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Abstract

Current Spatial Database Management Systems (SDBMS) provide efficient access methods and operators
for point and range queries over collections of spatial points, line segments, and polygons. However, it is
not clear if existing spatial access methods can efficiently support network computations which traverse line-
segments in a spatial network based on connectivity rather than geographic proximity. The expected I/O cost
for many network operations can be reduced by maximizing the Weighted Connectivity Residue Ratio (WCRR),
i.e., the chance that a pair of connected nodes that are more likely to be accessed together are allocated to a
common page of the file. CCAM is an access method for general networks that uses connectivity clustering.
CCAM supports the operations of insert, delete, create, and find as well as the new operations, get-A-successor
and get-successors, which retrieve one or all successors of a node to facilitate aggregate computations on
networks. The nodes of the network are assigned to disk pages via a graph partitioning approach to maximize
the WCRR. CCAM includes methods for static clustering, as well as dynamic incremental reclustering, to
maintain high WCRR . in the face of updates, without incurring high overheads. We also describe possible
modifications to improve the WCRR that can be achieved by existing spatial access methods. Experiments with
network computations on the Minneapolis road map show that CCAM outperforms existing access methods,
even though the proposed modifications also substantially improve the performance of existing spatial access

methods.

Keywords: Access Methods, Geographic Information Systems, Network Computations, Spatial Databases, Spa-

tial Networks



1 Introduction

Spatial network databases [19, 29, 43] are the kernel of many important applications, including transportation
planning; air traffic control; water, electric and gas utilities; telephone networks; urban management; sewer
maintenance, and irrigation canal management. The phenomena of interest for these applications are structured
as spatial networks, which consist of a finite collection of the points (i.e. nodes), the line-segments (i.e. edges)
connecting the points, the location of the points, and the attributes of the points and line-segments. For example, a
spatial network database for transportation applications may store road intersection points and the road segments

connecting the intersections. Network computations perform connectivity-based computations including route

evaluation, path computation, tour evaluation and location-allocation evaluation [15, 29].

There has been a great deal of research within the database area in the design and evaluation of spatial access
methods for point and range queries over collections of points, line-segments, and polygons. Considerable research
has also been carried out within the database area in the design and evaluation of algorithms for the shortest path
computation. However, there has been little work on the design and evaluation of storage and access methods
for network data and for aggregate queries on networks, in which the connectivity relationship is more important
than the proximity relationship. Efficient access methods are available for a severely restricted class of networks,
namely directed acyclic graphs [5, 10, 20, 28] and directed graphs with limited cycles [4], which do not adequately

model many networks of interest, including road-maps.

This paper shows that the expected I/O cost of many network computations can be reduced by maximizing
the weighted connectivity residue ratio (WCRR). We propose a connectivity-clustered access method, CCAM, to
efficiently support aggregate queries over general networks such as road maps. We use the spatial network data
and network computation queries from the domain of Intelligent Vehicle Highway Systems (IVHS) to evaluate

the ideas. IVHS is also known as Intelligent Transportation Systems (ITS).

1.1 Example Application : IVHS and Network Analysis

We are particularly interested in transportation applications such as Advanced Traveler Information Systems
(ATIS) and Intelligent Vehicle Highway Systems (IVHS). IVHS [1] is currently being developed to improve the
safety and efficiency of automobile travel. ATIS is one facet of IVHS which assists travelers with trip planning,
navigation perception, analysis and decision-making to improve the convenience, safety and efficiency of travel [8,
39]. An important component of IVHS and ATIS is a spatial network database containing road maps, public
transportation routes, and current travel time for segments of the transportation network, which is updated

frequently. As shown in Figure 1, ATIS obtains information from different sources, including traffic reports,



scheduled traffic events, sensors and maps, etc. Periodic sensor data might lead to high update rates. The
clients of the database include travelers, commuters, drivers on the road, mobile persons with hand-held or
portable personal communication devices (PCDs), and users who access information via computers at home,

offices, shopping malls, or information centers.
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Figure 1: Spatial Network Management in ATIS (Genesis Project at Minnesota)

For ATIS and other applications, an efficient and effective spatial network database is needed to support
network analysis [38, 43]. Network analysis represents frequent aggregate queries on spatial networks, such as
route evaluation and path computation [43], etc. Route evaluation is concerned with aggregating attribute data
over route-units. A route-unit represents a collection of arcs with common characteristics (e.g. name) [29].
Route evaluation yields summary information for decision-support applications. For example, utility companies
may track the volume of gas/electricity flowing through major pipeline route-units in their networks. Route
evaluation for daily commuters often consists of comparing a set of familiar routes based on the current travel-
time, congestion, restrictions and other attributes of the transportation networks. Other interesting problems in
network analysis include path computation [19, 29, 43], which models problems such as shortest path analysis and

minimum travel-time route computation, etc.

1.2 Related Work and Our Contributions

We discuss some of the existing access methods, including proximity-based spatial access methods and connectivity-

based access methods, which may be adapted for spatial network databases.

Linear-clustering based spatial access methods order the points in multiple dimensions by a space-filling

curve, with a specific resolution of the space, and use a one-dimensional access method with this ordering. They



perform transformations on higher-order keys to impose total ordering. Example methods include Z-ordering [32]
and Hilbert Curves [2, 11, 22]. Multidimensional B-trees [35] and K-dB-trees [33] establish a correspondence
between the levels of the index and dimensions. These approaches limit the opportunities for clustering according

to connectivity.

Other spatial access methods capture the isotropic nature of proximity by recursively dividing the space, using
a splitting rule to construct a grid or a hierarchy of regions [17]. A survey of these methods can be found in [34].
Some of the representative Isotropic Access Methods (ISM’s) include grid files [31], cell-trees [17], R-trees [18]
and R* trees [36]. Isotropic spatial access methods have traditionally been used to store vector-spatial data

such as sets of polygons, and they allow flexible policies which can be adapted to take advantage of connectivity

information.

The literature on transitive closure and recursive-query processing has evaluated algorithms for path compu-
tations. A survey of the work can be found in [21]. The effect of efficient storage and access methods on the
performance of path computations is currently being explored. Most of the proposed methods have looked at
storing the nodes of a directed acyclic graph in topological order [28], using a conventional index such as the
B-tree. Path computations, such as graph traversal and transitive closure, can be carried out by scanning forward
in the file, using a priority queue [28] or a FIFO queue [20]. Topological orders, including depth-first sequence and
breadth-first sequence, have been evaluated in [5] for their effectiveness in supporting different graph-traversal
problems. Reverse-topological-ordering based methods have also been used to cluster related nodes in the same
data page to reduce I/O cost [21]. Finally, the topological ordering method has been extended to graphs with a

few cycles in [4].

The methods based on topological order or reverse topological order can be extended to graphs that have
many undirected edges as traversals, using the well-known depth-first or breadth-first search strategies. However,
methods based on total ordering of nodes are not efficient for general networks, since aggregate queries on networks
can no longer be done using a single scan of the data file. Furthermore, none of the proposed access methods

takes full advantage of the connectivity properties of a network, due to their reliance on total ordering.

Join-indices [42] can also be used to speed up iterative algorithms for computing transitive closure, and a
materialized view can also accelerate path computation. Transitive closure queries can be answered by a look-up
in the materialized view. A survey of these techniques can be found in [4]. However, these techniques require a
separate structure for each path computation over the same graph and are not space efficient. Meanwhile, static
schemes based on the graph-partitioning heuristic, albeit in a different context, were recently used in [41]. The

issues involved in dynamic updating effects during insertion and deletion have not been discussed.



Contributions: In the past, most research has focused on the modeling and evaluation of path-computation
algorithms. They have provided efficient access structures, based on topological ordering, that support path
computations over networks which can be represented as directed graphs with a few cycles. However, little work
has been done to design an efficient access method that can support aggregate queries, e.g. route evaluation, over
general networks such as road maps, which are strongly connected over the entire graph. Topological ordering-

based access methods, when adapted to road maps, do not take advantage of the entire connectivity relationship.

We propose a new access method, CCAM, to efficiently support aggregate queries over general networks such
as road maps. CCAM supports the operations of Insert(), Delete(), Create(), and Find() as well as the new
operations, Get-A-successor() and Get-successors(), which retrieve one or all successors of a node to facilitate
aggregate computations on networks. We adapt a heuristic graph-partitioning approach to cluster the nodes of a
network into pages based on the connectivity relationship. Ideally, the clustering maximizes the WCRR, i.e., the
chances that a pair of connected nodes that are more likely to be accessed together are allocated to a common
page of the file. Analysis and experiments show that the proposed method leads to reduced I/O costs and a

higher WCRR for many interesting networks.

