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1 IntroductionIt has been commonly recognized that integration is an essential aspect of building e�ective data miningsystems [22]. However, the existing approaches for integration are still quite primitive. A system may providea collection of data mining techniques for humans to pick and choose, yet o�er little assistance in importantactivities such as creating hypotheses, preparing relevant data sets, and selecting appropriate analysis tools.As a consequence, such systems behave like \tool boxes" and they put high demands on human users. Touse them e�ectively, a human user must not only be an expert of the domain, but also familiar with thespeci�c databases and data analysis tools.Metapatterns provide an alternative approach to the integration problem. To discover patterns from aset of databases, a user simply speci�es a metapattern (a second-order expression) for the type and format ofthe patterns that he or she would like to discover. The system will then instantiate the metapattern to a setof appropriate database queries, prepare the data sets based on the query results, and invoke the necessaryanalysis tools to generate �nal patterns that satisfy the format and content of the given metapattern. Inseveral existing systems (for example [6, 13, 25, 26, 27]), human-generated metapatterns have been used inan interactive discovery loop to integrate inductive machine learning algorithms, statistic analysis tools, anddeductive database technologies.One of the open problems of the metapattern approach, however, is that the task of generating metap-atterns is still a heavy burden for human users. The current machine learning technologies do not provide asatisfactory solution for the task because algorithms for learning relational patterns have severe limitationswhen applied to databases directly. On one hand, most algorithms that learn relational patterns (see, forexample, [18, 20]) require humans to label the data as positive and negative examples for a given targetconcept. On the other hand, most unsupervised algorithms (see, for example, [3, 14, 28, 29, 31]) hardly gobeyond learning attribute-based concepts.This paper describes recent progress towards automatic generation of metapatterns in an integrateddiscovery loop that is both interactive and autonomous. Such a discovery loop provides much more feedbackand interaction for human users, and it can discover relational patterns directly from databases withoutrequiring humans to pre-label the data. The metapattern generator and the automated discovery loop havebeen implemented in a prototype system and tested in several arti�cial databases and one large, real-worlddatabase. To demonstrate its capability of unsupervised learning of relational patterns, the system has alsobeen applied to some well-known supervised learning tasks to show that relational patterns can be learnedwithout supervision (i.e., manually pre-labeling the data) as well.Section 2 of this paper reviews the related work on relational learning techniques and integrated datamining systems. Sections 3 through 7 describe in detail the metapattern generator and the automateddiscovery loop. Section 8 illustrates the capabilities of the system with several unsupervised relationallearning experiments and some experiments in a large, real-world logistic database. Finally, Section 92



concludes the paper with a summary of the work and several directions for future research.2 Related WorkThis section reviews the related work on learning relation-based patterns and integrated data mining systems(in particular, metapatterns and the human-directed discovery loop).2.1 Learning Relational PatternsSince learning relation-based patterns from databases is our major concern here, several research projects inmachine learning and inductive logical programming are closely related to this paper.FOIL [20] is a machine learning algorithm that can induce a set of logical Horn rules for a given conceptfrom a set of positive and negative examples of that concept. Based on this algorithm, many algorithms,for example FOCL [16], have used semantic knowledge to enhance the performance of selecting candidateterms for building de�nitions. These algorithms represent the e�orts to integrate static domain knowledgewith induction.The researchers in inductive logical programming have also addressed the problem of learning relation-based patterns. Di�erent from the algorithms described above, these programs (see for example [2, 15, 18])are focused on inventing new predicates from positive and negative training examples. Some of them (forexample [17]) also use semantic knowledge as guidance.Our research in this area is focused on discovering relation-based patterns from data that are commonlyfound in databases. These data have no labels to indicate whether they are positive or negative examplesof some concepts, and they unavoidably include errors and noise. These imply that the algorithms tolearn from these data must not rely on humans to predetermine what target concepts to discover, thepatterns discovered must be more 
exible than rigid logic rules (i.e., their signi�cance must be statisticallycharacterized to re
ect the characteristics of the underlying data). Furthermore, due to the nature of datamining, the domain and semantic knowledge must be incorporated interactively as the discovery loop iterates;they cannot be predetermined at the o�set of the application.Although there are existing systems (see for example [3, 14, 28, 29, 31]) in the literature that canperform unsupervised learning, most of them are not targeted to learning relation-based patterns directlyfrom databases. These systems di�er from ours in several aspects, including the goal and context of learning,ways of learning (incremental or constructive), and the form of the �nal concepts.CLUSTER/S [28] performs goal-oriented classi�cation on structured objects by using two methods. The�rst is concept formation by repeated discrimination which requires both positive and negative examples.The second is concept formation by �nding classifying attributes. This method attempts to �nd one or moreclassifying attributes whose value sets can be split into ranges that de�ne individual classes. It is not clearhow this method could learn the relationships among the given attributes.3



