results.Finally, Section 7 summarizes our conclusions and suggests future work.2 Basic Concepts2.1 Spatial Networks, Operations and Aggregate QueriesA spatial network is a special kind of graph, with nodes located in a two-dimensional or three-dimensionaleuclidean space. Unlike raster and vector data, spatial network data is characterized by rich connectivity. Aspatial network G = (N, E) consists of a node set N and an edge set E. Each element u in N is associated witha pair of real numbers (x,y) representing the spatial location of the node in an euclidean plane. Edge set E isa subset of the cross product N*N. Each element (u, v) in E is an edge that joins node u to node v. Thereare attributes associated with the nodes and edges. In general, spatial networks can be represented in manydi�erent ways. We will focus on the adjacency-list oriented representation, which has been used quite frequentlyin database research [23]. In this representation, a spatial network is modeled as a list of nodes, and each nodehas properties including the successor-list and predecessor-list, which represent the outgoing and incoming edges.The predecessor-list facilitates updating the successor-lists during the insertion and deletion of nodes.Both aggregate queries on networks and the management of network data require that the following set ofoperations be e�ciently supported. Detailed de�nitions of these operations are given in Section 3.1. Create: <list of node records> ! Network2. Find: <node-id, Network> ! node properties3. Insert: <node-id, node-properties, Network> ! NetworkInsert: <edge, edge-properties, Network> ! Network4. Delete: <node-id, Network> ! NetworkDelete: <edge, edge-properties, Network> ! Network5

5. Get-successors: <node-id, Network> ! list of <node-id, node-properties> of successors6. Get-A-successor: <node-id, successor-id, Network> ! node-properties of the successorThe �rst four operations are common to data types other than aggregate queries on networks. Unlike point andrange queries, network computations access data by connectivity and by traversal order. Network computationsuse topological operations such as Get-successors() and aggregate sequence operations such as Find() and Get-A-successor().The Get-A-successor() and Get-successors() operations are unique to aggregate queries on networks, and theyretrieve one or all successors of a node. Get-A-successor() retrieves a speci�ed successor of a given node.Get-successors() retrieves the records for all successor nodes of a given node. For example, Get-A-successor()is used in route evaluation queries, while Get-successors() is used in graph search algorithms like A? [38]. WhileGet-successors() and Get-A-successor() can be implemented as a sequence of Find() on relevant successors, moree�cient implementations are possible by de�ning that operation as distinct. The Get-successors() and Get-A-successor() operations represent the dominant I/O cost of many aggregate queries on networks [19, 23, 28, 38],including route evaluation and path computations.Route EvaluationTo derive aggregate properties, route evaluation queries over route-units in networks may require the retrieval ofall nodes and all edges in the speci�ed route-units. A route speci�es a sequence of nodes n1; n2; : : : ; nk and edges< n1; n2 >;< n2; n3 >; : : : ; < nk�1; nk >. An aggregate property of a route is a function of the properties of thenodes and edges in the route. An aggregate property of a route can be computed by a sequence of Find() operationson relevant nodes and edges. Alternatively, it can be processed as a sequence of Get-A-successor() operations,e.g. Find(n1), Get-A-successor(n1, n2), : : :, Get-A-successor(nk�1, nk). Thus, the e�cient implementation ofGet-A-successor() operations reduces the total I/O cost for route evaluation queries.Path ComputationsSearch algorithms for path computations such as the breadth-�rst search, depth-�rst search, A? and Dijkatra'sconsist of iterations. Each iteration is usually centered around a node called the current node for the iteration.Computations in each iteration often access the nodes on the successor-list via the Get-successors() operation.The quantitative models for the I/O cost of several path computations are summarized in [30]. These models arediscussed in detail and validated in [37]. These models show that e�cient implementation of the Get-successors()operation leads to reduced I/O cost for many path computations.
6

2.2 Problem FormulationGiven network operations, including Get-A-successor() and Get-successors(), our goal is to �nd storage and accessmethods which can provide e�cient support for frequent network operations in terms of expected I/O cost.Theorem 1 The expected cost of network operations (e.g. Get-A-successor()) is minimized by maximizing theWeighted Connectivity Residue Ratio (WCRR), whereWCRR = Sum of w(u; v) such that Page(u) = Page(v)Total sum of weights over all edges :Proof: See Section 4.1. 2The weight w(u; v) associated with edge(u; v) represents the relative frequency of a query accessing nodes u and vtogether. Intuitively, maximizing the WCRR maximizes the chances that a pair of connected nodes that are morelikely to be accessed together are allocated to a common page of the �le. The expected cost of Get-A-successor() ispredicted by the WCRR. The WCRR also e�ectively predicts the cost of Get-successors() and Delete() as shown inSection 6.1, even though additional parameters (e.g. correlation of successors' locations) can a�ect performance.The main e�ect of the access method on the I/O cost of many aggregate queries can thus be predicted from theWCRR. A higher WCRR indicates lower I/O cost for aggregate queries on networks.Theorem 1 suggests that the expected cost of network operations and aggregate queries over a network isreduced by designing an access method customized to maximize the WCRR or the sum of the weights over theunsplit edges. It can easily be shown that the problem of partitioning the nodes of a network into pages of agiven size, so as to maximize the WCRR, is an instance of the graph-partitioning problem de�ned in [25]. Thegraph-partitioning problem is to partition the nodes of a graph with costs on its edges into subsets of givensizes, so as to minimize the sum of the costs on all the cut edges. Although the graph-partitioning problem isNP-complete [14], many good heuristics based on spectral partitioning [6] and iterative approaches [7, 13, 25]have been proposed to solve this problem e�ciently. The implementation of CCAM operations takes advantageof these heuristics.The WCRR model is proposed on the basis of the available database statistics on access frequencies. Oneway to gather such statistics would be to record the frequency of query occurrence and the access frequencies ofnodes and edges. Another source of such statistics is the application domain. For example, in transportation,information about the capacity and use of di�erent road-segments (edges) is often available for major roads. Ifdatabase statistical information is not available, we can still use the network topology to develop a simpli�edmodel, the Connectivity Residue Ratio (CRR), which is a special case of the WCRR model which assumes that7

each edge in the network is equally likely to be accessed by aggregate queries over the network.CRR = Total number of unsplit edgesTotal number of edges :An unsplit edge (u,v) is characterized by page(u) = page(v).3 CCAM: Connectivity-Clustered Access MethodCCAM clusters the nodes of the network via graph partitioning, using the ratio-cut heuristic described in ap-pendix A. Other graph-partitioning methods can also be used as the basis of our scheme. In addition, an auxiliarysecondary index is used to support the Find(), Get-A-successor() and Get-successors() operations. The choice ofa secondary index can be tailored to the application. We use the B+ tree with Z-order [32] in our experiments,since the benchmark networks are embedded in geographical space. Other access methods such as the R-tree [18]and Grid File [31], etc. can alternatively be created on top of the data �le, as secondary indices in CCAM tosuit the application. In this section, we describe the �le-structure and procedures used to implement the variousoperations on networks.3.1 Connectivity-Clustered Data FileFor each node, a record stores the node data, coordinates, successor-list and predecessor-list. A successor-list (predecessor-list) contains a set of outgoing (incoming) edges, each represented by the node-id of its end(start) node and the associated edge cost. The successor-list is also called the adjacency-list, and is used innetwork computations. The predecessor-list is used in updating the successor-list during the Insert() and Delete()operations. We will refer to the neighbor-list of a node x as the set of nodes whose node-id appears in thesuccessor-list or predecessor-list of x. We note that the records do not have �xed formats, since the size of thesuccessor-list and predecessor-list varies across nodes.In contrast with the previous topological ordering based approach [28], CCAM assigns nodes to the data pageby a graph partitioning approach, which tries to maximize the WCRR. Each data page is kept at least half fullwhenever possible. Records of the data �le are not physically ordered by node-id values. A primary index cannotbe created without renaming the nodes to encode disk-page information in the node-id, and it requires additionaloverhead during update operations. Therefore, a secondary index is created on top of the data �le, and an indexentry is created for each record in the data �le.Since our benchmark networks are embedded in geographic space, (x, y) coordinates for each node are alsostored in the record. A B+ tree with Z-ordering [32] of the (x, y) coordinates is used to order the secondary8

index. It can support point and range queries on spatial databases. The Z-order of a coordinate x, y is computedby interleaving the bits in the binary representation of the two values.Example: In Figure 2, a sample network and its CCAM is shown. The left half of Figure 2 shows a spatialnetwork. Nodes are annotated with the node-id (an integer) and geographical coordinates (a pair of integers). Tosimplify the example, the node-id is an integer representing the Z-order of the (x, y) coordinates. For example,the node with the coordinates (1, 1) gets a node-id of 3. The solid lines that connect the nodes represent edges.The dashed lines show the cuts and partitioning of the spatial network into data pages. There exists a cut onedge e(u, v) if node u and node v fall into di�erent partitions. The partitions are (0, 1, 4, 5), (2, 3, 8, 9), (6,7, 12, 13) and (10, 11, 14, 15). The right half of Figure 2 shows the data pages and the secondary index. Wenote that the nodes are clustered into data pages by CCAM, using a graph-partitioning approach. Nodes in thesame partition set are stored on the same data page. They are not physically ordered by their node-id values. Asecondary index ordered by node-id is used to facilitate the Find() operation.