The literature in the area of graph partitioning [6, 7, 13, 25] has only focused on partitioning static graphs
without considering dynamic updates. We address the following two issues. First, the static graph-partitioning
approach is not efficient when the entire network cannot fit into main memory. In general, road-maps are very
large databases [3, 26], and thus may not fit inside main memory. Second, maintaining a high WCRR in the face
of Insert() and Delete() operations, without complete reorganization, is a critical problem. To solve the above
two issues, we propose dynamic reclustering strategies to handle dynamic updating effects. Alternate heuristic
methods are identified and evaluated which maintain a high WCRR without incurring a high reorganization cost
during insertion and deletion. An Incremental Create() operation is designed to cluster and store networks which

cannot fit into main memory. Experiments show that the proposed incremental-create operation is competitive

with the static-create operation.

In this paper, we formally describe the CCAM access method by detailing the clustering algorithm, data file and
procedures used to implement the operation and dynamic reclustering strategies. We provide algebraic analysis
as well as experimental evaluation of CCAM. We focus on a comparative performance study of access methods for
network computations over spatial networks. We characterize the structure of network computations over spatial
networks to show that maximizing the WCRR reduces the expected cost of many network computations. We
describe simple ways of improving the performance of traditional spatial access methods for network computations,
based on this fundamental insight. We evaluate representative access methods using spatial network data from

the domain of IVHS. The experiments show that the WCRR is an effective predictor of the expected I/O cost of



network computations and the performance of various access methods for network computations. Experiments also
show that CCAM outperforms traditional access methods, although their performance is improved significantly

by the ideas proposed in this paper.

Outline: Section 2 describes the spatial networks, operations and aggregate queries. We also describe our
problem formulation. Section 3 defines the CCAM access method. Section 4 presents an algebraic analysis.
Section 5 describes the experiment design, and Section 6 presents the experimental observations and results.

Finally, Section 7 summarizes our conclusions and suggests future work.

2 Basic Concepts

2.1 Spatial Networks, Operations and Aggregate Queries

A spatial network is a special kind of graph, with nodes located in a two-dimensional or three-dimensional
euclidean space. Unlike raster and vector data, spatial network data is characterized by rich connectivity. A
spatial network G = (N, E) consists of a node set N and an edge set E. Each element u in N is associated with
a pair of real numbers (x,y) representing the spatial location of the node in an euclidean plane. Edge set E is
a subset of the cross product N*N. Each element (u, v) in E is an edge that joins node u to node v. There
are attributes associated with the nodes and edges. In general, spatial networks can be represented in many
different ways. We will focus on the adjacency-list oriented representation, which has been used quite frequently
in database research [23]. In this representation, a spatial network is modeled as a list of nodes, and each node
has properties including the successor-list and predecessor-list, which represent the outgoing and incoming edges.

The predecessor-list facilitates updating the successor-lists during the insertion and deletion of nodes.

Both aggregate queries on networks and the management of network data require that the following set of

operations be efficiently supported. Detailed definitions of these operations are given in Section 3.

1. Create: <list of node records> — Network
2. Find: <node-id, Network> — node properties

3. Insert: <node-id, node-properties, Network> — Network

Insert: <edge, edge-properties, Network> — Network

4. Delete: <node-id, Network> — Network

Delete: <edge, edge-properties, Network> — Network



5. Get-successors: <node-id, Network> — list of <node-id, node-properties> of successors

6. Get-A-successor: <node-id, successor-id, Network> — node-properties of the successor

The first four operations are common to data types other than aggregate queries on networks. Unlike point and
range queries, network computations access data by connectivity and by traversal order. Network computations
use topological operations such as Get-successors() and aggregate sequence operations such as Find() and Get-

A-successor().

The Get-A-successor() and Get-successors() operations are unique to aggregate queries on networks, and they
retrieve one or all successors of a node. Get-A-successor() retrieves a specified successor of a given node.
Get-successors() retrieves the records for all successor nodes of a given node. For example, Get-A-successor()
is used in route evaluation queries, while Get-successors() is used in graph search algorithms like A* [38]. While
Get-successors() and Get-A-successor() can be implemented as a sequence of Find() on relevant successors, more
efficient implementations are possible by defining that operation as distinct. The Get-successors() and Get-A-
successor() operations represent the dominant I/O cost of many aggregate queries on networks [19, 23, 28, 38],

including route evaluation and path computations.

Route Evaluation
To derive aggregate properties, route evaluation queries over route-units in networks may require the retrieval of
all nodes and all edges in the specified route-units. A route specifies a sequence of nodes ni,ns,. .., ng and edges

<ny,ne >, <ng,ng >,...,<ng_1,nr >. An aggregate property of a route is a function of the properties of the
nodes and edges in the route. An aggregate property of a route can be computed by a sequence of Find() operations
on relevant nodes and edges. Alternatively, it can be processed as a sequence of Get-A-successor() operations,

e.g. Find(n,), Get-A-successor(ni, n2), ..., Get-A-successor(ny_1, ng). Thus, the efficient implementation of

Get-A-successor() operations reduces the total I/O cost for route evaluation queries.

Path Computations

Search algorithms for path computations such as the breadth-first search, depth-first search, A* and Dijkatra’s
consist of iterations. Each iteration is usually centered around a node called the current node for the iteration.
Computations in each iteration often access the nodes on the successor-list via the Get-successors() operation.
The quantitative models for the I/O cost of several path computations are summarized in [30]. These models are
discussed in detail and validated in [37]. These models show that efficient implementation of the Get-successors()

operation leads to reduced I/O cost for many path computations.



2.2 Problem Formulation

Given network operations, including Get-A-successor() and Get-successors(), our goal is to find storage and access

methods which can provide efficient support for frequent network operations in terms of expected I/O cost.

Theorem 1 The expected cost of network operations (e.g. Get-A-successor()) is minimized by mazimizing the
Weighted Connectivity Residue Ratio (WCRR), where

Sum of w(u,v) such that Page(u) = Page(v)

WCRR =
Total sum of weights over all edges

Proof: See Section 4.1. O

The weight w(u, v) associated with edge(u,v) represents the relative frequency of a query accessing nodes u and v
together. Intuitively, maximizing the WCRR maximizes the chances that a pair of connected nodes that are more
likely to be accessed together are allocated to a common page of the file. The expected cost of Get-A-successor() is
predicted by the WCRR. The WCRR also effectively predicts the cost of Get-successors() and Delete() as shown in
Section 6.1, even though additional parameters (e.g. correlation of successors’ locations) can affect performance.
The main effect of the access method on the I/O cost of many aggregate queries can thus be predicted from the

WCRR. A higher WCRR indicates lower I/O cost for aggregate queries on networks.

Theorem 1 suggests that the expected cost of network operations and aggregate queries over a network is
reduced by designing an access method customized to maximize the WCRR or the sum of the weights over the
unsplit edges. It can easily be shown that the problem of partitioning the nodes of a network into pages of a
given size, so as to maximize the WCRR, is an instance of the graph-partitioning problem defined in [25]. The
graph-partitioning problem is to partition the nodes of a graph with costs on its edges into subsets of given
sizes, so as to minimize the sum of the costs on all the cut edges. Although the graph-partitioning problem is
NP-complete [14], many good heuristics based on spectral partitioning [6] and iterative approaches [7, 13, 25]
have been proposed to solve this problem efficiently. The implementation of CCAM operations takes advantage

of these heuristics.

The WCRR model is proposed on the basis of the available database statistics on access frequencies. One
way to gather such statistics would be to record the frequency of query occurrence and the access frequencies of
nodes and edges. Another source of such statistics is the application domain. For example, in transportation,
information about the capacity and use of different road-segments (edges) is often available for major roads. If
database statistical information is not available, we can still use the network topology to develop a simplified

model, the Connectivity Residue Ratio (CRR), which is a special case of the WCRR model which assumes that



each edge in the network is equally likely to be accessed by aggregate queries over the network.

Total number of unsplit edges

CRR =

Total number of edges

An unsplit edge (u,v) is characterized by page(u) = page(v).

3 CCAM: Connectivity-Clustered Access Method

CCAM clusters the nodes of the network via graph partitioning, using the ratio-cut heuristic described in ap-
pendix A. Other graph-partitioning methods can also be used as the basis of our scheme. In addition, an auxiliary
secondary index is used to support the Find(), Get-A-successor() and Get-successors() operations. The choice of
a secondary index can be tailored to the application. We use the B tree with Z-order [32] in our experiments,
since the benchmark networks are embedded in geographical space. Other access methods such as the R-tree [18]
and Grid File [31], etc. can alternatively be created on top of the data file, as secondary indices in CCAM to
suit the application. In this section, we describe the file-structure and procedures used to implement the various

operations on networks.