MOBAL [31] regards concept formation as a process of forming extensional aggregates of objects andthen characterizing these aggregates with an intentional de�nition. Given a knowledge base of facts and rulesthat may be overly general, MOBAL uses its knowledge revision tool (KRT) to correct those overly generalrules. Whenever KRT cannot correctly specialize an incorrect rule, the rule's instances and exceptions areused as positive and negative examples of a new concept. These examples are then passed to its conceptlearning tool (CLT) which uses a model-driven, most-general learner (RDT) to induce the concept de�nition.MOBAL requires some rules to start with which are not available in a database. Although RDT can learnconcepts, it needs pre-labeled examples.LABYRINTH [29] incrementally forms concepts on composite objects, while KLUSTER [14] construc-tively induces structural knowledge on term-subsumption formalisms. Both systems produce concept hier-archy which is a di�erent representation from function-free Horn clauses. Finally, KBG [3] is a knowledgebased generalizer in a �rst order logic representation. It forms generalization tree, rather than implicationrules, from a set of examples, each of which is a collection of tuples, by iterative use of clustering and general-ization. However, its generalization tree cannot represent recursive concepts, its examples need pre-groupedfrom database tables.2.2 Integrated Knowledge Discovery SystemsIt has been commonly recognized that the integration of di�erent data mining techniques, such as induction,deduction, and human guidance, is a necessary and crucial step in building an e�ective discovery system(see for example [22]). Many existing systems indeed contain some or all of these components. For example,systems such as INLEN [12] and IMACS [21] concentrate on inductive learning methods and the use ofhuman knowledge. Systems such as KDW [7], RECON [4], DBMiner [8] connect tightly with databases andprovide a set of inductive and deductive tools for humans to choose from.Our research has been focused on a di�erent but important aspect of the integration issue, namely, whatare the interdependencies between induction, deduction, and human guidance, and how to exploit them tobuild integrated data mining systems that are more than just collections of di�erent tools. We recognizethat induction, deduction, and human guidance are intrinsically connected in an iterative discovery loop:Induction generates hypotheses from data but counts on other agents to prepare the data and select theproper tools; deduction veri�es hypotheses in databases but relies on a source for hypotheses; humans havevaluable external knowledge but depend on both induction and deduction components to perform the analysistasks. All these dependencies must be supported by a common representation so that sharing knowledge,hypotheses, and tasks will be possible.In order to exploit these interdependencies, new technologies have been developed to link induction,deduction, and human guidance via a notion called metapatterns (also known as metaqueries) [23, 26, 27]. Ametapattern is a second-order logical expression with multiple usages: it contains information for accessingreal databases deductively to prepare data, for invoking inductive actions (such as constructing relational4
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Deductive DBFigure 1: Metapatterns and the Human-Directed Discovery Looppatterns, supervised classi�cation, unsupervised clustering, regression, and visualization), for instructing theconstruction of discovered patterns, and for accepting human guidance as part of the iterative discovery loop.2.3 Metapatterns and the Human-Directed Discovery LoopThe notion of a metapattern is proposed in [26, 27] as a template or a second-order expression in a languageL that describes a type of pattern to be discovered. For example, let P , Q and R be variables for predicates,and X;Y and Z be variables for objects, then the metapatternP (X;Y ) ^Q(Y; Z)) R(X;Z)speci�es that the patterns to be discovered are transitivity relations p(X;Y ) ^ q(Y; Z) ! r(X;Z), where p,q, and r are speci�c predicates. Two possible patterns satisfying this metapattern arecitizen(X;Y )^ o�cialLanguage(Y; Z)! speaks(X;Z) [0.93]parent(X;Y )^ ancestor(Y; Z) ! ancestor(X;Z) [0.99]In the �rst pattern, \citizen", \o�cialLanguage", and \speaks" are relations bound to P , Q, and R, respec-tively, in the current database. In the second pattern, \parent" is a relation bound to P , and \ancestor" is arelation bound to both Q and R, and this is a recursive pattern about ancestor relationship. Note that eachpattern is associated with a \strength" value, which is the probability of seeing the right-hand side beingtrue when the left-hand side is true.In general, a metapattern is a two-part speci�cation: the left-hand side is a conjunction of meta-predicatesand predicates that speci�es a strategy for data gathering, and the right-hand side is an action to be appliedto the gathered data and related predicates. For example, the left-hand of the above example, when P andQ are bound to speci�c predicates p and q respectively, speci�es that only those data tuples [X;Z] thatsatisfy p(X;Y ) ^ q(Y; Z) for some Y should be fetched. The right-hand of that example, when R is bound5