Sample Network

tree (secondary index)B+

Data Page

Node (x,y)

Edge

key 0
key 1
key 2
key 3
key 4
key 5
key 6
key 7key 7

key 8
key 9
key 10
key 11
key 12
key 13
key 14
key 15

node 0

node 3

node 12

node 15

0, 0

0, 1

0, 2

0, 3

1, 0

1, 1

1, 2

1, 3

2, 0

2, 1

2, 2

2, 3

3, 0

3, 1

3, 2

3, 3

0

1

2

 3

4

5

 6

 7

8

9

10

11

12

13

14

15

node 1
node 4
node 5

node 2

node 8
node 9

node 6
node 7

node 13

node 10
node 11
node 14

Figure 2: Clustering and storing a sample network (key represents spatial order)3.2 Create(): Creation of CCAMThe Static-Create() algorithm is based on a graph partitioning approach. First, the nodes of the network areclustered via the cluster-nodes-into-pages() algorithm, which returns a set of pages. Second, the nodes (records)which belong to the same subset are stored on the same data page, and an index entry for each node is createdand inserted into the B+ tree, based on the node-id values which represent the Z-order of the location of the9

nodes in space.Figure 3 shows the connectivity-based clustering algorithm for top-down clustering using the 2-way-partitionalgorithm. Each subset contains at least min-page-size bytes. We repeatedly apply the 2-way-partition() tocluster the graph. After applying the 2-way-partition() algorithm, two subsets return. We keep on applyingthe 2-way-partition() algorithm to the subset which exceeds the page-size, until all subset sizes are less than thepage-size. Notice that sizeof(A) = Pi size of record(i), node i 2 A.Procedure: cluster-nodes-into-pages (V: set of nodes;E: set of edges; page-size): return set of pages;F,P : set of page (partition) of nodes;V', A, A' : set of nodes;beginInitialize F = fVg; P = fg; MinPgSize = d page-size/2 e;while F is not empty doChoose a V' 2 F, E'=f(u,v)j(u,v)2E, u2V' and v2V'g;Remove V' form F;<A, A'> = 2-way-partition(V', E', MinPgSize);// comment: sizeof(A) > MinPgSize; sizeof(A') > MinPgSize;if sizeof(A) > page-size then add A to F else add A to P;if sizeof(A') > page-size then add A' to F else add A' to P;endwhilereturn P;end; Figure 3: The Connectivity Clustering AlgorithmWe adapt Cheng and Wei's two-way ratio-cut heuristic algorithm [7] which is described in appendix A, as thebasis for implementing the 2-way-partition() algorithm. The 2-way-partition() algorithm partitions a given setinto two subsets by trying to minimize the total weight on the edges in the cut-set, i.e., maximizing the WCRR.The 2-way-partition algorithm [7] adapts the iterative approach, which starts from an initial partition (i.e. twosubsets), and then iteratively moves nodes across subsets in an attempt to achieve a global minimum weight onthe edges in the cut set. At each pass, the algorithm iteratively selects an unlocked node from two subsets withthe largest ratio gain, moves the node to the other side, and locks it, until all the nodes are locked. The processrepeats until no further accumulated positive gain is possible. The implementation is based on the bucket-listdata structure [13] and requires a time complexity of O(jEj) with respect to the number of edges jEj.Other graph-partitioning methods can also be used as the basis of our scheme. In fact, M-way partitioning [25,45] may be used to further improve the result of partitioning, if computation complexity and CPU cost is not aconcern. 10

The Incremental Create() OperationThe Static-Create() operation is not e�cient when the entire network does not �t inside main memory. TheIncremental Create() operation is designed to handle very large networks. The incremental Create() operation isimplemented as a sequence of Add-node() operations, which are similar to the Insert() operations described inSection 3.4.1. The Add-node() operation does not need to update the successor and predecessor lists, since thenode records initially presented to create a �le can be pre-processed to have the proper values for the predecessor-list and successor-list. This operation will, however, use incremental clustering and reorganization to improve theWCRR, as discussed in Section 3.4. We use CCAM-D to denote the implementation of Incremental Create() asa sequence of Add-node() operations. CCAM-S denotes the implementation of Static Create().Incremental Create() is di�erent from bulk loading [44]. Incremental Create() focuses on loading the en-tire network, which occurs the most frequently in application domains such as transportation. An analysis ofappending a partial network to an existing network is outside the scope of this paper.3.3 E�cient Support of Search OperationsFind(): Retrieve the record of a given node-idUsing the given node-id value, we can retrieve the desired record from the disk by searching the secondary indexto read the appropriate data page. Once the appropriate disk block is transferred to the main memory bu�er, asearch can be carried out for the desired record within the data page.Get-A-successor(): Retrieve a speci�ed successor of a given nodeIn principle, the bu�ered data-page containing the given node is likely to contain the speci�ed successor node ifthe WCRR is high. Thus the bu�ered data-page should be searched �rst. If the desired successor node is not inthe bu�er, then a Find() operation is needed to retrieve it.Get-successors(): Retrieve records for the successor nodes of a given nodeIn principle, when a data page is fetched for the purpose of retrieving the current node (i.e., the given node),all successor neighbors stored in the same data page as the current node would be accessed without further I/O.Node-id values of successor nodes can be extracted from the set of successor-lists stored in record(x). Then,records for neighbors can be retrieved by searching the bu�er in the main memory �rst. Since CCAM clustersnodes in trying to maximize the WCRR, there is a high probability that many successors will be located in thesame disk page as node x. This implies that successors are very likely to be found by searching the main memorybu�er. Otherwise, a Find() operation is performed to retrieve the records of successors not in that page of thenode. The Get-successors() procedure can be improved further by checking all the pages brought into the main11

memory bu�ers by the Find() operation, to determine whether additional neighbor records can be extractedwithout additional Find() operations. We note that adequate bu�ering of these pages may perform part of thisoptimization in some cases; for example, when the number of available bu�ers is greater than the number ofsuccessors of node x.3.4 Maintenance and Dynamic Reclustering StrategiesThere are two basic maintenance operations: Insert() and Delete(). Each can take an argument of an edge or anode. These operations change connectivity relationships, and may make the existing partitioning of the networkinto pages obsolete. Local reorganizations of the data pages may be needed to improve the WCRR. Intuitively,the data sets chosen for reorganization should be those data pages which are related via the connection betweennodes. We adopt the notion of the page access graph (PAG) [27] to formalize the connectivity relationship betweendata pages.De�nition 1 (Page Access Graph) Let G = (V , E) be the given network. P is called a page of G if and onlyif P is a set of records, such that for each record(x) 2 P, x 2 V and all records 2 P are stored in the same diskdata page, i.e., the total size of the records included in P is at most full disk page size. Let each of P1; P2; � � �; Pnbe a page of G. Then the page access graph (PAG) Gp = (Vp, Ep), where Vp is a set of pages and Ep is a set ofedges, de�ned as follows:Vp = fP1; P2; � � �; Png,Ep = f(Pi; Pj) j 9 x; y such that x 2 V; y 2 V , (x; y) 2 E, record(x) 2 Pi, and record(y) 2 PjgDe�nition 2 :� Is-Neighbor-Page(P,Q) = true i� either (P,Q) 2 Ep or (Q,P) 2 Ep.� NbrPages(P2 Vp) = fQ j Q2 Vp and Is-Neighbor-Page(P,Q)g.� Page(x 2 V) = Q, where Q2 Vp and record(x)2 Q.� PagesOfNbrs(x2 V) = fPage(u) j u2 succ(x) [pred(x)g.The principle of our dynamic reclustering strategy is to reorganize a suitable set of pages which are connectedin the page access graph. The reorganization is performed by applying the cluster-nodes-into-pages() algorithmdescribed in Figure 3 to recluster the subnetwork formed from the nodes in the set of pages to be reorganized.For such a set of pages to be reorganized, the choice might be based not only on maximizing the WCRR, but alsoon reducing the overhead required for reorganization.The key issue in the design of dynamic reclustering strategies is to identify a reorganization policy whichyields a high WCRR without incurring high I/O costs. The reorganization policies can be de�ned in terms ofthe concept of a page access graph, as shown in Table 1. The table identi�es a set of pages to be reorganized,given the argument type (edge or node) and the reorganization policy (1st, 2nd, higher). It assumes that Page(x)12