3.1 Connectivity-Clustered Data File

For each node, a record stores the node data, coordinates, successor-list and predecessor-list. A successor-
list (predecessor-list) contains a set of outgoing (incoming) edges, each represented by the node-id of its end
(start) node and the associated edge cost. The successor-list is also called the adjacency-list, and is used in
network computations. The predecessor-list is used in updating the successor-list during the Insert() and Delete()
operations. We will refer to the neighbor-list of a node x as the set of nodes whose node-id appears in the
successor-list or predecessor-list of x. We note that the records do not have fixed formats, since the size of the

successor-list and predecessor-list varies across nodes.

In contrast with the previous topological ordering based approach [28], CCAM assigns nodes to the data page
by a graph partitioning approach, which tries to maximize the WCRR. Each data page is kept at least half full
whenever possible. Records of the data file are not physically ordered by node-id values. A primary index cannot
be created without renaming the nodes to encode disk-page information in the node-id, and it requires additional
overhead during update operations. Therefore, a secondary index is created on top of the data file, and an index

entry is created for each record in the data file.

Since our benchmark networks are embedded in geographic space, (x, y) coordinates for each node are also

stored in the record. A BT tree with Z-ordering [32] of the (x, y) coordinates is used to order the secondary



index. It can support point and range queries on spatial databases. The Z-order of a coordinate x, y is computed

by interleaving the bits in the binary representation of the two values.

Example: In Figure 2, a sample network and its CCAM is shown. The left half of Figure 2 shows a spatial
network. Nodes are annotated with the node-id (an integer) and geographical coordinates (a pair of integers). To
simplify the example, the node-id is an integer representing the Z-order of the (x, y) coordinates. For example,
the node with the coordinates (1, 1) gets a node-id of 3. The solid lines that connect the nodes represent edges.
The dashed lines show the cuts and partitioning of the spatial network into data pages. There exists a cut on
edge e(u, v) if node u and node v fall into different partitions. The partitions are (0, 1, 4, 5), (2, 3, 8, 9), (6,
7, 12, 13) and (10, 11, 14, 15). The right half of Figure 2 shows the data pages and the secondary index. We
note that the nodes are clustered into data pages by CCAM, using a graph-partitioning approach. Nodes in the
same partition set are stored on the same data page. They are not physically ordered by their node-id values. A

secondary index ordered by node-id is used to facilitate the Find() operation.
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Figure 2: Clustering and storing a sample network (key represents spatial order)

3.2 Create(): Creation of CCAM

The Static-Create() algorithm is based on a graph partitioning approach. First, the nodes of the network are
clustered via the cluster-nodes-into-pages() algorithm, which returns a set of pages. Second, the nodes (records)
which belong to the same subset are stored on the same data page, and an index entry for each node is created

and inserted into the BT tree, based on the node-id values which represent the Z-order of the location of the



nodes in space.

Figure 3 shows the connectivity-based clustering algorithm for top-down clustering using the 2-way-partition
algorithm. Each subset contains at least min-page-size bytes. We repeatedly apply the 2-way-partition() to
cluster the graph. After applying the 2-way-partition() algorithm, two subsets return. We keep on applying
the 2-way-partition() algorithm to the subset which exceeds the page-size, until all subset sizes are less than the

page-size. Notice that sizeof(A) = ), size of record(i), node i € A.

Procedure: cluster-nodes-into-pages (V: set of nodes;
E: set of edges; page-size): return set of pages;
F,P : set of page (partition) of nodes;
V', A, A’ : set of nodes;
begin
Initialize F = {V}; P = {}; MinPgSize = [ page-size/2 ];
while F is not empty do
Choose a V' € F, E'={(u,v)|(u,v)€E, ueV’ and veV’};
Remove V' form F;
<A, A'> = 2-way-partition(V', E', MinPgSize);
// comment: sizeof(A) > MinPgSize; sizeof(A') > MinPgSize;
if sizeof(A) > page-size then add A to F else add A to P;
if sizeof(A') > page-size then add A’ to F else add A’ to P;
endwhile
return P;
end;

Figure 3: The Connectivity Clustering Algorithm

We adapt Cheng and Wei’s two-way ratio-cut heuristic algorithm [7] which is described in appendix A, as the
basis for implementing the 2-way-partition() algorithm. The 2-way-partition() algorithm partitions a given set
into two subsets by trying to minimize the total weight on the edges in the cut-set, i.e., maximizing the WCRR.
The 2-way-partition algorithm [7] adapts the iterative approach, which starts from an initial partition (i.e. two
subsets), and then iteratively moves nodes across subsets in an attempt to achieve a global minimum weight on
the edges in the cut set. At each pass, the algorithm iteratively selects an unlocked node from two subsets with
the largest ratio gain, moves the node to the other side, and locks it, until all the nodes are locked. The process

repeats until no further accumulated positive gain is possible. The implementation is based on the bucket-list

data structure [13] and requires a time complexity of O(|E|) with respect to the number of edges |E|.

Other graph-partitioning methods can also be used as the basis of our scheme. In fact, M-way partitioning [25,
45] may be used to further improve the result of partitioning, if computation complexity and CPU cost is not a

concern.
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The Incremental Create() Operation

The Static-Create() operation is not efficient when the entire network does not fit inside main memory. The
Incremental Create() operation is designed to handle very large networks. The incremental Create() operation is
implemented as a sequence of Add-node() operations, which are similar to the Insert() operations described in
Section 3.4.1. The Add-node() operation does not need to update the successor and predecessor lists, since the
node records initially presented to create a file can be pre-processed to have the proper values for the predecessor-
list and successor-list. This operation will, however, use incremental clustering and reorganization to improve the
WCRR, as discussed in Section 3.4. We use CCAM-D to denote the implementation of Incremental Create() as

a sequence of Add-node() operations. CCAM-S denotes the implementation of Static Create().

Incremental Create() is different from bulk loading [44]. Incremental Create() focuses on loading the en-
tire network, which occurs the most frequently in application domains such as transportation. An analysis of

appending a partial network to an existing network is outside the scope of this paper.

3.3 Efficient Support of Search Operations

Find(): Retrieve the record of a given node-id
Using the given node-id value, we can retrieve the desired record from the disk by searching the secondary index
to read the appropriate data page. Once the appropriate disk block is transferred to the main memory buffer, a

search can be carried out for the desired record within the data page.

Get-A-successor(): Retrieve a specified successor of a given node
In principle, the buffered data-page containing the given node is likely to contain the specified successor node if
the WCRR is high. Thus the buffered data-page should be searched first. If the desired successor node is not in

the buffer, then a Find() operation is needed to retrieve it.

Get-successors(): Retrieve records for the successor nodes of a given node

In principle, when a data page is fetched for the purpose of retrieving the current node (i.e., the given node),
all successor neighbors stored in the same data page as the current node would be accessed without further I/0.
Node-id values of successor nodes can be extracted from the set of successor-lists stored in record(x). Then,
records for neighbors can be retrieved by searching the buffer in the main memory first. Since CCAM clusters
nodes in trying to maximize the WCRR, there is a high probability that many successors will be located in the
same disk page as node x. This implies that successors are very likely to be found by searching the main memory
buffer. Otherwise, a Find() operation is performed to retrieve the records of successors not in that page of the

node. The Get-successors() procedure can be improved further by checking all the pages brought into the main

11



memory buffers by the Find() operation, to determine whether additional neighbor records can be extracted
without additional Find() operations. We note that adequate buffering of these pages may perform part of this
optimization in some cases; for example, when the number of available buffers is greater than the number of

successors of node x.

3.4 Maintenance and Dynamic Reclustering Strategies

There are two basic maintenance operations: Insert() and Delete(). Each can take an argument of an edge or a
node. These operations change connectivity relationships, and may make the existing partitioning of the network
into pages obsolete. Local reorganizations of the data pages may be needed to improve the WCRR. Intuitively,
the data sets chosen for reorganization should be those data pages which are related via the connection between
nodes. We adopt the notion of the page access graph (PAG) [27] to formalize the connectivity relationship between

data pages.

Definition 1 (Page Access Graph) Let G = (V, E) be the given network. P is called a page of G if and only
if P is a set of records, such that for each record(x) € P, x € V and all records € P are stored in the same disk
data page, i.e., the total size of the records included in P is at most full disk page size. Let each of Py, Ps,- - -, Py
be a page of G. Then the page access graph (PAG) G, = (V,, E,), where V, is a set of pages and E, is a set of
edges, defined as follows:

Vo ={P1,Ps,---, P},

E,={(P;,Pj) | 3z,y such thatx € V,y € V, (z,y) € E, record(z) € P;, and record(y) € P;}

Definition 2 :

« Is-Neighbor-Page(P,Q) = true iff either (P,Q) € E, or (Q,P) € E,.
- NbrPages(Pe V) = {Q | Qe V,, and Is-Neighbor-Page(P,Q)}.