to a speci�c predicate r, is shorthand for an action that computes the strength of a given pattern using thereturned tuples [X;Z]. In fact, a more precise formulation of the above metapattern is:P (X;Y ) ^Q(Y; Z)) ComputeStrength(R; [X;Z])where ComputeStrength(R; [X;Z]) is an action that computes the strength of the pattern (we will give aprecise de�nition of the strength in a later section). The result of executing a metapattern is a set ofpatterns whose left-hand sides are instantiated forms of the left-hand side of the metapattern, and whoseright-hand sides are the results of the corresponding metapattern action.As reported in [25, 26, 27], the supported actions for metapatterns are as follows:� ComputeStrength(R; [X; :::; Z]), where R is a predicate variable and [X; :::; Z] is a tuple of objectvariables. This action returns an expression r(X; :::; Z) and a strength value when a spec�c predicater is bound to R.� Classify([X; :::;Z]). This action classi�es the given data tuples and returns a set of class descriptions.By convention, the variable Z is the variable for classes.� Cluster([X; :::;Z]). This action clusters the given data tuples and returns a set of cluster descriptions.� Plot([X; :::; Z]). This action plots the given data and returns a set of graphic commands that representthe graph.� Regression([X1; :::; Xn; Y1; :::; Ym]). This action approximates the function between the independentvariables, X1; :::; Xn, and the dependent variables, Y1; :::; Ym, and returns the approximated function.In addition to being templates for patterns, metapatterns are also used to create a discovery loop asshown in Figure 1. For the deductive part of the loop, metapatterns outline the data-collecting strategy andserve as the basis for the generation of speci�c queries. Queries are generated by instantiating the variablesin the left-hand side of the metapatterns with relevant table names and column names in the database ofinterest (the relevant information is de�ned and stored in an on-line knowledge base) and then run againstthe database to collect relevant data. Similarly, for the inductive part of the loop, metapatterns serve asgeneric descriptions of the class of patterns to be discovered: The action of a metapattern determines whichinductive action to apply, and the format of a metapattern is the mold for the �nal results.Since metapatterns are declarative expressions, they serve as a very important interface between humandiscoverers and the discovery system. They can be speci�ed by human experts, or alternatively, as we willsee later in this paper, generated automatically. Using metapatterns, human experts can focus the discoveryprocess onto more pro�table areas of the database; the system-generated metapatterns will provide valuableclues to the human expert regarding good starting points for database searches. They will also serve as theevolutionary basis for the development of more fruitful metapatterns.6



Metapatterns and the human-directed discovery loop are currently implemented in a system called Dat-aCrystal, described in [26, 27]. The deductive part of DataCrystal contains a metapattern instantiator anda deductive database technology called LDL++ [19, 30]. The instantiator generates a set of LDL++ rulesfrom a metapattern. These rules are then used by LDL++ to access various types of relational databases.The inductive part of DataCrystal includes a set of inductive data analysis tools that implement the abovemetapattern actions and a pattern constructor. At present, the action classify is a high-performance incre-mental algorithm called CDL2 [24] for learning decision lists from data. The action cluster is a Bayesian-basedCobweb clustering algorithm [5, 27]. The action ComputeStrength is an LDL++ procedure, the Plot actionis a powerful GnuPlot tool, and the regression action is a standard polynomial interpolation method aug-mented with a stopping criterion based on the priciple of Minimal Descrition Length (MDL). The task ofthe pattern constructor is to package the �nal results of the induction into a set of patterns that match theform of the current metapattern. The discovered patterns are stored persistently in an on-line knowledgebase. The patterns can be interpreted as LDL++ rules themselves, so they can be selected to run directlyin the databases as queries. Currently, the discovery loop in DataCrystal is only human-directed; it takesmetapatterns directly from human experts.The metapattern-based, human-directed discovery loop has already been successfully applied to severalreal-world applications. These include discovering regularities in a large, common-sense knowledge base [23],�nding circuit patterns from a telecommunication database [26], building prediction models from a chemicalresearch database [27], constructing fault detection rules from a database that contains sequences of controldata for semiconduct chip manufacture [25], discovering association rules in databases [6], and detectingconsuming patterns in retail [13]. Interested readers are refered to these papers for details.3 The Metapattern GeneratorAlthough metapatterns are powerful tools for data mining, designing the right metapatterns for a givenapplication is not an easy task. If a metapattern is too speci�c, then it may miss the interesting patterns. Ifa metapattern is too general, then it may exhaust the computing resources that are available. To generatethe right metapatterns, one must not only understand the nature of the underlying data, but also analyzethe patterns discovered from the previous metapatterns.To illustrate how productive metapatterns are generated manually, let us consider our experience in thechemical research domain. Following a suggestion by a chemist, we initially used a metapattern to �nd therelationship between a set of compounds that have di�erent percentages of the ingredients 'A322' and 'B721'and their chemical properties. However, the patterns returned did not show any trends. After showing theresults to the chemist, he discovered that these compounds also contained auxiliary chemicals that may e�ectthe properties in a di�erent way. Given this knowledge, we constrained the metapattern so the compoundsthat had such auxiliary ingredients were not considered. Sure enough, the resulting patterns showed many7
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Deductive DBFigure 2: The Automated Discovery Loop with a Metapattern Generatorclear trends. We can see from this example that if domain experts can directly interact with the system (i.e.,metapatterns are generated automatically for them to choose and test), then the entire discovery process canbe much more e�cient and productive. The system should provide suggestions and feedback of metapatternsso the experts can discover new knowledge and try better metapatterns.For this purpose, a metapattern generator must be developed to automate the discovery loop. As shownin Figure 2, this generator will be placed in parallel with the human user and will generate metapatternsbased on either the meta-knowledge of the database, such as the data schema and the data ranges, or thepatterns that are discovered with other metapatterns. Human users can interact with the generator byexamining, selecting, and executing the metapatterns, and they can also create metapatterns by themselvesas before. The motivation for having this generator is to give human users suggestions for new metapatternsso that the more expert users can get inspirations, and the less expert users can learn how to perform datamining in a particular domain by observation.3.1 The Space of MetapatternsIn order to generate metapatterns, we must �rst understand the nature of the set of all possible metapatterns.As we described earlier, metapatterns are templates in a language L that describes types of patterns to bediscovered. For simplicity, we shall ignore the actions in metapatterns for the moment, and assume that theleft-hand side of a metapattern is a conjunction of second-order predicates and the right-hand side has onlyone such predicate. (If this type of metapattern is generated, we can always replace the right-hand side withthe appropriate actions.) Furthermore, we restrict ourselves only to the relational data model, so a predicatevariable can only be bound to relational table names or built-in predicates in L (such as equal, greaterThan,or lessThan), and an object variable can only be bound to column names or constant values (such as theinteger \20" or the language \English"). 8