Reorganization Set of Pages to be ReorganizedPolicy argument = edge(u,v) argument = node x Guiding PrincipleFirst order none none avoid or delayhandle underow/overow handle underow/overow reorganizationSecond order fPage(u), Page(v)g fPage(x)g [PagesOfNbrs(x) reorganize pages whichmust be updated anyhow1. NbrPages(Page(u))[fPage(u)g 1. fPage(x)g [PagesOfNbrs(x)Higher order [NbrPages(Page(v))[fPage(v)g [NbrPages(Page(x)) reorganize more pagesor or2. fPage(u)g[PagesOfNbrs(u)[2. all pages in data �le than second order policyfPage(v)g[PagesOfNbrs(v)or3. all pages in data �lePage(x) = page selected to place x in Insert() or page containing x in Delete()Table 1: Set of Pages reorganized by di�erent Policies for Maintenancerepresents the page containing x, or selected to contain x in the event of Insert(x). To simplify this table, overowand underow events are abstracted and are discussed separately. The second order policies are designed to avoidadditional I/O overhead in reorganization. Second order and higher order policies can incur a high CPU cost ifthe average degree of nodes increases. Other reorganization policies can be built around the basic policies shownin Table 1. For example, a lazy or delayed reorganization policy may reorganize NbrPages(P) after a certainnumber of updates to page P.The e�cient implementation of the �rst-order and second-order policies is linked to the bu�ering of the pagesretrieved during Get-successors(). Thus, connectivity-based clustering in CCAM is suited to the �rst and secondorder policies. The e�cient implementation of the higher order policies may require additional data structures.NbrPages(P2 Vp) can be retrieved e�ciently if the page access graph is materialized to avoid repeated traversalof the secondary index. We choose not to materialize the page access graph, since it requires additional redundantdata structures.Choice of Reorganization PolicyThe order of reorganization policy represents the order of overhead required during the update. In general, ahigher order policy can yield a higher WCRR, but it incurs higher overhead. Let the data reorganization costbe the time overhead spent in reorganizing the data pages, and let the data retrieval cost be the time spent insearching operations and aggregate queries. By choosing a proper policy, the total cost of data reorganizationshould be kept below the saving of data retrieval. In the rest of this paper, the higher-order policy is representedby its �rst reorganization example, as listed in Table 1.
13

3.4.1 Insert(): Insert a new node or edgeThe Insert() operation is used to add a new edge or a node to the data �le. The insertion of an edge(u,v) isallowed only if nodes u and v exist in the data �le. The new edge requires updating the successor-list for uand the predecessor-list for v, which can be accomplished by retrieving the relevant pages via index-traversaland then updating these pages. Reorganization may be carried out on the pages speci�ed by Table 1, via thecluster-nodes-into-pages() procedure described in Figure 3.By the insertion of a node, we mean the insertion of a node-record, which contains node properties such as theadjacency-list (successor-list and predecessor-list), other attributes of the node, and the attributes of the edgesconnected to the node. During the insertion of a new node x, a data page must be selected in which to storethe new node. To maximize the WCRR, the new node should be placed in a page containing many neighborsconnected via edges having higher weights. Page selection may be accomplished by ranking the pages by the totalweight on the edges to the neighbors of x located in the page, to choose the page with the maximum weight onedges to the neighboring nodes of x which also has space to accommodate x. The successor-list of the predecessorsof x, as well as the predecessor-list of the successors of x, should be updated to complete the operation. Thepages containing the successors and the predecessors of x can be retrieved by using the secondary index for theseupdates. In the case of overow in any of the updated pages, the overow page is split into two pages, via thecluster-nodes-into-pages() procedure. Reorganization may be carried out on the pages speci�ed by Table 1, via thecluster-node-into-pages() procedure described in Figure 3. For example, the second order policy will reorganizethe set of pages described by fPage(x)g [PagesOfNbrs(x) as per Table 1. Finally, the index is updated to reectthe changes to the data �le. Figure 4 shows a procedural description of Insert() for node arguments.3.4.2 Delete(): Delete a node or edgeThe Delete() operation can be used to delete an edge or a node from the data �le. The deletion of an edge (u,v)is accomplished by updating the successor-list of u and the predecessor-list of v, and by accessing Page(u) andPage(v) via the secondary index. In the case of underow, data-page merging may be required. In addition,reorganization may take place according to the speci�ed policy.The deletion of a node is implemented in a similar way. Figure 5 shows the delete algorithm. The data page Pthat stores the record(x) to be deleted can be retrieved by using the node-id value of node x. If the deletion makesthe page underow, two data pages might be merged to increase data-page utilization. We can simply choose aneighboring page Q of P from PagesOfNbrs(x) to be merged with P. If Q and P cannot be merged into one page,they are distributed between the two pages, using the cluster-nodes-into-pages() procedure. The selection of page14

Procedure: Insert (x: node-id; record(x): node-properties;policy: reorganization-policy)beginretrieve PagesOfNbrs(x);if PagesOfNbrs(x) is empty theninsert record(x) into an available disk page P;insert index entry (node-id x, disk address of P);Otherwise,update succ-list and pred-list of neighbors(x);select a page P from PagesOfNbrs(x) to put record(x);if (policy == �rst-order policy) thenfor each page Q in PagesOfNbrs(x) doif Q overow then split Q into two pageselse if Q has been modi�ed then Write Q;else// comment : local reorganization of few pages connected to Page(x)Reorganize(x, policy);end; Figure 4: The Insert Algorithm for Nodes (records)Q may be accomplished by ranking the pages by the total weight on the edges that cross page P and the numberof data-bytes in the page. Since the connectivity relationship is then changed, data reorganization might be usedto further increase the WCRR.4 Analytical Evaluation and Cost Models4.1 Is the WCRR the Right Metric?In this subsection, we prove theorem 1, that the expected cost of network operations (e.g. Get-A-successor()) isminimized by maximizing the WCRR, as stated in Section 2.2. We restate the theorem for the convenience ofreaders.Theorem 1 The expected cost of network operations (e.g. Get-A-successor()) is minimized by maximizing theWeighted Connectivity Residue Ratio (WCRR).Proof : Given a graph G = (N;E) and the edge cut-set EC , let an unsplit edge (u, v) be characterized bypage(u) = page(v). Let the unsplit edge set denoted by ER be E � EC . The cost of accessing the pair of nodes
15

Procedure: Delete (x: node-id; policy: reorganize-policy)beginretrieve P = Page(x); retrieve PagesOfNbrs(x);update succ-list and pred-list of neighbors(x);delete x from P; delete index entry of x;if (policy == �rst-order) thenif page P underow thenselect a page Q from PagesOfNbrs(x);perform data page merging on fP, Qg;for each page Q in fPagesOfNbrs(x), Pg doif Q has been modi�ed then Write Q;elseReorganize(x, policy);end; Figure 5: The Delete Algorithm for Nodesconnected by edge (u; v) 2 E, c(u; v), is de�ned byc(u; v) = 8><>: � if page(u) = page(v);� if page(u) 6= page(v); � � �: (1)Let the weight on edge(u,v), denoted by w(u; v), represent the relative frequency of network operations thataccess the pair of nodes connected by edge(u,v). Let g(u; v) be equal to w(u;v)P(u;v)2E w(u;v) . Then g(u; v) is theProbability[pair of nodes connected by edge(u,v) used in network operations j (u; v) 2 E]. It is clear that� � � and P(u;v)2E g(u; v) = 1. The expected cost of a network operation per edge, denoted by �, is equal toP(u;v)2E c(u; v) � g(u; v). We can derive the following:� = X(u;v)2EC c(u; v) � g(u; v) + X(u;v)2ER c(u; v) � g(u; v) = � � X(u;v)2E g(u; v) � (� � �) � X(u;v)2ER g(u; v)From the fact that P(u;v)2E g(u; v) = 1, we can further derive the following equation:� = � � (� � �) � X(u;v)2ER g(u; v) (2)In other words,� = � � (� � �) �WCRR; where WCRR = X(u;v)2ER g(u; v) = P(u;v)2ER w(u; v)P(u;v)2E w(u; v) (3)Thus, maximizing the WCRR minimizes �, the expected cost of accessing an edge. In the case that each edgeis equally likely to be accessed by network operations, i.e., g(u; v) is uniform distribution, g(u; v) = 1jEj for anyedge (u; v) 2 E, then this implies that� = � � (� � �) � CRR; where CRR = X(u;v)2ER g(u; v) = j ER jj E j16