- Page(x € V) = Q, where Q€ V,, and record(z)e Q.

- PagesOfNbrs(z€ V) = {Page(u) | ue succ(z) U pred(z)}.

The principle of our dynamic reclustering strategy is to reorganize a suitable set of pages which are connected
in the page access graph. The reorganization is performed by applying the cluster-nodes-into-pages() algorithm
described in Figure 3 to recluster the subnetwork formed from the nodes in the set of pages to be reorganized.
For such a set of pages to be reorganized, the choice might be based not only on maximizing the WCRR, but also

on reducing the overhead required for reorganization.

The key issue in the design of dynamic reclustering strategies is to identify a reorganization policy which
yields a high WCRR, without incurring high I/O costs. The reorganization policies can be defined in terms of
the concept of a page access graph, as shown in Table 1. The table identifies a set of pages to be reorganized,

given the argument type (edge or node) and the reorganization policy (1st, 2nd, higher). It assumes that Page(x)
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Reorganization Set of Pages to be Reorganized

Policy argument = edge(u,v) ‘ argument = node x ‘ Guiding Principle
First order none none avoid or delay
handle underflow/overflow handle underflow/overflow reorganization

Second order {Page(u), Page(v)} {Page(x)} U PagesOfNbrs(x) reorganize pages which

must be updated anyhow

1. NbrPages(Page(u))U{Page(u)} | 1. {Page(x)} U PagesOfNbrs(x)

Higher order UNbrPages(Page(v))U{Page(v)} U NbrPages(Page(x)) reorganize more pages
or or
2. {Page(u) }UPagesOfNbrs(u)U 2. all pages in data file than second order policy
{Page(v) }UPagesOfNbrs(v)
or

3. all pages in data file

H Page(x) = page selected to place x in Insert() or page containing x in Delete() H

Table 1: Set of Pages reorganized by different Policies for Maintenance

represents the page containing x, or selected to contain x in the event of Insert(x). To simplify this table, overflow
and underflow events are abstracted and are discussed separately. The second order policies are designed to avoid
additional I/O overhead in reorganization. Second order and higher order policies can incur a high CPU cost if
the average degree of nodes increases. Other reorganization policies can be built around the basic policies shown
in Table 1. For example, a lazy or delayed reorganization policy may reorganize NbrPages(P) after a certain

number of updates to page P.

The efficient implementation of the first-order and second-order policies is linked to the buffering of the pages
retrieved during Get-successors(). Thus, connectivity-based clustering in CCAM is suited to the first and second
order policies. The efficient implementation of the higher order policies may require additional data structures.
NbrPages(Pe V},) can be retrieved efficiently if the page access graph is materialized to avoid repeated traversal
of the secondary index. We choose not to materialize the page access graph, since it requires additional redundant

data structures.

Choice of Reorganization Policy

The order of reorganization policy represents the order of overhead required during the update. In general, a
higher order policy can yield a higher WCRR, but it incurs higher overhead. Let the data reorganization cost
be the time overhead spent in reorganizing the data pages, and let the data retrieval cost be the time spent in
searching operations and aggregate queries. By choosing a proper policy, the total cost of data reorganization
should be kept below the saving of data retrieval. In the rest of this paper, the higher-order policy is represented

by its first reorganization example, as listed in Table 1.
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3.4.1 Insert(): Insert a new node or edge

The Insert() operation is used to add a new edge or a node to the data file. The insertion of an edge(u,v) is
allowed only if nodes u and v exist in the data file. The new edge requires updating the successor-list for u
and the predecessor-list for v, which can be accomplished by retrieving the relevant pages via index-traversal
and then updating these pages. Reorganization may be carried out on the pages specified by Table 1, via the

cluster-nodes-into-pages() procedure described in Figure 3.

By the insertion of a node, we mean the insertion of a node-record, which contains node properties such as the
adjacency-list (successor-list and predecessor-list), other attributes of the node, and the attributes of the edges
connected to the node. During the insertion of a new node x, a data page must be selected in which to store
the new node. To maximize the WCRR, the new node should be placed in a page containing many neighbors
connected via edges having higher weights. Page selection may be accomplished by ranking the pages by the total
weight on the edges to the neighbors of x located in the page, to choose the page with the maximum weight on
edges to the neighboring nodes of x which also has space to accommodate x. The successor-list of the predecessors
of x, as well as the predecessor-list of the successors of x, should be updated to complete the operation. The
pages containing the successors and the predecessors of x can be retrieved by using the secondary index for these
updates. In the case of overflow in any of the updated pages, the overflow page is split into two pages, via the
cluster-nodes-into-pages() procedure. Reorganization may be carried out on the pages specified by Table 1, via the
cluster-node-into-pages() procedure described in Figure 3. For example, the second order policy will reorganize
the set of pages described by {Page(x)} U PagesOfNbrs(x) as per Table 1. Finally, the index is updated to reflect

the changes to the data file. Figure 4 shows a procedural description of Insert() for node arguments.

3.4.2 Delete(): Delete a node or edge

The Delete() operation can be used to delete an edge or a node from the data file. The deletion of an edge (u,v)
is accomplished by updating the successor-list of u and the predecessor-list of v, and by accessing Page(u) and
Page(v) via the secondary index. In the case of underflow, data-page merging may be required. In addition,

reorganization may take place according to the specified policy.

The deletion of a node is implemented in a similar way. Figure 5 shows the delete algorithm. The data page P
that stores the record(x) to be deleted can be retrieved by using the node-id value of node x. If the deletion makes
the page underflow, two data pages might be merged to increase data-page utilization. We can simply choose a
neighboring page Q of P from PagesOfNbrs(x) to be merged with P. If Q and P cannot be merged into one page,

they are distributed between the two pages, using the cluster-nodes-into-pages() procedure. The selection of page

14



Procedure: Insert (x: node-id; record(x): node-properties;
policy: reorganization-policy)
begin
retrieve PagesOfNbrs(x);
if PagesOfNbrs(x) is empty then
insert record(x) into an available disk page P;
insert index entry (node-id x, disk address of P);
Otherwise,
update succ-list and pred-list of neighbors(x);
select a page P from PagesOfNbrs(x) to put record(x);
if (policy == first-order policy) then
for each page Q in PagesOfNbrs(x) do
if Q overflow then split Q into two pages
else if Q has been modified then Write Q;
else
// comment : local reorganization of few pages connected to Page(x)
Reorganize(x, policy);
end;

Figure 4: The Insert Algorithm for Nodes (records)

Q may be accomplished by ranking the pages by the total weight on the edges that cross page P and the number
of data-bytes in the page. Since the connectivity relationship is then changed, data reorganization might be used

to further increase the WCRR.

4 Analytical Evaluation and Cost Models
4.1 Is the WCRR the Right Metric?

In this subsection, we prove theorem 1, that the expected cost of network operations (e.g. Get-A-successor()) is
minimized by maximizing the WCRR, as stated in Section 2.2. We restate the theorem for the convenience of

readers.

Theorem 1 The expected cost of network operations (e.g. Get-A-successor()) is minimized by mazimizing the

Weighted Connectivity Residue Ratio (WCRR).

Proof : Given a graph G = (N, E) and the edge cut-set Ec, let an unsplit edge (u, v) be characterized by

page(u) = page(v). Let the unsplit edge set denoted by Er be E — E¢:. The cost of accessing the pair of nodes

15



Procedure: Delete (x: node-id; policy: reorganize-policy)
begin
retrieve P = Page(x); retrieve PagesOfNbrs(x);
update succ-list and pred-list of neighbors(x);
delete x from P; delete index entry of x;
if (policy == first-order) then
if page P underflow then
select a page Q from PagesOfNbrs(x);
perform data page merging on {P, Q};
for each page Q in {PagesOfNbrs(x), P} do
if Q has been modified then Write Q;
else
Reorganize(x, policy);

end;

Figure 5: The Delete Algorithm for Nodes

connected by edge (u,v) € E, ¢(u,v), is defined by

o if page(u) = page(v),
lu,v) = page(u) = page(v), )

7 if page(u) # page(v), T > o.
Let the weight on edge(u,v), denoted by w(u,v), represent the relative frequency of network operations that

3

access the pair of nodes connected by edge(u,v). Let g(u,v) be equal to Z“’# Then g(u,v) is the

(u,v)EE w(u,v) '

Probability[pair of nodes connected by edge(u,v) used in network operations | (u,v) € E]. It is clear that
o <7 and Z(u’v)eEg(u, v) = 1. The expected cost of a network operation per edge, denoted by ©, is equal to
2 (uwyer €, v) - g(u,v). We can derive the following:

0= Z c(u,v) - g(u,v) + Z c(u,v) - g(u,v) =71- Z g(u,v) — (1 — o) - Z g(u,v)

(u,v)EFEC (u,v)EER (u,v)EE (u,v)EER

From the fact that ), , cp 9(u,v) =1, we can further derive the following equation:

(u,v)€EER
In other words,
w(u,v
©=717—(r—0) - WCRR, where WCRR = Z g(u, v) = 2 (uwyeEn W, V) .
(u,v)EER Z(u,v)eE w(u,v)

Thus, maximizing the WCRR minimizes O, the expected cost of accessing an edge. In the case that each edge

1

is equally likely to be accessed by network operations, i.e., g(u,v) is uniform distribution, g(u,v) = TET for any

edge (u,v) € E, then this implies that

E
©=7—(r—0)-CRR, where CRR = Z g(u,v) = B |
(u,v)EER
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The theorem is exact for the Get-A-successor() operation. The I/O cost of other network operations is not

totally determined by WCRR. However, WCRR is a good predictor of their costs, as shown in Section 4.2.