For a �xed length, metapatterns can be ordered from the most general to the most speci�c, depending onhow many variables, either for predicates or for objects, are present. For example, among all metapatternsthat have three binary (second-order) predicates, the most general ones include:P (X;Y ) ^Q(Y; Z)) R(X;Z) (MP-1)P (X;Y ) ^Q(X;Z)) R(X;W ) (MP-2)P (X;Y ) ^Q(Y; Z)) R(X;W ) (MP-3)These metapatterns are the most general because they contain only variables. On the other hand, the mostspeci�c metapatterns corresponding to the general ones listed above (MP-1, MP-2, and MP-3) include:authorOf('Orwell','AnimalFarm') ^ writtenIn('AnimalFarm','English')! canWrite('Orwell','English')likes('John',tools) ^ hasHobby('John','Carpenter') ! ownsOne('John',hammer)livesIn('Mary','House1') ^ costs('House1',900893) ! Income('Mary','High')All the variables in these metapatterns are bound to speci�c table names (e.g., likes), column names (e.g.,tools), or constant values (e.g. 'John'). We de�ne a family of metapatterns to be the set of all metapatternsof length n. The metapatterns in a family are partially ordered. One can traverse a family of metapatternsfrom the general to the speci�c by incrementally instantiating the predicate variables with table names andbuilt-in predicates and the object variables with column names and in turn constant values.Note that not all metapatterns in a family are interesting. In order to have some prediction value, ametapattern must be connected. That is, the predicate on the right-hand side must share at least one variablewith some predicate on the left-hand side. For example, the metapattern P (X;Y ) ^ Q(Y; Z) ) R(U; V ) isnot interesting because its right-hand side is not connected to the left-hand side. Furthermore, predicateslike P (X;X) or p(X;X) are not considered interesting because they do not link to others. Since we areusing relational database models, one should also notice that the order of parameters for a predicate is notimportant. For example P (X;Z) is the same as P (Z;X) because in a relational table, columns are notordered.With the families of metapatterns so de�ned, one natural question to ask is whether the length ofmetapatterns can be arbitrarily long. Fortunately, for any given set of databases, the length of the longestmetapatterns is bounded because metapatterns must be connected and there is only a �xed number of tables,columns, built-in predicates, and values that are presented in the databases. (Even if a column is typed\real", the number of distinct values in the column is �nite because of the implementation.) Therefore, it ismeaningful to de�ne the space of all possible metapatterns for an application to be the union of all possiblefamilies of metapatterns. 9