2 The theorem is exact for the Get-A-successor() operation. The I/O cost of other network operations is nottotally determined by WCRR. However, WCRR is a good predictor of their costs, as shown in Section 4.2.4.2 Cost Modeling Framework for Network OperationsIn this section, we provide simple algebraic cost models for the I/O cost of network operations, using the CRRmeasure of access methods. For simplicity, we assume that each edge is equally likely to be accessed by networkoperations. This assumption is made only to simplify the analysis. However, our techniques can also take advan-tage of non-uniform weights, if the statistics are available for the road segments chosen for network operations.The experimental evaluation considers the general case, where weight distribution is not uniform.Table 2 lists the symbols used to develop our cost formulas. � denotes the average number of nodes in theSymbol MeaningjAj Average number of nodes in the successor-list of a node� CRR = Pr.[Page(i)=Page(j)] for edge(i, j)� Average number of nodes in the neighbor-list of a node Average blocking factorL Number of nodes in aggregate queries over routesTable 2: Symbols used in Cost Analysisneighbor list of a node. The neighbor list of a node x includes all the neighbors of node x, while the successor(adjacency) list of a node x only contains the successor neighbors of node x.Cost Modeling for Search OperationsThe algebraic cost of search operations is listed in Table 3. We list the number of data pages accessed for eachoperation. The Find() operation needs at most one data page access. The Get-successors() operation retrieves allthe successors of a given node x. We assume that the data page containing node x is located in the main memory.On the average, � � jAj successors are in the same page as x (assuming > � � jAj), and can be processed �rstto reduce the need for additional I/O, even if there is only one bu�er. Additional data page accesses are neededto retrieve the other (1 � �) � jAj successors, and it takes at most (1 � �) � jAj data page accesses. Thus theexpected cost is (1� �) � jAj. Similarly, the Get-A-successor() operation needs (1� �) data page accesses on theaverage to retrieve the successor node of a given node x, assuming that the data page containing node x is locatedin the main memory. In general, route evaluation queries can be modeled as a sequence of Get-A-successor()operations. Then the number of data page accesses for route evaluation queries over L nodes is approximately1 + (L� 1) � (1� �), assuming bu�ering with one data page and no global query optimization.17

Operation Data Page AccessesFind() 1Get-successors() (1� �) � jAjGet-A-successor() 1� �Route Evaluation 1 + (L� 1) � (1� �)Table 3: Cost Analysis for Retrieval OperationsCost Modeling for Update OperationsWe analyze the number of data pages accessed in each update operation. Table 4 summarizes the worst caseretrieval (Read) cost for Insert() and Delete() operations, under di�erent reorganization policies. In general, theWrite cost is equal to the Read cost, unless there is underow or overow. To simplify our comparison, weassume these costs are the same. A detailed analysis is provided in appendix B.Data Page AccessesPolicies Insert() Delete()�rst-order � 1 + � � (1� �)second-order � 1 + � � (1� �)higher-order � + � � � (1� �) � � � (1� �)Table 4: Simpli�ed worst case retrieval cost for update operationsThe cost modeling analysis for network operations shows that the e�ciency of the Get-A-successor(), Get-successors() and Delete() operations depends on parameter �, i.e., the CRR. With a higher CRR, the cost ofthese operations is lower. CCAM clusters nodes of networks via a graph partitioning approach, and thus canachieve a higher CRR than the other methods. It is interesting to note that the cost of the Insert() operationcannot be predicted from the CRR, since the model cannot capture the clustering e�ciencies for the neighborsof a new node being inserted.4.3 Theoretical Comparison of CCAM with Other MethodsIn this section, we compare the access methods for spatial networks using the algebraic cost models of networkoperations. Our intention is to characterize the e�ect of secondary index used with CCAM, since many competitorscan use a non-dense primary index. The primary indices on node-id di�er in depth due to di�erent page-formatsand branching factors. The Grid-File [31] provides a �xed depth. A B+ tree is likely to have a higher branchingfactor and lesser depth than the Cell-tree [17] for a �xed page-size and a given data set. CCAM can use anyindex type (e.g. B+-tree, Grid File, Cell-tree) as a secondary index. The depth of a chosen secondary-index-type(e.g. B+-tree) is likely to be slightly more than the corresponding non-dense primary-index-type (e.g. B+-treewith DFS-order) for the same data set and page-size. In this section, we illustrate the comparison methodology18

by comparing CCAM using B+-tree secondary index with the DFS-ordered B+-tree primary index (DFS-AM)and the Grid File primary index. The methodology can be used to compare other combinations such as CCAMwith B+-tree secondary index, CCAM with Cell-tree secondary index, Cell-tree primary index, etc. The generalconclusions would be very similar to those found in the illustration.We choose the Grid File [31] and DFS-AM [5, 28] as representative of spatial access methods and connectivity-based access methods, respectively, to compare with CCAM. DFS-AM is the extension of topological-orderingbased �les to general graphs. DFS-AM orders the nodes by a depth-�rst traversal, and DFS-AM uses a primaryindex on the ordered node-id that is generated by the traversals. The expected worst case retrieval costs of variousnetwork operations for alternative access methods are shown in Table 5. We note that the cost of Insert() andDelete() for CCAM represents the cost of CCAM that uses the �rst/second reorganization policy. ZC , ZT andZG represent the cost of accessing a node (record) in CCAM, topologically-ordered �les (DFS-AM) [28] and theGrid Files, respectively. The entries listed in Table 5 are derived by adding the cost of index traversal to the costof network operations, as discussed in Section 4.2, Tables 3 and 4. For example, Get-A-successor() needs (1-�)data pages and (ZC � 1) � (1� �C) index pages, i.e. ZC(1� �C) pages in the absence of prior bu�ering.The cost model makes several assumptions to simplify the discussion. It accurately models the cost of datapages accessed and index pages accessed, assuming that only the root node of the index tree is initially in thebu�ers. It also assumes that the same number of index pages are retrieved for each data page accessed. Finally,for simplicity, the model assumes that the total I/O cost is proportional to the Read cost. Many of theseassumptions can be set aside to derive an accurate and detailed model in future work. However, the simpli�edmodel is adequate for our discussion about the relative roles of the CRR and the indices in determining the totalI/O cost. I/O cost for retrieving index pages and data pagesOperation CCAM DFS-AM Grid FileFind() ZC ZT ZGGet-A-successor() ZC (1� �C) ZT (1� �T) ZG(1� �G)Get-successors() ZC((1� �C)jAj) ZT ((1� �T)jAj) ZG((1� �G)jAj)Insert() ZC � � ZT � � ZG � �Delete() ZC(1 + (1� �C) � �) ZT (1 + (1 � �T) � �) ZG(1 + (1� �G) � �)Table 5: Worst case retrieval cost for Network OperationsThe number of data pages retrieved is likely to be the lowest for CCAM in all cases, as it is likely to havethe highest value for �. This situation is represented by ZC = ZT = ZG. The total number of pages (i.e., indexand data pages) retrieved by various methods shows more interesting trends. For simplicity, we will ignore thebu�ering e�ects in the following discussion.To compare the constants ZC and ZT , we observe the following. ZC is equal to 1 + the height of the secondary19

index search tree in CCAM. ZT represents 1 + the height of the primary index search tree in DFS-AM, assuminga primary index on the ordered node-id. In general, ZC and ZT are related byZT = 1 + logbfrindex nbfrdataZC = 1 + logbfrindex n = ZT + logbfrindex bfrdata � ZT + 1 (4)ratio = ZC � ZTZC = logbfrindex bfrdata1 + logbfrindex n ; 0 as n;1 (5)where bfrindex denotes the average blocking factor for an index page in the B+ tree, and bfrdata represents theaverage blocking factor for a data page. Equations 4 and 5 show that ZT and ZC di�er at most by 1, and onaverage by logbfrindex bfrdata, which becomes a smaller and smaller fraction of ZC as n increases. Thus the relativeI/O cost of various operations in CCAM and DFS-AM will be dominated by the achievable CRR, as n increases.Usually, �C � �T , and thus CCAM is likely to have lower I/O costs than DFS-AM, for most operations, and forlarge networks.In comparing the Grid File and CCAM, we observe the following. In general, ZG is equal to 2. For largevalues of n, ZC > 2. However, �C � �G for most networks. For networks where proximity and connectivityare not correlated, CCAM is faster than the Grid File as �C � �G. For other networks, the Grid File may befaster. In those networks, CCAM can use Grid Files instead of the B+ tree as the secondary index, to narrowand possibly close the performance gap.The relative cost of the Delete() operation for alternative access methods shows the same patterns as therelative cost of the Get-successors() operation. The relative cost of the Insert() operation is predicted to beidentical for all access methods, since the model cannot capture the clustering e�ciencies for the neighbors of anew node being inserted. Even though connectivity-based methods (e.g. CCAM and DFS-AM) may not clusterthese neighbors of a new node, spatial methods (e.g. the Grid File) are likely to cluster them well in networkswhere connectivity and proximity are correlated.5 Experiment DesignAccess methods for networks including CCAM and the update policies for CCAM, are evaluated by a series ofexperiments. In this section, we �rst describe the layout of our experiments and then illustrate the candidateaccess methods. Due to space constraints, we have only presented a subset of the experiments. A full descriptionof these experiments and the results can be found in [30].
20

5.1 Experimental LayoutThe design of our experiments is shown in Figure 6. We compare the proposed connectivity-based cluster-ing scheme CCAM-S and CCAM-D with the other schemes, namely, the Grid �le [31], the Cell Tree [17], Z-ordering [32], and DFS-AM [5, 28]. CCAM-S denotes the static create operation of CCAM. CCAM-D is anincremental create() operation which was implemented using the second-order reorganization policy. The Cell-tree represents the family containing R+-tree [36]. The Grid-�le and the Cell-tree partition the space to capturethe isotropic nature of spatial proximity, which is an important property of spatial networks. We consider twoversions of the Grid-�le and Cell-tree, including connectivity-based and balance-based split policies, as describedin Section 5.2. In Sections 6.1, 6.2 and 6.4, we use the connectivity-based split policies for Grid-�le and Cell-tree.Z-ordering [32] represents a spatial-based linear transformation of two-dimensional data. Topological orderingbased methods (DFS-AM) are chosen for comparison, since they are the commonly used methods in the areas ofpath computations, transitive closures and recursive queries.The e�ectiveness of the access methods will be evaluated based on the CRR (WCRR) values and I/O cost ofroute evaluation queries. We also evaluate the I/O cost for network operations and compare the experimentalresults with those for other methods.
Minneapolis