4.2 Cost Modeling Framework for Network Operations

In this section, we provide simple algebraic cost models for the I/O cost of network operations, using the CRR
measure of access methods. For simplicity, we assume that each edge is equally likely to be accessed by network
operations. This assumption is made only to simplify the analysis. However, our techniques can also take advan-
tage of non-uniform weights, if the statistics are available for the road segments chosen for network operations.

The experimental evaluation considers the general case, where weight distribution is not uniform.

Table 2 lists the symbols used to develop our cost formulas. A denotes the average number of nodes in the

Symbol Meaning

|A| Average number of nodes in the successor-list of a node
CRR = Pr.[Page(i)=Page(j)] for edge(i, j)
Average number of nodes in the neighbor-list of a node

Average blocking factor

N =2 > Q2

Number of nodes in aggregate queries over routes

Table 2: Symbols used in Cost Analysis

neighbor list of a node. The neighbor list of a node x includes all the neighbors of node x, while the successor

(adjacency) list of a node x only contains the successor neighbors of node x.

Cost Modeling for Search Operations

The algebraic cost of search operations is listed in Table 3. We list the number of data pages accessed for each
operation. The Find() operation needs at most one data page access. The Get-successors() operation retrieves all
the successors of a given node x. We assume that the data page containing node x is located in the main memory.
On the average, a % |A| successors are in the same page as x (assuming v > «a % |A]), and can be processed first
to reduce the need for additional I/O, even if there is only one buffer. Additional data page accesses are needed
to retrieve the other (1 — a) * |A| successors, and it takes at most (1 — a) * |A| data page accesses. Thus the
expected cost is (1 — a) * |A]. Similarly, the Get-A-successor() operation needs (1 — ) data page accesses on the
average to retrieve the successor node of a given node x, assuming that the data page containing node x is located
in the main memory. In general, route evaluation queries can be modeled as a sequence of Get-A-successor()
operations. Then the number of data page accesses for route evaluation queries over L nodes is approximately

1+ (L —1)x* (1 — ), assuming buffering with one data page and no global query optimization.
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Operation Data Page Accesses

Find() 1
Get-successors() (1—a)=]A|
Get-A-successor() 1-a

Route Evaluation 14+(L—1)%(1 —a)

Table 3: Cost Analysis for Retrieval Operations

Cost Modeling for Update Operations

We analyze the number of data pages accessed in each update operation. Table 4 summarizes the worst case
retrieval (Read) cost for Insert() and Delete() operations, under different reorganization policies. In general, the
Write cost is equal to the Read cost, unless there is underflow or overflow. To simplify our comparison, we

assume these costs are the same. A detailed analysis is provided in appendix B.

Data Page Accesses

Policies Insert() Delete()
first-order A 14+A+(1—a)
second-order A 1+Ax(1—0a)
higher-order || A + v Ax(1—a) | y*Ax(1 —a)

Table 4: Simplified worst case retrieval cost for update operations

The cost modeling analysis for network operations shows that the efficiency of the Get-A-successor(), Get-
successors() and Delete() operations depends on parameter a, i.e., the CRR. With a higher CRR, the cost of
these operations is lower. CCAM clusters nodes of networks via a graph partitioning approach, and thus can
achieve a higher CRR than the other methods. It is interesting to note that the cost of the Insert() operation
cannot be predicted from the CRR, since the model cannot capture the clustering efficiencies for the neighbors

of a new node being inserted.

4.3 Theoretical Comparison of CCAM with Other Methods

In this section, we compare the access methods for spatial networks using the algebraic cost models of network
operations. Our intention is to characterize the effect of secondary index used with CCAM, since many competitors
can use a non-dense primary index. The primary indices on node-id differ in depth due to different page-formats
and branching factors. The Grid-File [31] provides a fixed depth. A BT tree is likely to have a higher branching
factor and lesser depth than the Cell-tree [17] for a fixed page-size and a given data set. CCAM can use any
index type (e.g. BT-tree, Grid File, Cell-tree) as a secondary index. The depth of a chosen secondary-index-type
(e.g. BT-tree) is likely to be slightly more than the corresponding non-dense primary-index-type (e.g. BT-tree

with DFS-order) for the same data set and page-size. In this section, we illustrate the comparison methodology
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by comparing CCAM using B*-tree secondary index with the DFS-ordered BT -tree primary index (DFS-AM)
and the Grid File primary index. The methodology can be used to compare other combinations such as CCAM
with Bt-tree secondary index, CCAM with Cell-tree secondary index, Cell-tree primary index, etc. The general

conclusions would be very similar to those found in the illustration.

We choose the Grid File [31] and DFS-AM [5, 28] as representative of spatial access methods and connectivity-
based access methods, respectively, to compare with CCAM. DFS-AM is the extension of topological-ordering
based files to general graphs. DFS-AM orders the nodes by a depth-first traversal, and DFS-AM uses a primary
index on the ordered node-id that is generated by the traversals. The expected worst case retrieval costs of various
network operations for alternative access methods are shown in Table 5. We note that the cost of Insert() and
Delete() for CCAM represents the cost of CCAM that uses the first/second reorganization policy. Z¢o, Zp and
Z¢ represent the cost of accessing a node (record) in CCAM, topologically-ordered files (DFS-AM) [28] and the
Grid Files, respectively. The entries listed in Table 5 are derived by adding the cost of index traversal to the cost
of network operations, as discussed in Section 4.2, Tables 3 and 4. For example, Get-A-successor() needs (1-«)

data pages and (Z¢ — 1) * (1 — a¢) index pages, i.e. Z¢(1 — ac) pages in the absence of prior buffering.

The cost model makes several assumptions to simplify the discussion. It accurately models the cost of data
pages accessed and index pages accessed, assuming that only the root node of the index tree is initially in the
buffers. It also assumes that the same number of index pages are retrieved for each data page accessed. Finally,
for simplicity, the model assumes that the total I/O cost is proportional to the Read cost. Many of these
assumptions can be set aside to derive an accurate and detailed model in future work. However, the simplified

model is adequate for our discussion about the relative roles of the CRR and the indices in determining the total

I/0 cost.
I1/0 cost for retrieving index pages and data pages
Operation CCAM DFS-AM Grid File
Find() Zc Zr Za
Get-A-successor() Zc(1 —ac) Zr(1 — ar) Za(1 —ag)
Get-successors() Zo (1 — ac)|Al) Zr((1 — ar)|A|) Za((1 —ag)|A|)
Insert() Zo * A VAR Za * A
Delete() Zo(l+ (1 —ac)*A) | Zr(l+ (1 —ar)*X) | Za(1+ (1 —ag) * )

Table 5: Worst case retrieval cost for Network Operations

The number of data pages retrieved is likely to be the lowest for CCAM in all cases, as it is likely to have
the highest value for . This situation is represented by Zc = Zy = Z;. The total number of pages (i.e., index
and data pages) retrieved by various methods shows more interesting trends. For simplicity, we will ignore the

buffering effects in the following discussion.

To compare the constants Z¢ and Zp, we observe the following. Z¢ is equal to 1 + the height of the secondary
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index search tree in CCAM. Zp represents 1 + the height of the primary index search tree in DFS-AM, assuming

a primary index on the ordered node-id. In general, Z¢c and Z¢ are related by

n
ZT = ]. + logbfrindem 7bfrd ;

Zo =1+logys,, . n=Zr+logy,, . bfrdata < Zr+1 (4)
Zo— 7 lo , bfr
ratio = =< T _ 8 rinaes fraate ~ 0asn~ oc (5)
Zc 1+ logbfrindem n

where bfr;,q4., denotes the average blocking factor for an index page in the BT tree, and bfr.:, represents the
average blocking factor for a data page. Equations 4 and 5 show that Zr and Z differ at most by 1, and on
average by logbf”"dem bfrgata, which becomes a smaller and smaller fraction of Z¢ as n increases. Thus the relative
I/0 cost of various operations in CCAM and DFS-AM will be dominated by the achievable CRR, as n increases.
Usually, ac > ar, and thus CCAM is likely to have lower I/O costs than DFS-AM, for most operations, and for

large networks.