4 Generating Metapatterns Based on Data Schema and RangesThe space of metapatterns is very large and it is infeasible to enumerate them all. Our approach is to startwith the set of most general metapatterns, and incrementally generate interesting ones as the process ofdiscovery continues. Our goal is not to cover all the metapatterns but to guide the discovery process infruitful directions.Among all the general metapatterns, the transitivity metapattern (see MP-1 in Section 3.1) is the mostinteresting. In essence, it subsumes many other types of metapatterns, such as implication, inheritance,transfers through, and functional dependency (see [23] for details). In this section, we describe an algorithmto generate the set of all possible transitivity metapatterns for a given database. We believe that similaralgorithms can be designed to generate other types of general metapatterns such as MP-2 or MP-3 inSection 3.1.The set of all possible transitivity metapatterns can be generated based on the data schema and rangesof the databases. The idea is to �rst identify the sets of columns that are signi�cantly connected, and thenuse these sets to build metapatterns.Two columns, from di�erent database tables, are signi�cantly connected, if they have the same type andhave ranges that overlap each other above a user speci�ed threshold o, where 0 < o < 1. The degree ofoverlapping is computed as follows. Let Cx and Cy be two columns, and Vx and Vy be their value sets,respectively, then the overlapping of Cx and Cy is the maximum number of the shared values relative toeither Vx or Vy, as follows: Overlap(Cx; Cy) = max( jVx \ VyjjVxj ; jVx \ VyjjVyj ):where j � j denotes the cardinality of a set. Here domain knowledge may be used to eliminate unnecessaryconnections (e.g., height vs. temperature) or suggest and establish syntactically di�erent connections (e.g.,color vs. light frequency). Each pair of columns that are connected are then given a reference name, andthese connections will be represented in a signi�cant connection table (SCT), where each row is a connection,each column is a table, and each non-empty entry is the name of a connected data �eld (or column).To illustrate the idea, consider for example an abstract database shown in Figure 3. In this database,there are four tables, t1 to t4, each has some columns cij . For simplicity, the value ranges of each columnare also listed along with the schema. (In reality, value ranges can be obtained by simple SQL queries.)Given these information, pairs of columns that are connected can be easily determined according to ourde�nition. For example, suppose the threshold o for overlapping is set to 0.6, then column c13 in table t1and column c22 in table t2 are connected because they have the same data type and their overlapping is 0.9.A reference name, X1, is then created for this pair of connected columns. After considering every pair ofcolumns, a signi�cant connection table, shown in the upper part of Figure 4, is constructed. As we can see,every connected pair of columns is represented as a row in this SCT. For instance, columns c13 and c22 arein the �rst row, where c13 is under t1 while c22 is under t2.10



Schema and Data RangesTables Columns (Name Type[ValueRange])t1 c11 char(2) c12 integer[2{7] c13 
oat[0.4{0.8]t2 c21 integer[12{17] c22 
oat[0.1{0.7] c23 char(3)t3 c31 integer[13{16] c32 char(2)t4 c41 char(3) c42 
oat[0.0{0.1] c43 integer[4{7]Table t1 Table t2 Table t3 Table t4c11 c12 c13 c21 c22 c23 c31 c32 c41 c42 c43jj 5 0.5 14 0.5 mmm 14 oo nnn 0.0 5nn 5 0.8 14 0.6 iii 15 kk mmm 0.0 6ll 7 0.5 14 0.3 jjj 16 mm rrr 0.1 4qq 5 0.5 12 0.7 nnn 15 kk mmm 0.0 4kk 5 0.6 12 0.1 lll 16 ll ooo 0.1 7pp 4 0.6 15 0.6 ppp 15 ll jjj 0.0 4mm 2 0.5 15 0.4 mmm 15 mm kkk 0.0 5nn 4 0.6 13 0.6 ooo 13 oo mmm 0.0 5kk 4 0.4 16 0.6 ooo 16 oo jjj 0.1 4nn 5 0.4 17 0.4 mmm 14 mm mmm 0.0 514 0.4 lll 13 mm jjj 0.0 514 0.6 kkk 14 mm jjj 0.0 515 0.3 mmm lll 0.0 712 0.5 mmm nnn 0.1 415 0.4 nnn15 0.6 ooo16 0.5 ppp16 0.7 pppFigure 3: An Example DatabaseFor reasons that will become clear later, we also represent the information in SCT as a graph G, whereeach node in G is an non-empty entry in the SCT, and each edge connects two non-empty entries that areon the same row or column in the SCT. For example, the graph built from the SCT in Figure 4 is shown inthe lower part of Figure 4, where node (t1; X1) and node (t2; X1) represent two non-empty entries, c13 andc22, in the SCT. Since they are in the same row, there is an horizontal edge between them. Similarly, node(t1; X1) and node (t1; X2) represent two non-empty entries, c13 and c11, in the SCT, this time they are onthe same column, so there is a vertical edge between them.The graph G generated above provides a basis for generating all possible transitivity patterns in a givendatabase. The idea is to �nd all the cycles in the graph with alternated vertical and horizontal edges, andconvert each of these cycles into a \cycle" of predicates before generating a set of transitivity patterns.Finding cycles in a graph can be accomplished by using a standard transitive closure algorithm (see forexample [1]) with some simple augmentation to enforce the alternating edge constraint. A graph G cannothave more than jGj! cycles because a cycle, without duplicated nodes, cannot be longer than the size of thegraph. To convert a cycle of graph nodes into a cycle of predicates is also a straightforward task; one cansimply rewrite each vertical edge in the cycle by the table name. For example, the cycle indicated by thicklines in Figure 4 is (t2; X1)(t2; X5)(t4; X5)(t4; X3)(t1; X3)(t1; X1)(t2; X1)and that can be rewritten as a cycle of predicates as follows:11