Road Map

Disk block size

 Grid File, Cell Tree

Generate Route weight

Network operations
CRR, WCRR, I/O cost

Clustering Method

Route Evaluation
Summary

Buffering

Files
(Data Pages)

Route Length Road Map
Minneapolis CCAM-S, CCAM-D

DFS, Z-order

Page Access
Path Computation

(s, d) pairs
Generate

Reorganization Policies
for CCAM

Figure 6: Experimental LayoutThe experiments are conducted on many graphs. We present the results on a representative graph, whichis a spatial network with 1079 nodes and 3057 edges that represents the major road intersections and highwaysegments for a 20-square-mile section of the Minneapolis area. This map is provided by the Minnesota Dept.of Transportation (MnDot). The data about each segment includes the x and y position of the two nodes, theaverage speed for the segment, average occupancy, and road type. The map is shown in Figure 7. The most21

dense central region is at Minneapolis downtown. In this region, the roads run orthogonally or parallel to theriver rather than north-south or east-west. It is interesting to note that even the outlying areas show a grid-likepattern of roads, except where lakes interrupt in the lower left corner, and where the Mississippi river ows (fromnorth to southeast in the upper right quadrant of the map).

A

B

C

D

E

F

GFigure 7: Minneapolis Road Map (Major roads)We use a common record type for all the access methods. Each record contains a node and its neighbor-list,i.e., successor-list and predecessor-list. A node contains its (x, y) coordinates, and a neighbor-list contains a set oftriples (x, y, attributes). Each triple represents the (x, y) coordinates of a neighbor of the node and the attributesof the edge connecting the node and the neighbor.We conduct performance comparisons of I/O cost for network operations, I/O cost for route evaluation queriesand path computation queries to evaluate the e�ciency of various access methods. In addition, we also conductexperiments on the e�ect of split policies to demonstrate that spatial access methods can use connectivity-basedsplit policies to increase the WCRR and thus increase performance. Table 6 summarizes the parameters exploredin the experiments.5.2 Candidate Access Methods other than CCAMIn this section we describe the candidate access methods used in the experiments.22

Parameters ValuesRoute Length 20, 40, 60 edgesBu�ering 1, 8, 16Disk Block Size 1/2, 1, 2, 4 K bytesTable 6: Parameters5.2.1 Grid FileThe grid �le [31] partitions the data space according to an orthogonal grid. The grid on a k-dimensional dataspace is de�ned by k one-dimensional arrays called scales. An element of a scale represents a k-1 dimensionalhyperplane that partitions the space into two halves. There is 1-to-1 correspondence between the grid de�nedby the scales and the elements of a k-dimensional array called the grid directory. An element of this arrayholds a pointer to a disk block known as a data-page. This data-page contains the data points located in thecorresponding grid cell. Low data-page utilization is avoided by allowing several grid cells to share a data page.The region of space occupied by the points stored in a page is called a data-page region. Data-page regions arerectangular boxes in k-dimensions. These regions are pairwise disjoint and their union spans the complete dataspace.A common implementation of split policy in the Grid File evaluates two potential split points, one in the x-dimension and one in the y-dimension. Both of these points often evenly divide the records in a page, and eitherone may be chosen. We refer to the above approach as a balance-based split policy for Grid �le. A connectivity-based policy for the Grid-�le uses the connectivity information and chooses the split-dimension which has a higherWCRR.5.2.2 Cell TreeThe cell tree [16, 17] is a height-balanced tree. Each cell tree node corresponds, not necessarily to a rectangularbox, but to a convex polyhedron. The cell tree restricts the polyhedra to be partitions of a BSP (binary spacepartitioning), to avoid overlaps among sibling polyhedra. Each cell-tree node corresponds to one disk page, andthe leaf nodes contain all the information required to answer a given search query.The splitting of a cell tree node is based on the plane sweep paradigm, which conducts plane sweeps acrossthe node along l di�erent directions to �nd a suitable splitting hyperplane. A common split policy is to select ahyperplane that intersects a minimum number of cells and balances the two resulting subnodes. We refer to theabove approach as the balance-based split policy for the Cell-tree.We propose a new split policy, i.e., the connectivity-based split policy, to take advantage of connectivity23

information. The hyperplane of choice should try to maximize the WCRR in the cell node. The splitting of a cellnode N into N1 and N2 may now be accomplished by conducting plane sweeps across N along di�erent directionsto :1. Find a hyperplane such that both subnodes can be stored on one disk page, and minimum page utilizationconstraint is satis�ed.2. Maximize the number of unsplit edges (or WCRR) with respect to the partitioning of N into N1 and N2.3. In the case of a tie, choose the one that balances the resulting subnodes, i.e., jsizeof(N1)� sizeof(N2)j isthe smallest.A simple implementation may use slope angles of the sweeping lines to be i�180l for i = 1::l, as suggestedin [17]. We have tried various values for l and are currently using l = 5 plus the vertical sweep lines. A larger setof sweeping lines requires more computation time, but gains only slight improvements in performance.5.2.3 Linear Clustering by Z-orderThe Z-order [32] utilizes spatial information while imposing a total order on the points. The Z-order of acoordinate x,y is computed by interleaving the bits in the binary representation of the two values. Alternatively,Hilbert [12, 22, 24] ordering may be used. A conventional one-dimensional primary index (e.g. B+-tree) can beused to facilitate searches.5.2.4 Linear Clustering by DFS-orderDFS-AM arranges the nodes by a depth-�rst traversal from a random start node. This method extends thetopological-ordering based method [28] to general graphs. A conventional one-dimensional primary index (e.g.B+-tree) can be used to facilitate searches. DFS-AM is not the only method to linearly cluster data based onconnectivity. We have also tried the Breadth First Search (BFS-AM) solution, which is implemented similarlybut uses a breadth-�rst search. However, our results indicate that BFS-AM does not perform as well as DFS-AM.We therefore only report results from the DFS implementation.6 Experimental Observations and ResultsIn this section, we present the results of our experiments, along with the e�ectiveness of the access methods andof the update policies that are based on measuring the CRR (WCRR) values and I/O costs. To simplify thecomparison, the I/O cost represents the number of data pages accessed. This represents the relative performance24

of the various methods for very large databases. For smaller databases, the I/O cost associated with the indicesshould be measured. In Sections 6.1, 6.4 and 6.5, we use a uniform weight (i.e., all weight on edges = 1) to simplifythe interpretation of the results. In Sections 6.2 and 6.3, we use non-uniform weights on the edges (derived froma given set of routes). We examine the WCRR measure in the set of experiments that deals with route evaluationqueries. Due to space constraints, we have only presented results from a subset of the experiments. A fulldescription of these experiments and the results can be found in [30].6.1 Evaluation of I/O Cost for Network OperationsWe evaluate the I/O cost of alternative access methods for four network operations, namely, Get-A-successor(),Get-successors(), Insert(), and Delete(). The experiments use the Minneapolis road map with disk block size= 2 K. The cost for the Get-successors() operation is measured via performing the Get-successors() operationon a randomly chosen 50% of the total number of nodes. The cost for Get-A-successor() is computed similarly.Deletions are conducted on a randomly chosen 10% of the nodes. Insert() operations are conducted by inserting10% of the nodes into a �le created from the remaining 90% of the nodes in the Minneapolis road map. Pageunderows and overows in the Delete() and Insert() operations are ignored to �lter out the e�ect of reorganizationpolicies, which are studied separately. Table 7 shows the average number of data page accesses for each operationunder various methods. The CRR value for each method is also listed in the table. The predicted cost for theGet-successors() and Get-A-successor() is computed using (1 � �) � jAj and 1 � � respectively, as described inSection 4.2. The predicted cost for the delete operation is computed via the formula 2 � (1 + (1� �) � �).Operation Get-successors() Get-A-successor() Delete() Insert() � =Method Actual Predicted Actual Predicted Actual Predicted Actual CRRCCAM-S 0.418 0.413 0.147 0.145 2.935 2.933 4.187 0.8541CCAM-D 0.454 0.494 0.167 0.174 3.109 3.118 4.504 0.8253Cell Tree 0.606 0.700 0.248 0.247 3.499 3.583 3.701 0.7526Grid File 0.642 0.736 0.267 0.260 3.588 3.664 3.401 0.7399DFS-AM 0.770 0.893 0.284 0.315 3.966 4.018 4.149 0.6846Zorder 0.928 1.077 0.371 0.380 4.107 4.433 3.495 0.6198j A j= 2:833 � = 3:20 = 24:35Table 7: The I/O costs of Network Operations for various access methodsAs shown in Table 7, the number of data page accesses during Get-A-successor(), Get-successors() and Delete()operations with CCAM-S is the lowest among all the methods. This is to be expected, since CCAM-S has thehighest CRR. The number of data page accesses in the Delete() operation is more than twice the number inthe Get-successors() operation, because Get-successors() only retrieves the successor neighbors of a given node,while the Delete() operation updates (Read&Write) both the successor and predecessor neighbors of a givennode. Notice that in CCAM-S, the number of data page accesses in the Insert() operation is higher than the25