In comparing the Grid File and CCAM, we observe the following. In general, Zs is equal to 2. For large
values of n, Zo > 2. However, a¢c > ag for most networks. For networks where proximity and connectivity
are not correlated, CCAM is faster than the Grid File as ac > aqg. For other networks, the Grid File may be
faster. In those networks, CCAM can use Grid Files instead of the BT tree as the secondary index, to narrow

and possibly close the performance gap.

The relative cost of the Delete() operation for alternative access methods shows the same patterns as the
relative cost of the Get-successors() operation. The relative cost of the Insert() operation is predicted to be
identical for all access methods, since the model cannot capture the clustering efficiencies for the neighbors of a
new node being inserted. Even though connectivity-based methods (e.g. CCAM and DFS-AM) may not cluster
these neighbors of a new node, spatial methods (e.g. the Grid File) are likely to cluster them well in networks

where connectivity and proximity are correlated.

5 Experiment Design

Access methods for networks including CCAM and the update policies for CCAM, are evaluated by a series of
experiments. In this section, we first describe the layout of our experiments and then illustrate the candidate
access methods. Due to space constraints, we have only presented a subset of the experiments. A full description

of these experiments and the results can be found in [30].
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5.1 Experimental Layout

The design of our experiments is shown in Figure 6. We compare the proposed connectivity-based cluster-
ing scheme CCAM-S and CCAM-D with the other schemes, namely, the Grid file [31], the Cell Tree [17], Z-
ordering [32], and DFS-AM [5, 28]. CCAM-S denotes the static create operation of CCAM. CCAM-D is an
incremental create() operation which was implemented using the second-order reorganization policy. The Cell-
tree represents the family containing RT-tree [36]. The Grid-file and the Cell-tree partition the space to capture
the isotropic nature of spatial proximity, which is an important property of spatial networks. We consider two
versions of the Grid-file and Cell-tree, including connectivity-based and balance-based split policies, as described

in Section 5.2. In Sections 6.1, 6.2 and 6.4, we use the connectivity-based split policies for Grid-file and Cell-tree.

Z-ordering [32] represents a spatial-based linear transformation of two-dimensional data. Topological ordering
based methods (DFS-AM) are chosen for comparison, since they are the commonly used methods in the areas of

path computations, transitive closures and recursive queries.

The effectiveness of the access methods will be evaluated based on the CRR (WCRR) values and I/O cost of
route evaluation queries. We also evaluate the I/O cost for network operations and compare the experimental

results with those for other methods.

Minneapolis CCAM-S, CCAM-D
Route Length Road Map Grid File, Cell Tree
DFS, Z-order
l / Reorganization Policies
for CCAM
/ Generate Route| Weight) Clustering Method Dk block
<—— Di ock size
Minneapolis Files Network o
o (bata Peges CRR, WCRR, 110 cos

\ Route Evaluation
ffffffffffffff Page Access Summary
Generate Path Computation

(s, d) pairs
I

Buffering

Figure 6: Experimental Layout

The experiments are conducted on many graphs. We present the results on a representative graph, which
is a spatial network with 1079 nodes and 3057 edges that represents the major road intersections and highway
segments for a 20-square-mile section of the Minneapolis area. This map is provided by the Minnesota Dept.
of Transportation (MnDot). The data about each segment includes the x and y position of the two nodes, the

average speed for the segment, average occupancy, and road type. The map is shown in Figure 7. The most
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dense central region is at Minneapolis downtown. In this region, the roads run orthogonally or parallel to the
river rather than north-south or east-west. It is interesting to note that even the outlying areas show a grid-like
pattern of roads, except where lakes interrupt in the lower left corner, and where the Mississippi river flows (from

north to southeast in the upper right quadrant of the map).

Figure 7: Minneapolis Road Map (Major roads)

We use a common record type for all the access methods. Each record contains a node and its neighbor-list,
i.e., successor-list and predecessor-list. A node contains its (x, y) coordinates, and a neighbor-list contains a set of
triples (x, y, attributes). Each triple represents the (x, y) coordinates of a neighbor of the node and the attributes

of the edge connecting the node and the neighbor.

We conduct performance comparisons of I/O cost for network operations, I/O cost for route evaluation queries
and path computation queries to evaluate the efficiency of various access methods. In addition, we also conduct
experiments on the effect of split policies to demonstrate that spatial access methods can use connectivity-based
split policies to increase the WCRR and thus increase performance. Table 6 summarizes the parameters explored

in the experiments.

5.2 Candidate Access Methods other than CCAM

In this section we describe the candidate access methods used in the experiments.
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H Parameters ‘ Values H

Route Length 20, 40, 60 edges
Buffering 1, 8,16
Disk Block Size | 1/2, 1, 2, 4 K bytes

Table 6: Parameters
5.2.1 Grid File

The grid file [31] partitions the data space according to an orthogonal grid. The grid on a k-dimensional data
space is defined by k one-dimensional arrays called scales. An element of a scale represents a k-1 dimensional
hyperplane that partitions the space into two halves. There is 1-to-1 correspondence between the grid defined
by the scales and the elements of a k-dimensional array called the grid directory. An element of this array
holds a pointer to a disk block known as a data-page. This data-page contains the data points located in the
corresponding grid cell. Low data-page utilization is avoided by allowing several grid cells to share a data page.
The region of space occupied by the points stored in a page is called a data-page region. Data-page regions are
rectangular boxes in k-dimensions. These regions are pairwise disjoint and their union spans the complete data

space.

A common implementation of split policy in the Grid File evaluates two potential split points, one in the x-
dimension and one in the y-dimension. Both of these points often evenly divide the records in a page, and either
one may be chosen. We refer to the above approach as a balance-based split policy for Grid file. A connectivity-
based policy for the Grid-file uses the connectivity information and chooses the split-dimension which has a higher

WCRR.

5.2.2 Cell Tree

The cell tree [16, 17] is a height-balanced tree. Each cell tree node corresponds, not necessarily to a rectangular
box, but to a convex polyhedron. The cell tree restricts the polyhedra to be partitions of a BSP (binary space
partitioning), to avoid overlaps among sibling polyhedra. Each cell-tree node corresponds to one disk page, and

the leaf nodes contain all the information required to answer a given search query.

The splitting of a cell tree node is based on the plane sweep paradigm, which conducts plane sweeps across
the node along [ different directions to find a suitable splitting hyperplane. A common split policy is to select a
hyperplane that intersects a minimum number of cells and balances the two resulting subnodes. We refer to the

above approach as the balance-based split policy for the Cell-tree.

We propose a new split policy, i.e., the connectivity-based split policy, to take advantage of connectivity
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information. The hyperplane of choice should try to maximize the WCRR in the cell node. The splitting of a cell
node N into N7 and Ny may now be accomplished by conducting plane sweeps across N along different directions

to :

1. Find a hyperplane such that both subnodes can be stored on one disk page, and minimum page utilization

constraint is satisfied.
2. Maximize the number of unsplit edges (or WCRR) with respect to the partitioning of N into Ny and Ns.

3. In the case of a tie, choose the one that balances the resulting subnodes, i.e., |sizeof(N1) — sizeof(N2)| is

the smallest.

A simple implementation may use slope angles of the sweeping lines to be @ for ¢+ = 1..I, as suggested
in [17]. We have tried various values for | and are currently using [ = 5 plus the vertical sweep lines. A larger set

of sweeping lines requires more computation time, but gains only slight improvements in performance.

5.2.3 Linear Clustering by Z-order

The Z-order [32] utilizes spatial information while imposing a total order on the points. The Z-order of a
coordinate x,y is computed by interleaving the bits in the binary representation of the two values. Alternatively,
Hilbert [12, 22, 24] ordering may be used. A conventional one-dimensional primary index (e.g. B*-tree) can be

used to facilitate searches.

5.2.4 Linear Clustering by DFS-order

DFS-AM arranges the nodes by a depth-first traversal from a random start node. This method extends the
topological-ordering based method [28] to general graphs. A conventional one-dimensional primary index (e.g.
BT -tree) can be used to facilitate searches. DFS-AM is not the only method to linearly cluster data based on
connectivity. We have also tried the Breadth First Search (BFS-AM) solution, which is implemented similarly
but uses a breadth-first search. However, our results indicate that BFS-AM does not perform as well as DFS-AM.

We therefore only report results from the DFS implementation.