SCTt1 t2 t3 t4X1 c13 c22X2 c11 c32X3 c12 c43X4 c21 c31X5 c23 c41
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T4,X5Figure 4: A Signi�cant Connection Table (SCT) and its graph Gt2(X1; X5); t4(X5; X3); t1(X3; X1),where t2(X1; X5) is a rewrite of the vertical edge (t2; X1)(t2; X5), and t4(X5; X3) is a rewrite of (t4; X5)(t4; X3),and so on. Using this method, we can generate all cycles of predicates from the graph G, as listed in Figure 5.t2(X1X5)t4(X3X5)t1(X1X3)t2(X1X4)t3(X2X4)t1(X1X2)t2(X5X1)t1(X1X2)t3(X2X4)t2(X4X5)t2(X4X5)t4(X5X3)t1(X3X1)t2(X1X4)t1(X3X1)t2(X1X4)t3(X4X2)t1(X2X3)t3(X2X4)t2(X4X5)t4(X5X3)t1(X3X2)t1(X2X3)t4(X3X5)t2(X5X1)t1(X1X2)t2(X1X4)t3(X4X2)t1(X2X3)t4(X3X5)t2(X5X1)t1(X1X2)t3(X2X4)t2(X4X5)t4(X5X3)t1(X3X1)Figure 5: All predicate cycles found in the example DBFrom the list of all possible cycles of predicates, we can now generate a complete set of transitivitymetapatterns by generalizing table names and reference names and introducing an implication in each cycle.In our current example database, the result is a set of metapatterns listed in Figure 6. For example, MP-4is a generalization of the �rst two predicate cycles in Figure 5; MP-5 is a generalization of cycles 3 through7; and MP-6 is a generalization of the last two cycles. This set is complete because it includes all possibletransitivity metapatterns in our example database. 12



P1(Y1; Y2) ^Q1(Y2; Y3)) R1(Y1; Y3) (MP-4)P2(Y1; Y2) ^Q2(Y2; Y3) ^W2(Y3; Y4)) R2(Y1; Y4) (MP-5)P3(Y1; Y2) ^Q3(Y2; Y3) ^W3(Y3; Y4) ^ V3(Y4; Y5)) R3(Y1; Y5) (MP-6)Figure 6: All transitivity metapatterns found in the example DB5 Discovering and Evaluating New PatternsGenerating all transitivity metapatterns is not the end of story. Depending on the strength or interestness ofthe patterns that are found with these metapatterns, the discovery system should generate more metapatternsthat are deemed to be plausible. To do so, let us �rst examine how discovered patterns are evaluated.When a metapattern is selected for execution, the system �rst instantiates it into a set of speci�c patternsthat are possible in the current databases, and then evaluates them to see if they have su�cient support fromthe actual data. Given the information produced in the process of generating metapatterrns, instantiating ametapattern is a straightforward procedure. It simply replaces the variables in the metapattern with speci�ctable names and column names. For example, the variables P1; Q1, and R1 in MP-4 in Figure 6 can be boundto table names t1; t2; t3, and t4 (these are the table names involve in the �rst two cycles of predicates inFigure 5), and reference variables X1; X2; X3; X4, and X5 can be bound to corresponding columns accordingto the SCT in Figure 4, as follows: t2(X1X5)t4(X5X3)! t1(X1X3)t1(X3X1)t2(X1X5)! t4(X3X5)t4(X5X3)t1(X3X1)! t2(X5X1)t2(X1X4)t3(X4X2)! t1(X1X2)t1(X2X1)t2(X1X4)! t3(X2X4)t3(X4X2)t1(X2X1)! t2(X4X1)...Notice that not all instantiated patterns are supported by the data in the underlying database. We saya pattern is \interesting" only if its strength is above a user speci�ed threshold. In our approach, eachpattern p is evaluated against the underlying database Udb by two values: the strength value ps, which is theprobability of seeing the right-hand side of p being true when the left-hand side of p is true, and the basevalue pb, which estimates how likely the left-hand side of p occurs in databases that have the same schemaof Udb.Based on the famous \Laplace's Rule of Succession", the strength value of p can be computed asps = Prob(RHSjLHS;Udb; I0) = jSrhsj+ 1jSlhsj+ 2where LHS represents the left-hand side of p, RHS the right-hand side of p, Slhs the set of tuples in Udb that13