number in the Delete() operation. This is because Delete() operations access the neighbors of a given node in a�le, and those neighbors are likely to be put into the same disk page by CCAM-S to try to maximize the CRR.However, for the Insert() operation, there might exist few or no connections between the neighbors of the node tobe inserted, and those neighbors might have been in di�erent disk pages before the insertion. CCAM-S, CCAM-Dand DFS-AM have higher I/O cost than proximity-based access methods, Cell-tree, Grid-�le and Z-ordering inthe Insert() operation. The spatial proximity of the neighbors of the new node to be inserted helps the Cell-tree,Grid �le and Z-ordering reduce the I/O cost of the Insert() operation. The Z-ordered index of CCAM does nothelp because it is a secondary index.6.2 Aggregate Query : Route EvaluationTo evaluate the performance of alternative access methods on aggregate queries over networks, we work withroute evaluation queries. We generate routes by performing random walks on the network. The weights on theedges of the network are derived by counting the number of times that an edge is accessed by a set of routes. Aroute of length L has L nodes and L � 1 edges. We generate three sets of routes with lengths equal to 20, 40,and 60 edges respectively. Each set contains 100 routes. Six alternate methods are used to store the road mapsbased on the weight created, and 300 route evaluation queries are performed to compare the number of datapage accesses. The route evaluation queries are processed by issuing a Find() operation followed by a sequenceof Get-A-successor() operations.6.2.1 The E�ect of Route LengthIn this subsection, we report the results obtained with minimum bu�ering, i.e., a bu�er with one data page.To examine the e�ect of route length on the I/O cost, we plot the detailed result for di�erent route lengths.Figures 8 (a) and (b) show the results of the experiments conducted on block size 512 and 4096 bytes, respectively.The number of data page accesses for route evaluation queries decreases with the increase of block size, for allmethods. The number of data page accesses increases linearly with route length L, as predicted by the costmodels. CCAM-S and CCAM-D outperform all the other methods. The Cell-tree ranks next-best for large blocksizes, while DFS-AM ranks next-best for smaller block sizes.6.2.2 Does the WCRR Predict the Cost of Route Evaluation?Figures 9 (a) and (b) show the average number of data pages accessed per route (averaged over 300 routes) andthe WCRR respectively, for various methods, as the block sizes change. The average number of nodes accessedper route evaluation query is equal to 40. We observe that a higher WCRR implies a lower number of data page26

2

4

6

8

10

12

14

16

18

20 40 60

a
v
e
r
a
g
e

n
u
m
b
e
r

o
f

p
a
g
e
s

a
c
c
e
s
s
e
d

Route Length

CCAM-S
CCAM-D
CELL
GRID
DFS
Zord

5

10

15

20

25

30

35

40

20 40 60

a
v
e
r
a
g
e

n
u
m
b
e
r

o
f

p
a
g
e
s

a
c
c
e
s
s
e
d

Route Length

CCAM-S
CCAM-D
CELL
GRID
DFS
Zord

(a) Block Size = 1/2 K (b) Block Size = 4 KFigure 8: E�ect of route length (number of bu�ers = 1)accesses for route evaluation queries, as predicted by the cost models. CCAM-S and CCAM-D outperform theothers consistently for all four block sizes. The Grid �le and Cell-tree perform worse than DFS-AM for smallerblock sizes, but they perform better than DFS-AM for larger block sizes.6.2.3 The E�ect of Bu�eringIn this section, we evaluate the e�ect of bu�ering on the performance of the access methods. The variableparameters are the number of bu�ers available. The experiments are performed using route evaluations as thebenchmark queries. We report the average I/O over 300 paths for the real Minneapolis road map.Figure 10 shows the e�ect of bu�ering on the performance of route evaluation, on the Minneapolis road map,for various access methods with disk block size 1 K. We observe an improvement in performance as the numberof bu�ers increases. The performance ranking for each access method remains the same for di�erent numbers ofbu�ers.6.3 Do the Proposed Split Policies Help Spatial Access Methods?The experiment on the e�ect of the di�erent split policies is conducted using the route evaluation queries andthe Minneapolis road map. Figures 11 (a) and (b) show the average number of data pages accessed per route(averaged over 300 routes) and the WCRR respectively, for the Cell tree and Grid �le. CELL-C and GRID-C27

5

10

15

20

25

0 1/2 1 2 4

a
v
e
r
a
g
e

n
u
m
b
e
r

o
f

p
a
g
e
s

a
c
c
e
s
s
e
d

Block Size (K)

CCAM-S
CCAM-D
CELL
GRID
DFS
Zord

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1/2 1 2 4

W
C
R
R

Block Size (K)

CCAM-S
CCAM-D
CELL
GRID
DFS
Zord

(a) Data Page Access (b) WCRRFigure 9: Average I/O costs per route and WCRR (number of bu�ers = 1)

6

8

10

12

14

16

18

20

22

0 2 4 6 8 10 12 14 16 18

a
v
e
r
a
g
e

n
u
m
b
e
r

o
f

p
a
g
e
s

a
c
c
e
s
s
e
d

Number of Buffers

CCAM-S
CCAM-D
CELL
GRID
DFS
Zord

Figure 10: E�ect of bu�ering on data page accesses (block size = 1 K)
28

denote the Cell-tree and Grid-�le with the connectivity-based split policy. CELL-B and GRID-B denote theCell-tree and Grid-�le using the balance-based (non-connectivity) split policy. The experiment is conducted withdisk block size 1 K and 1 bu�er.The Cell-tree with the connectivity-based split policy (CELL-C) has a higher WCRR and a lower numberof data page accesses than those of the Cell-tree with the balance-based split policy (CELL-B). The Grid-�leshows a similar trend. The Grid-�le with the connectivity-based split policy (GRID-C) has a higher WCRR anda lower number of data page accesses than those of the Grid-�le with the balance-based split policy (GRID-B).Thus, spatial access methods may utilize connectivity information to better serve spatial networks and networkcomputations.

10

15

20

25

1/2 1 2 4

a
v
e
r
a
g
e

n
u
m
b
e
r

o
f

p
a
g
e
s

a
c
c
e
s
s
e
d

Block Size (K)

CELL-C
CELL-B
GRID-C
GRID-B

0.4

0.5

0.6

0.7

0.8

1/2 1 2 4

W
C
R
R

Block Size (K)

CELL-C
CELL-B
GRID-C
GRID-B

(a) Data Page Access (b) WCRRFigure 11: E�ect of Split Policy6.4 Evaluation of CCAM for Path ComputationThe evaluation of I/O cost for path computation is conducted using the path computation algorithm, the A?algorithm, with the Euclidean distance heuristic. A? represents the single-pair path-planning algorithms whichuse heuristic lookahead to focus the search [9, 38]. Three query sets are chosen to represent path queries of threedi�erent path classes, namely small, medium and large. The small, medium and large classes include 25 randomlychosen (source, destination) pairs with the route length, i.e., the number of edges on the shortest path, equal to8� 2, 23� 2 and 34� 2, respectively. Our metric of comparison was the number of data pages accessed. We do29

not count the index pages accessed as part of the cost. Experiments are conducted using disk block size 2 K. Asimple implementation of A? is used, with no special data structure to manage information inside memory. Theintegration of CCAM with more sophisticated implementations of path computation algorithms is desirable, andwe will explore this in future work.The e�ect of route length on I/O cost for the six access methods is shown in Figures 12 (a) and (b) for 1 and8 bu�ers, respectively. Figures 12 (a) and (b) show the mean number of pages accessed by the A? algorithm forthree route length classes: small, medium and large. We can see an increase in the number of pages accessed asthe length of the path increases. CCAM-S and CCAM-D outperform the others consistently for all three routelength classes. In general, the I/O cost ranking for all six access methods is the same for all three route lengthclasses, but the I/O gap between the di�erent access methods increases as the route length increases. The CRRvalues for the various access methods are listed in Table 7. As we expected, access methods with a higher CRRhave a lower I/O cost for path computation. The performance ranking for each access method remains the samefor 1 and 8 bu�ers.