6 Experimental Observations and Results

In this section, we present the results of our experiments, along with the effectiveness of the access methods and
of the update policies that are based on measuring the CRR (WCRR) values and I/O costs. To simplify the

comparison, the I/O cost represents the number of data pages accessed. This represents the relative performance
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of the various methods for very large databases. For smaller databases, the I/O cost associated with the indices
should be measured. In Sections 6.1, 6.4 and 6.5, we use a uniform weight (i.e., all weight on edges = 1) to simplify
the interpretation of the results. In Sections 6.2 and 6.3, we use non-uniform weights on the edges (derived from
a given set of routes). We examine the WCRR measure in the set of experiments that deals with route evaluation
queries. Due to space constraints, we have only presented results from a subset of the experiments. A full

description of these experiments and the results can be found in [30].

6.1 Evaluation of I/O Cost for Network Operations

We evaluate the I/O cost of alternative access methods for four network operations, namely, Get-A-successor(),
Get-successors(), Insert(), and Delete(). The experiments use the Minneapolis road map with disk block size
= 2 K. The cost for the Get-successors() operation is measured via performing the Get-successors() operation
on a randomly chosen 50% of the total number of nodes. The cost for Get-A-successor() is computed similarly.
Deletions are conducted on a randomly chosen 10% of the nodes. Insert() operations are conducted by inserting
10% of the nodes into a file created from the remaining 90% of the nodes in the Minneapolis road map. Page
underflows and overflows in the Delete() and Insert() operations are ignored to filter out the effect of reorganization
policies, which are studied separately. Table 7 shows the average number of data page accesses for each operation
under various methods. The CRR value for each method is also listed in the table. The predicted cost for the
Get-successors() and Get-A-successor() is computed using (1 — «) * |A| and 1 — « respectively, as described in

Section 4.2. The predicted cost for the delete operation is computed via the formula 2 % (1 + (1 — @) * \).

Operation Get-successors() Get-A-successor() Delete() Insert() o=
Method Actual Predicted Actual Predicted Actual Predicted Actual CRR
CCAM-S 0.418 0.413 0.147 0.145 2.935 2.933 4.187 0.8541
CCAM-D 0.454 0.494 0.167 0.174 3.109 3.118 4.504 0.8253
Cell Tree 0.606 0.700 0.248 0.247 3.499 3.583 3.701 0.7526
Grid File 0.642 0.736 0.267 0.260 3.588 3.664 3.401 0.7399
DFS-AM 0.770 0.893 0.284 0.315 3.966 4.018 4.149 0.6846
Zorder 0.928 1.077 0.371 0.380 4.107 4.433 3.495 0.6198

I | A|=2.833 A=320 ~=2435 [

Table 7: The I/O costs of Network Operations for various access methods

As shown in Table 7, the number of data page accesses during Get-A-successor(), Get-successors() and Delete()
operations with CCAM-S is the lowest among all the methods. This is to be expected, since CCAM-S has the
highest CRR. The number of data page accesses in the Delete() operation is more than twice the number in
the Get-successors() operation, because Get-successors() only retrieves the successor neighbors of a given node,
while the Delete() operation updates (Read&Write) both the successor and predecessor neighbors of a given

node. Notice that in CCAM-S, the number of data page accesses in the Insert() operation is higher than the

25



number in the Delete() operation. This is because Delete() operations access the neighbors of a given node in a
file, and those neighbors are likely to be put into the same disk page by CCAM-S to try to maximize the CRR.
However, for the Insert() operation, there might exist few or no connections between the neighbors of the node to
be inserted, and those neighbors might have been in different disk pages before the insertion. CCAM-S, CCAM-D
and DFS-AM have higher I/O cost than proximity-based access methods, Cell-tree, Grid-file and Z-ordering in
the Insert() operation. The spatial proximity of the neighbors of the new node to be inserted helps the Cell-tree,
Grid file and Z-ordering reduce the I/O cost of the Insert() operation. The Z-ordered index of CCAM does not

help because it is a secondary index.

6.2 Apggregate Query : Route Evaluation

To evaluate the performance of alternative access methods on aggregate queries over networks, we work with
route evaluation queries. We generate routes by performing random walks on the network. The weights on the
edges of the network are derived by counting the number of times that an edge is accessed by a set of routes. A
route of length L has L nodes and L — 1 edges. We generate three sets of routes with lengths equal to 20, 40,
and 60 edges respectively. Each set contains 100 routes. Six alternate methods are used to store the road maps
based on the weight created, and 300 route evaluation queries are performed to compare the number of data
page accesses. The route evaluation queries are processed by issuing a Find() operation followed by a sequence

of Get-A-successor() operations.

6.2.1 The Effect of Route Length

In this subsection, we report the results obtained with minimum buffering, i.e., a buffer with one data page.
To examine the effect of route length on the I/O cost, we plot the detailed result for different route lengths.
Figures 8 (a) and (b) show the results of the experiments conducted on block size 512 and 4096 bytes, respectively.
The number of data page accesses for route evaluation queries decreases with the increase of block size, for all
methods. The number of data page accesses increases linearly with route length L, as predicted by the cost
models. CCAM-S and CCAM-D outperform all the other methods. The Cell-tree ranks next-best for large block

sizes, while DFS-AM ranks next-best, for smaller block sizes.

6.2.2 Does the WCRR Predict the Cost of Route Evaluation?

Figures 9 (a) and (b) show the average number of data pages accessed per route (averaged over 300 routes) and
the WCRR respectively, for various methods, as the block sizes change. The average number of nodes accessed

per route evaluation query is equal to 40. We observe that a higher WCRR implies a lower number of data page
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Figure 8: Effect of route length (number of buffers = 1)

accesses for route evaluation queries, as predicted by the cost models. CCAM-S and CCAM-D outperform the
others consistently for all four block sizes. The Grid file and Cell-tree perform worse than DFS-AM for smaller

block sizes, but they perform better than DFS-AM for larger block sizes.

6.2.3 The Effect of Buffering

In this section, we evaluate the effect of buffering on the performance of the access methods. The variable
parameters are the number of buffers available. The experiments are performed using route evaluations as the

benchmark queries. We report the average I/0O over 300 paths for the real Minneapolis road map.

Figure 10 shows the effect of buffering on the performance of route evaluation, on the Minneapolis road map,
for various access methods with disk block size 1 K. We observe an improvement in performance as the number
of buffers increases. The performance ranking for each access method remains the same for different numbers of

buffers.

6.3 Do the Proposed Split Policies Help Spatial Access Methods?

The experiment on the effect of the different split policies is conducted using the route evaluation queries and
the Minneapolis road map. Figures 11 (a) and (b) show the average number of data pages accessed per route

(averaged over 300 routes) and the WCRR respectively, for the Cell tree and Grid file. CELL-C and GRID-C
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denote the Cell-tree and Grid-file with the connectivity-based split policy. CELL-B and GRID-B denote the
Cell-tree and Grid-file using the balance-based (non-connectivity) split policy. The experiment is conducted with

disk block size 1 K and 1 buffer.

The Cell-tree with the connectivity-based split policy (CELL-C) has a higher WCRR and a lower number
of data page accesses than those of the Cell-tree with the balance-based split policy (CELL-B). The Grid-file
shows a similar trend. The Grid-file with the connectivity-based split policy (GRID-C) has a higher WCRR, and
a lower number of data page accesses than those of the Grid-file with the balance-based split policy (GRID-B).

Thus, spatial access methods may utilize connectivity information to better serve spatial networks and network

computations.
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Figure 11: Effect of Split Policy

6.4 Evaluation of CCAM for Path Computation

The evaluation of I/O cost for path computation is conducted using the path computation algorithm, the A*
algorithm, with the Euclidean distance heuristic. A* represents the single-pair path-planning algorithms which
use heuristic lookahead to focus the search [9, 38]. Three query sets are chosen to represent path queries of three
different path classes, namely small, medium and large. The small, medium and large classes include 25 randomly
chosen (source, destination) pairs with the route length, i.e., the number of edges on the shortest path, equal to

8 £ 2,23+ 2 and 34 + 2, respectively. Our metric of comparison was the number of data pages accessed. We do
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not count the index pages accessed as part of the cost. Experiments are conducted using disk block size 2 K. A
simple implementation of A* is used, with no special data structure to manage information inside memory. The
integration of CCAM with more sophisticated implementations of path computation algorithms is desirable, and

we will explore this in future work.