satisfy LHS, Srhs the set of tuples in Slhs that satisfy RHS, and I0 the assumption that the prior distributionof Srhs in Slhs is uniform. Intuitively, this ps value is the probability of seeing a tuple that satis�es RHS giventhe condition that the tuple satis�es LHS. Interested readers may �nd the complete derivation of Laplace'sRule of Succession in Chapter 6 of [10].It is di�cult to compute the exact likelihood of the occurrence of the left-hand side of p in databases thathave the same schema of Udb, so we use the following formula to estimate the base value pb of a pattern:pb = jSlhsjDOM (LHS)where DOM (LHS) is the product of sizes of the tables that appear in LHS. Note that this value is boundin 0 � pb � 1 because the number of tuples in Slhs can never be greater than DOM(LHS). In fact, the valueof pb is often small and very rarely close to 1.In the discovery process, a pattern's strength and base values, ps and pb, are compared with two userspeci�ed thresholds s and b. When ps � s or ps � 1�s, the pattern is accepted. Otherwise, if the base valueis still above its threshold (i.e., pb � b), then the pattern is considered plausible. Such a pattern still hasenough tuples to be constrained to increase (or reduce) the strength value, and is recorded for further search(see Section 6 for more discussion). A pattern is discarded when pb < b and 1� s < ps < s. As an example,suppose that the user speci�ed thresholds are b = 0:1 and s = 0:7, and the following three patterns, withtheir base and strength values, are found in the example database in Figure 3:t1(X2X1)t3(X4X2)! t2(X4X1) [0.17, 0.7]t3(X4X2)t1(X2X3)t4(X5X3)! t2(X4X5) [0.02, 0.5]t2(X4X1)t1(X3X1)t4(X5X3)! t2(X4X5) [0.15, 0.4]Among these patterns, the �rst one will be accepted because it has high enough strength value. Thesecond one will be discarded because both it has a low base and yet an uncertain strength. The third onewill be kept as a plausible pattern because it has high enough base although its strength is still uncertain.Notice that for any given database, users may need several trial-and-errors to �nd suitable thresholds.6 Generating Metapatterns Based on Plausible PatternsWe have seen that with the initial set of metapatterns, a large set of actual patterns may be generated fromthe database. Some of these patterns are accepted, some discarded and some are still plausible. Interestingly,the plausible patterns provide the basis for dynamically generating more metapatterns. In particular, if ametapattern is associated with many plausible patterns, it will be used to generate more metapatterns byadding additional (meta)constraints to its left-hand side.Adding constraints to generate new metapatterns is accomplished as follows. Given a candidate pattern,the system will add to its left-hand side a new (meta)constraint of the form S(X;W ), where S is a predicate14



variable and W is an object variable, while X must be a variable that already exists in the pattern in orderto link the constraint in. For example, one can add S3(Y2; Y3) to MP-6 in Figure 6 to get:P3(Y1; Y2) ^Q3(Y2; Y3) ^W3(Y3; Y4) ^ V3(Y4; Y5) ^ S3(Y2; Y3)) R3(Y1; Y5) (MP-7)or add S1(Y2; O), where O is an object variable, to MP-4 in Figure 6 to get:P1(Y1; Y2) ^Q1(Y2; Y3) ^ S1(Y2; O)) R1(Y1; Y3) (MP-8)The motivation for this generation is to have the system search for an actual constraint, instantiated fromS, that can yield patterns that have higher strengths.The added meta-constraint can be instantiated to either a table that connects (i.e., share a reference namein SCT) to at least one predicate in the pattern or any of the build-in predicates (e.g., equal) with somevariables that are already in the pattern. It is interesting to notice that the extended metapatterns enable thesystem to discover patterns that are beyond transitivities. For example, instantiating the metapattern MP-8,if P1 and R1 are bound to \ancestor", Q1 to \parent", S1 to \gender", and O to \male", then the following\male-ancestor" pattern may be discoveredancestor(Y1; Y2); parent(Y2; Y3); gender(Y2;male)! ancestor(Y1; Y3):In general, adding a new constraint to the left-hand side of a pattern will reduce the number of tuplesthat satisfy the left-hand side, thus the number of plausible patterns will decrease as the length of theirleft-hand side increases. Furthermore, we only consider to add a constraint to a pattern when it reducesthe number of tuples that satisfy the left-hand side of the pattern, so the process of \�nding other types ofmetapatterns" will eventually terminate.7 The Automated Discovery LoopWith the metapattern generator, the discovery loop can now be fully automated to provide additional assis-tance to human users. Using the automated loop, users can now select and examine existing metapatterns,design and insert new metapatterns based on system feedback, and execute metapatterns at their will. Ifthey choose, the system can be executed autonomously and be stopped anytime for further inspections.The control algorithm for the automated discovery loop is illustrated in Figure 7. Given a relationaldatabase D, its schema S, and three thresholds o; b, and s, the system �rst generates a list M of all possibletransitivity metapatterns, as described in Section 4. ThisM list is then presented to the user for examination.At this point, the user can insert, modify, and reorder the list. For example, a user can select a variable ina displayed metapattern, and a list of possible new metapatterns obtainable by instantiating that variablewill be shown and ready for selection. (Recall that each variable is associated with a set of column referencenames, and those in turn are linked to column names.) For example, if the user selects R1 in MP-4 inFigure 6, then the system will show a list of more speci�c metapatterns as follows:15