200

400

600

800

1000

1200

10 15 20 25 30 35

a
v
e
r
a
g
e

n
u
m
b
e
r

o
f

p
a
g
e
s

a
c
c
e
s
s
e
d

Average Route Length

CCAM-S
CCAM-D
CELL
GRID
DFS
Zord

100

200

300

400

500

600

700

10 15 20 25 30 35

a
v
e
r
a
g
e

n
u
m
b
e
r

o
f

p
a
g
e
s

a
c
c
e
s
s
e
d

Average Route Length

CCAM-S
CCAM-D
CELL
GRID
DFS
Zord

(a) 1 buffer (b) 8 buffersFigure 12: Performance Comparison for Path Computation (block size = 2 K)6.5 Evaluation of Reorganization PoliciesUpdate Operations : CRR vs Update I/O CostFigure 13 shows the I/O cost and CRR results during the insertion of 20% of the nodes of the Minneapolis30

0

2

4

6

8

10

12

14

16

0 50 100 150 200

a
v
e
r
a
g
e

I
/
O

c
o
s
t

p
e
r

i
n
s
e
r
t
i
o
n

 number of insertions

first-order policy
Second-order policy
Higher-order policy

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

C
R
R

 number of insertions

first-order policy
Second-order policy
Higher-order policy

Figure 13: E�ect of the reorganization policies (insert)road map, using a random insertion order and block size 1 K. It shows that the higher order policy has a muchhigher I/O cost than the �rst-order and second-order policies. The average I/O costs for the �rst-order andsecond-order policies are very close, as expected. Notice that the average I/O cost for the higher-order policyincreases slightly as the number of insertions increases. This is to be expected, since the CRR value decreases asthe number of insertions increases, resulting in an increase in the number of data pages accessed for neighboringpages. The CRR might increase during some insertions, but it decreases in the long run, because the averageconnectivity increases and the average blocking factor is reduced as more nodes are inserted into the �le. In mostcases, The �rst-order policy has the lowest CRR, and the higher-order policy has a slightly higher CRR than thesecond-order policy. The second-order policy is a possible trade-o� choice, since its I/O cost is almost the sameas that of the �rst-order policy, and its CRR is competitive with the higher-order policy. We note that the choiceof reorganization policy depends on the relative frequencies of update and retrieval operations, as discussed inSection 3.4.7 Conclusions and Future WorkNetwork computations, including route evaluation and related aggregate queries on networks, are used in manyimportant applications of databases such as IVHS. It is important to design storage and access methods tosupport these applications. We have identi�ed a measure, namely the WCRR, that is able to accurately predict31

the performance of an access method for network computations. An algebraic cost model for network operationshas been derived. The analysis shows that the e�ciency of the Delete(), Get-A-successor() and Get-successors()operations depends primarily on the CRR.We have presented a connectivity-clustered access method (CCAM) for general networks to support networkoperations and aggregate queries over networks. We also identify and evaluate alternate reorganization policiesfor CCAM to maintain a high WCRR, without incurring high reorganization costs, during insertion and deletionof nodes and edges.We have evaluated alternative access methods for network computations. Applications that require the moste�cient processing of network computations should use CCAM, which achieves the highest WCRR and providesthe best performance. However, access methods based on spatial proximity can also be improved if the WCRRis used to develop new split policies.Future work includes developing a formal analysis for achievable CRR under di�erent access methods. A moree�cient index access structure should be designed that will e�ciently support incremental reorganization duringupdate operations. Further, the CPU cost for reorganization may be taken into account. Reorganization policiesthat do not incur high CPU costs are currently being investigated. Finally, we would like to evaluate CCAM forother aggregate queries on networks, including tour evaluation and location-allocation evaluation, as well as onmixed workloads such as the sequoia benchmark [40].8 AcknowledgmentThis research was supported by the Federal Highway Authority (FHWA), Minnesota Dept. of Transportation and theCenter for Transportation Studies at the University of Minnesota. We would like to thank Dr. H.V. Jagadish (AT&T BellLabs) and Prof. K. Hua (University of Florida) for helping with the survey and focus of this research. We would also liketo thank Prof. C.K. Cheng (University of California, San Diego) and Dr. L.T. Liu (AT&T Bell Labs) for helping with theratio-cut program. Finally, the interaction with the Network Engine group at Environmental Systems Research Institutehelped in assessment of many ideas for suitability to GIS software systems such as ARC/INFO.

32

References[1] \Intelligent Vehicle Highway Systems Projects". Department of Transportation, Minnesota Document, March 1994.[2] D. Abel and D. Mark. \A Comparative Analysis of Some Two-Dimensional Orderings". Intl Journal of GIS, 4(1):21{31, 1990.[3] R. Agrawal and H.V. Jagadish. \Algorithms for Searching Massive Graphs". IEEE Trans. on Knowledge and DataEngineering, 6(2), April 1994.[4] R. Agrawal and Jerry Kiernan. \An Access Structure for Generalized Transitive Closure Queries". In Proc. of theNinth Intl Conference on Data Engineering, pages 429{438. IEEE, April 1993.[5] J. Banerjee, S. Kim W. Kim, and J. Garza. \Clustering a DAG for CAD Databases". IEEE Trans. on SoftwareEngineering, 14(11):1684{1699, Nov. 1988.[6] E.R. Barnes. \An Algorithm for Partitioning the Nodes of a Graph". SIAM Journal Alg. Disc. Meth., 3(4):541{550,December 1982.[7] C.K. Cheng and Y.C. Wei. \An Improved Two-Way Partitioning Algorithm with Stable Performance". IEEE Trans.on Computer-Aided Design, 10(12):1502{1511, December 1991.[8] W. C. Collier and R. J. Weiland. \Smart Cars, Smart Highways". IEEE Spectrum, pages 27{33, April 1994.[9] D. Galperin. \On the optimality of A*". Arti�cial Intelligence, 8(1):69{76, 1977.[10] S. Dar and H.V. Jagadish. \A Spanning Tree Transitive Closure Algorithm". In Proc. of Intl Conference on DataEngineering. IEEE, 1992.[11] C. Faloutsos and Y. Rong. \DOT: A Spatial Access Method Using Fractals". In Proc. of the 7th Intl Conference onData Engineering. IEEE, 1991.[12] C. Faloutsos and S. Roseman. \Fractals for Secondary Key Retrival". In Proc. Symp. on Principles of DatabaseSystems. SIGMOD-SIGACT PODS, 1989.[13] C.M. Fiduccia and R.M. Mattheyses. \A Linear Time Heuristic for Improving Network Partitions". In Proc. of 19thDesign Automation Conference, pages 175{181, 1982.[14] M.R. Garey and D.S. Johnson. \Computers and Intractability: A Guide to the Theory of NP-Completeness". W.H.Freeman and Company, San Francisco, 1979.[15] M.F. Goodchild. \Towards an Enumeration and Classi�cation of GIS Functions". In Proc. of Intl Geographic Info.Systems Symp., 1987.[16] O. Gunther. \The Design of the Cell Tree: An Object-Oriented Index Structure for Geometric Databases". In Proc.5th Intl Conference on Data Engineering, Feb. 1989.[17] O. Gunther and J. Bilmes. \Tree-Based Access Methods for Spatial Databases: Implementation and PerformanceEvaluation". IEEE Trans. on Knowledge and Data Engineering, 3(3), September 1991.[18] A. Guttman. \R-Trees: A Dynamic Index Structure for Spatial Searching". In Proc. of SIGMOD Intl Conference onManagement of Data, pages 47{57. ACM, 1984.[19] P. Haggett and R. J. Chorley. \Network Analysis in Geography". St. Martin's Press, New York, 1969.[20] K. Hua, J. Su, and C. Hua. \An E�cient Strategy for Traversal Recursive Query Evaluation". In Proc. of the NinthIntl Conference on Data Engineering. IEEE, April 1993.[21] Y. Ioannidis, R. Ramakrishnan, and L. Winger. \Transitive Closure Algorithms Based on Graph Traversal". ACMTrans. on Database Systems, 18(3), September 1993. 33