The effect, of route length on I/O cost for the six access methods is shown in Figures 12 (a) and (b) for 1 and
8 buffers, respectively. Figures 12 (a) and (b) show the mean number of pages accessed by the A* algorithm for
three route length classes: small, medium and large. We can see an increase in the number of pages accessed as
the length of the path increases. CCAM-S and CCAM-D outperform the others consistently for all three route
length classes. In general, the I/O cost ranking for all six access methods is the same for all three route length
classes, but the I/O gap between the different access methods increases as the route length increases. The CRR
values for the various access methods are listed in Table 7. As we expected, access methods with a higher CRR
have a lower I/O cost for path computation. The performance ranking for each access method remains the same

for 1 and 8 buffers.
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Figure 12: Performance Comparison for Path Computation (block size = 2 K)

6.5 Evaluation of Reorganization Policies

Update Operations : CRR vs Update I/0O Cost

Figure 13 shows the I/O cost and CRR results during the insertion of 20% of the nodes of the Minneapolis
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road map, using a random insertion order and block size 1 K. It shows that the higher order policy has a much
higher I/O cost than the first-order and second-order policies. The average I/O costs for the first-order and
second-order policies are very close, as expected. Notice that the average I/O cost for the higher-order policy
increases slightly as the number of insertions increases. This is to be expected, since the CRR value decreases as
the number of insertions increases, resulting in an increase in the number of data pages accessed for neighboring
pages. The CRR might increase during some insertions, but it decreases in the long run, because the average
connectivity increases and the average blocking factor is reduced as more nodes are inserted into the file. In most
cases, The first-order policy has the lowest CRR, and the higher-order policy has a slightly higher CRR than the
second-order policy. The second-order policy is a possible trade-off choice, since its I/O cost is almost the same
as that of the first-order policy, and its CRR is competitive with the higher-order policy. We note that the choice
of reorganization policy depends on the relative frequencies of update and retrieval operations, as discussed in

Section 3.4.

7 Conclusions and Future Work

Network computations, including route evaluation and related aggregate queries on networks, are used in many
important applications of databases such as IVHS. It is important to design storage and access methods to

support these applications. We have identified a measure, namely the WCRR, that is able to accurately predict
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the performance of an access method for network computations. An algebraic cost model for network operations
has been derived. The analysis shows that the efficiency of the Delete(), Get-A-successor() and Get-successors()

operations depends primarily on the CRR.

We have presented a connectivity-clustered access method (CCAM) for general networks to support network
operations and aggregate queries over networks. We also identify and evaluate alternate reorganization policies
for CCAM to maintain a high WCRR, without incurring high reorganization costs, during insertion and deletion

of nodes and edges.

We have evaluated alternative access methods for network computations. Applications that require the most
efficient processing of network computations should use CCAM, which achieves the highest WCRR and provides
the best performance. However, access methods based on spatial proximity can also be improved if the WCRR

is used to develop new split policies.

Future work includes developing a formal analysis for achievable CRR under different access methods. A more
efficient index access structure should be designed that will efficiently support incremental reorganization during
update operations. Further, the CPU cost for reorganization may be taken into account. Reorganization policies
that do not incur high CPU costs are currently being investigated. Finally, we would like to evaluate CCAM for
other aggregate queries on networks, including tour evaluation and location-allocation evaluation, as well as on

mixed workloads such as the sequoia benchmark [40].
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A Choosing a Heuristic for Graph Partitioning

Cheng and Wei [7] have shown that the quality of two-way partitions can be improved by incorporating the balancing of
partition sizes in the cost metric, rather than by imposing constraints on the partition sizes. They define the ratio cost
metric for a two-way partition as E./|A| * |B|, where E. is the sum of the weights of the edges cut, and |A| and |B| are

the sizes of the two partitions.

The philosophy of the ratio cut is to identify the natural clusters in the graph. First, they remove the constraint on
subset size. The algorithm dynamically establishes its own subsets, which are close to natural clusters in the graph. It
consists of three major phases: 1) initialization, 2) iterative shifting, and 3) group swapping. Their implementation of
the above technique is based on the bucket list data structure proposed by Fiduccia and Mattheyses [13]. Second, the
size constraints on the resultant subsets are enforced by applying the Fiduccia-Mattheyses algorithm to fine-tune the final

result.

We have been inspired by the objective function of the ratio cut partitioning, which successfully embodies both the
min-cut and equipartition goals of partitioning. In our experiment, we adapt their two-way ratio-cut algorithm as the
basis for our connectivity-based clustering method. In this paper, we abstract two-way ratio-cut graph partitioning as the

following procedure.

2-way-partition:(V: set of nodes; E: set of edges; min-page-size) —» <Al, A2>
where A1 and A2 are set of nodes,

sizeof(A1) > min-page-size, sizeof(A2) > min-page-size and sizeof(V) > 2*min-page-size.

B Cost Modeling Framework for Update Operations

In this section, we illustrate the simple algebraic I/O cost model for update operations. To simplify our cost modeling,
we assume that the index pages are buffered in the main memory and that sufficient buffers are provided for the update

operations. Thus, we will only focus on the number of data pages accessed in each update operation.

B.1 Cost model for the Insert() Operation

The cost for the Insert() operation mainly consists of retrieving those pages which contain nodes that are neighbors of the
given new node to be inserted. This step is necessary to maintain successor-lists and predecessor-lists of neighbors that
are consistent with those of the newly inserted node. The cost of fetching the neighboring nodes of a given new node is
modeled as follows. Let fl,., fLin, fhaes respectively be the average, minimum and maximum number of distinct pages

which contain nodes that are neighbors of a new node to be inserted, then
oA I _gI
fmin - [;] S fave S [)‘] - fmaa: (6)

We use [x] to denote the function maz(x, 1). The function [x] is used, since at least one data page access is required
in any case. Equation 6 shows that in the best case, as many neighbors as possible are located in the same data page;
thus f,;, is equal to [A\/7]. Notice that the neighboring nodes of the newly inserted node might be distributed across data
pages without any connection. In the worst case, each of the neighbors may be located in a different page, so f,,.. is equal
to [A]. Obviously, flie, fihin, fmas also represent the average, minimum and maximum Read cost of the first-order and
second-order policy. For the higher-order policy, additional retrieval is needed for fetching neighboring pages of P, where P

is the page chosen in which to place the newly inserted node. Let hl,., hl,;., hl .. respectively be the average, minimum
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and maximum number of pages which are neighboring pages of P in the page access graph, then

Bl :[fy*)\*(lfa)

| < hbpe <Y X% (1= Q)] = hpas (7)

Considering a node x in P, a* A neighbors of x are in the same page as x (assuming v > a* ), and the other A% (1 —«)
neighbors are in different pages. Since the average blocking factor is v, the total number of neighboring nodes located
outside page P is equal to y* A% (1 — ). Tt is clear that h,;, is equal to [A* (1 — )], and hl,., is equal to [y * A% (1 —a)].
The average, minimum and maximum Read cost for the higher-order policy can be expressed by the sum of equation 6

and equation 7.

The total number of page-writes (Write cost) is equal to the total number of page-reads unless there is overflow. In
general, the Write operation will require an additional page if overflow occurs. Suppose the probability of overflow is p,
then the Write cost is equal to the Read cost * (1 — p) + (Read cost + 1) * p. We can then derive the cost of Write,
which is equal to Read cost + p.

B.2 Cost model for Delete() Operation

Like the Insert() operation, the Delete() operation also needs to maintain the successor-lists and predecessor-lists of
neighboring nodes. The retrieval cost of the update operation is modeled as follows. Let f5., f2,., fB.. respectively
be the average, minimum and maximum number of distinct pages that contain the neighboring nodes of a given node x,

which exists in the data page, then

@]Sfﬂeg[lij*(l—a)]:fgm (8)

fgm =1+

There are a * A neighbors in the same page as x; thus one page is needed for them. For the other (1 — «) * A neighbors,
they can be located at least in (1 — a) * A/ pages and at most in (1 — a) * X pages. This explains the f2,, and f~,.
values in equation 8, since one data page access is required to retrieve the node to be deleted, and a * A neighbors are in
the same page as the node to be deleted. Therefore, 2. . f2. and f}),. represent the Read cost for the first-order and
second-order policies. For the higher-order policy, the additional cost required for retrieving the neighboring pages can be
modeled using an analysis similar to the one used in the cost modeling of the Insert() operation, except that the maximum

number of nodes in P is (y — 1), since one node is deleted from page P.

Let 2 ., A2, KD .. respectively be the average, minimum and maximum number of pages which are neighbors of P

in the page access graph, and then

(y—1*Ax(1—a)

Y

] <hive <[(y = 1) * A% (1 — )] = hjnaa (9)

The Read cost of the higher-order policy is equal to the sum of equation 8 and equation 9. The number of page-writes
(Write cost) is equal to the number of page-reads, unless there is underflow. In general, the Write cost will be one less
page-write if underflow occurs. Suppose that the probability of underflow is p; then the Write cost is equal to the Read
cost * (1 — p) + (Read cost - 1) * . We can derive the cost of Write, which is equal to Read cost - p. Since it is very
difficult to analytically compute the probability of underflow, we will assume that p is zero in our comparison of predicted

cost to actual cost.
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