[22] H.V. Jagadish. \Linear Clustering of Objects with Multiple Attributes". In Proc. of Intl Conference on Managementof Data, pages 332{342. ACM SIGMOD, 1990.[23] B. Jiang. \I/O E�ciency of Shortest Path Algorithms: An Analysis". In Proc. of the Intl Conference on DataEngineering. IEEE, 1992.[24] I. Kamel and C. Faloutsos. \Hilbert R-tree: An Improved R-tree using Fractals". In Proc. of Intl Conference on VeryLarge Data Bases, 1994.[25] B.W. Kernighan and S. Lin. \An E�cient Heuristic Procedure for Partitioning Graphs". Bell Syst. Tech. J., 49(2):291{307, February 1970.[26] R. Kung, E. Hanson, and et. al. \Heuristic Search in Data Base Systems". In Proc. Expert Database Systems.Benjamin Cummings Publications, 1986.[27] Y. Kusumi, S. Nishio, and T. Hasegawa. \File Access Level Optimization Using Page Access Graph on RecursiveQuery Evaluation". In Proc. Conference on Extending Database Technology. EDBT, 1988.[28] P.A. Larson and V. Deshpande. \A File Structure Supporting Traversal Recursion". In Proc. of the SIGMODConference, pages 243{252. ACM, 1989.[29] R. Laurini and D. Thompson. \Fundamentals of Spatial Information Systems", chapter 5 and 2.5.4. Number 37 inThe A.P.I.C. Series. Academic Press, 1992.[30] D.R. Liu and S. Shekhar. \CCAM: Connectivity-Clustered Access Method for Networks and Network Computations".Technical Report TR 93-78, Computer Science Dept. University of Minnesota, 1993.[31] J. Nievergelt, H. Hinteberger, and K.D. Sevcik. \The Grid File: An Adaptable, Symmetric Multi-Key File Structure".ACM Trans. on Database Systems, 9(1):38{71, 1984.[32] A. Orenstein and T. Merrett. \A Class of Data Structures for Associative Searching". In Proc. Symp. on Principlesof Database Systems, pages 181{190. SIGMOD-SIGACT PODS, 1984.[33] J.T. Robinson. \The K-D-B-tree: A Search Structure for Large Multidimensional Dynamic indexes". In Proc. ofSIGMOD Intl Conference on Management of Data, pages 10{18. ACM, 1981.[34] H. Samet. \The Design and Analysis of Spatial Data Structures". Addison Wesley, 1990.[35] P. Scheuermann and M. Ouskel. \Multidimensional B-trees for Associative Searching in Database Systems". Infor-mation Systems, 7(2), 1982.[36] T. Sellis, N. Roussopoulos, and C. Faloutsos. \The R+-Tree: A Dynamic Index for Multi-Dimensional Objects". InProc.13th Intl Conference on Very Large Data Bases, pages 507{518, 1987.[37] S. Shekhar, A. Kohli, and M. Coyle. \Can Proximity-Based Access Methods E�ciently Support Network Computa-tions?". Technical Report TR-93-57, Computer Science Dept. University of Minnesota, 1993.[38] S. Shekhar, A. Kohli, and M. Coyle. \Path Computation Algorithms for Advanced Traveler Information System". InProc. of the Ninth Intl Conference on Data Engineering, pages 31{39. IEEE, April 1993.[39] S. Shekhar and D. R. Liu. \Genesis and Advanced Traveler Information Systems (ATIS) : Killer Applications forMobile Computing". In NSF MOBIDATA Workshop on Mobile and Wireless Information Systems, 1994.[40] M. Stonebraker, J. Frew, K. Gardels, and Je� Meredith. \The Sequoia 2000 Benchmark". In Proc. of Intl Conferenceon Management of Data. ACM, 1993.[41] M. M. Tsangaris and Je�rey.F. Naughton. \A Stochastic Approach for Clustering in Object Bases". In Proc. ofSIGMOD Conference on Management of Data, pages 12{21. ACM, 1991.[42] P. Valduriez and H. Boral. \Evaluation of Recursive Queries Using Join Indices". In Proc. of Intl Conference onExpert Database Systems, 1986. 34

[43] A. P. Vonderohe and et. al. \Adaption of GIS for Transportation". NCHRP Report 359, Transportation ResearchBoard, National Research Council, 1993.[44] J. L. Wiener and J. F. Naughton. \Bulk Loading into an OODB: A Performance Study". In Proc. of Intl Conferenceon Very Large Data Bases, 1994.[45] C.W. Yeh, C.K. Cheng, and T.T. Y. Lin. \A General Purpose Multiple Way Partitioning Algorithm". In Proc. of28th ACM/IEEE Design Automation Conference, pages 421{426, 1991.

35

A Choosing a Heuristic for Graph PartitioningCheng and Wei [7] have shown that the quality of two-way partitions can be improved by incorporating the balancing ofpartition sizes in the cost metric, rather than by imposing constraints on the partition sizes. They de�ne the ratio costmetric for a two-way partition as Ec=jAj � jBj, where Ec is the sum of the weights of the edges cut, and jAj and jBj arethe sizes of the two partitions.The philosophy of the ratio cut is to identify the natural clusters in the graph. First, they remove the constraint onsubset size. The algorithm dynamically establishes its own subsets, which are close to natural clusters in the graph. Itconsists of three major phases: 1) initialization, 2) iterative shifting, and 3) group swapping. Their implementation ofthe above technique is based on the bucket list data structure proposed by Fiduccia and Mattheyses [13]. Second, thesize constraints on the resultant subsets are enforced by applying the Fiduccia-Mattheyses algorithm to �ne-tune the �nalresult.We have been inspired by the objective function of the ratio cut partitioning, which successfully embodies both themin-cut and equipartition goals of partitioning. In our experiment, we adapt their two-way ratio-cut algorithm as thebasis for our connectivity-based clustering method. In this paper, we abstract two-way ratio-cut graph partitioning as thefollowing procedure.2-way-partition:(V: set of nodes; E: set of edges; min-page-size) ! <A1, A2>where A1 and A2 are set of nodes,sizeof(A1) > min-page-size, sizeof(A2) > min-page-size and sizeof(V) > 2*min-page-size.B Cost Modeling Framework for Update OperationsIn this section, we illustrate the simple algebraic I/O cost model for update operations. To simplify our cost modeling,we assume that the index pages are bu�ered in the main memory and that su�cient bu�ers are provided for the updateoperations. Thus, we will only focus on the number of data pages accessed in each update operation.B.1 Cost model for the Insert() OperationThe cost for the Insert() operation mainly consists of retrieving those pages which contain nodes that are neighbors of thegiven new node to be inserted. This step is necessary to maintain successor-lists and predecessor-lists of neighbors thatare consistent with those of the newly inserted node. The cost of fetching the neighboring nodes of a given new node ismodeled as follows. Let fIave, fImin, fImax respectively be the average, minimum and maximum number of distinct pageswhich contain nodes that are neighbors of a new node to be inserted, thenfImin = [�] � fIave � [�] = fImax (6)We use [x] to denote the function max(x, 1). The function [x] is used, since at least one data page access is requiredin any case. Equation 6 shows that in the best case, as many neighbors as possible are located in the same data page;thus fImin is equal to [�=]. Notice that the neighboring nodes of the newly inserted node might be distributed across datapages without any connection. In the worst case, each of the neighbors may be located in a di�erent page, so fImax is equalto [�]. Obviously, fIave, fImin, fImax also represent the average, minimum and maximum Read cost of the �rst-order andsecond-order policy. For the higher-order policy, additional retrieval is needed for fetching neighboring pages of P, where Pis the page chosen in which to place the newly inserted node. Let hIave, hImin, hImax respectively be the average, minimum
36

and maximum number of pages which are neighboring pages of P in the page access graph, thenhImin = [� � � (1� �)] � hIave � [� � � (1� �)] = hImax (7)Considering a node x in P, ��� neighbors of x are in the same page as x (assuming > ���), and the other �� (1��)neighbors are in di�erent pages. Since the average blocking factor is , the total number of neighboring nodes locatedoutside page P is equal to �� � (1��). It is clear that hImin is equal to [� � (1��)], and hImax is equal to [�� � (1��)].The average, minimum and maximum Read cost for the higher-order policy can be expressed by the sum of equation 6and equation 7.The total number of page-writes (Write cost) is equal to the total number of page-reads unless there is overow. Ingeneral, the Write operation will require an additional page if overow occurs. Suppose the probability of overow is �,then the Write cost is equal to the Read cost * (1 � �) + (Read cost + 1) * �. We can then derive the cost of Write,which is equal to Read cost + �.B.2 Cost model for Delete() OperationLike the Insert() operation, the Delete() operation also needs to maintain the successor-lists and predecessor-lists ofneighboring nodes. The retrieval cost of the update operation is modeled as follows. Let fDave, fDmin, fDmax respectivelybe the average, minimum and maximum number of distinct pages that contain the neighboring nodes of a given node x,which exists in the data page, thenfDmin = [1 + � � (1� �)] � fDave � [1 + � � (1� �)] = fDmax (8)There are � �� neighbors in the same page as x; thus one page is needed for them. For the other (1��) �� neighbors,they can be located at least in (1 � �) � �= pages and at most in (1 � �) � � pages. This explains the fDmin and fDmaxvalues in equation 8, since one data page access is required to retrieve the node to be deleted, and � � � neighbors are inthe same page as the node to be deleted. Therefore, fDmin, fDave and fDmax represent the Read cost for the �rst-order andsecond-order policies. For the higher-order policy, the additional cost required for retrieving the neighboring pages can bemodeled using an analysis similar to the one used in the cost modeling of the Insert() operation, except that the maximumnumber of nodes in P is (� 1), since one node is deleted from page P.Let hDave, hDmin, hDmax respectively be the average, minimum and maximum number of pages which are neighbors of Pin the page access graph, and thenhDmin = [(� 1) � � � (1� �)] � hDave � [(� 1) � � � (1� �)] = hDmax (9)The Read cost of the higher-order policy is equal to the sum of equation 8 and equation 9. The number of page-writes(Write cost) is equal to the number of page-reads, unless there is underow. In general, the Write cost will be one lesspage-write if underow occurs. Suppose that the probability of underow is �; then the Write cost is equal to the Readcost * (1� �) + (Read cost - 1) * �. We can derive the cost of Write, which is equal to Read cost - �. Since it is verydi�cult to analytically compute the probability of underow, we will assume that � is zero in our comparison of predictedcost to actual cost.
37