Inputs: A relational database D, its schema S, and three thresholds o, b, and s (between 0 and 1);Outputs: Relational patterns that have strength no less than s or no greater than 1� s;Procedure:1. M  MPGenerator(D;S; o);2. Loop3. Order and display M ;4. Let users to examine, create, and reorder M ;5. Select m from M ;6. For each pattern p instantiated from m;7. Computer the strength value ps and the base value pb,8. If ps � s or ps � 1� s, then output p,9. else if pb � b,10. then select a set C of constraints for p;11. create new metapatterns by adding c 2 C to the left-hand side of p;12. insert the new metapatterns into M ;13. Until M is empty or the user instructs to stop.Figure 7: The Control Algorithm of the Automated Discovery LoopP1(Y1; Y2) ^Q1(Y2; Y3)) t1(Y1; Y3)P1(Y1; Y2) ^Q1(Y2; Y3)) t2(Y1; Y3)P1(Y1; Y2) ^Q1(Y2; Y3)) t3(Y1; Y3)P1(Y1; Y2) ^Q1(Y2; Y3)) t4(Y1; Y3)...P1(Y1; Y2) ^Q1(Y2; Y3)) equal(Y1; Y3)...As we can see, according to the list of transitivity relations that are derived from this general metapattern,the possible bindings for R1 are table names t1; t2; t3, and t4 (see the table names involved in the �rst twocycles of predicates in Figure 5) and built-in predicates such as equal and others. From this new list, theuser can select and insert any of them into the metapattern list M . Furthermore, the user can order themetapattern list M manually according to some criteria, or let the system order them automatically (e.g.,the simple ones �rst).Once the user interactions are completed, the system picks a metapattern from the list for execution.During the execution, the system examines each discovered pattern and decides if any new metapatternsshould be generated (see Section 6) and inserted into the M list. The cycle of discovery continues until Mis empty or the user instructs to stop.As we can see, such a discovery system can be autonomous. If users choose not to interfere (at Line 4), thesystem can repeat the cycle of ordering, selecting, executing, analyzing, and generating metapatterns, untilno more metapatterns are available. Of course, such an automatic cycle can always be stopped promptly ifa user desires to. Nevertheless, with this control algorithm, human analysts are always informed by a listof metapatterns that are currently under investigation. This list re
ects the most fruitful search directions16



based on the knowledge accumulated from previous cycles of the discovery loop.8 Demonstration with ExamplesThe automated discovery loop also adds values to the extant Machine Learning technologies, for it providesa domain-independent algorithm for unsupervised learning or discovery of relational patterns directly fromdatabases. In this section, we demonstrate this capability of the automated discovery loop by showingthat some of the well-known examples in the relational concept learning literature can be learned withoutsupervision.8.1 A Small Network ExampleThe �rst example is a small network example used by Quinlan in his FOIL system [20]. Using this example,Quinlan has shown that given a concept \canReach", and its positive and negative examples, FOIL can learnrecursive de�nition for the concept. We, however, will use the same example, with no pre-speci�ed conceptand pre-labeled examples, to learn the same concept de�nition and, possibly, some other concept de�nitionsas well.
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8Figure 8: A small network exampleThe network is shown in Figure 8 and there are nine nodes, labeled from 0 to 8, and ten directed edgesbetween nodes. If the network is represented in relational database tables, two tables are resolved, one is\linkedTo", the other is \canReach", both shown in Figure 9.Both tables have two columns recording the nodes in the network. A row in the table \linkedTo" recordsa pair of nodes connected by a single arrow in the network. For example, the row (0 1) represents the factthat node 0 is connected to node 1 by a single arrow. A row in table \canReach" records a pair of nodesconnected by a sequence of arrow(s). For example, the row (3 8) represents the fact that node 3 is connectedto node 8 through a sequence of three arrows.Given the data tables and schema, the automated discovery loop �rst checks if any pair of columns,from di�erent tables, are signi�cantly connected. Since all the columns are the same type, every pair isconsidered. Given that the signi�cant connection threshold is set to c = 0:6,1 the system �nds out that1The threshold 0.6 is used because it is a little above average, but not too restrict. In fact, in this domain, there is no17



Schema and Data RangesTables Columns (Name Type[ValueRange])canReach A1 integer[0{7] A2 integer[1{8]linkedTo B1 integer[0{7] B2 integer[1{8]linkedTo CanReachB1 B2 A1 A20 1 0 10 3 0 21 2 0 33 2 0 43 4 0 54 5 0 64 6 0 86 8 1 27 6 3 27 8 3 43 53 63 84 54 64 86 87 67 8Figure 9: The network databaseSCTcanReach linkedToX1 A1 B1X2 A2 B1X3 A2 B2 CR,X3

CR,X1

CR,X2

LT,X1

LT,X2

LT,X3Figure 10: The SCT and G for the network databasecolumn A1 is connected to B1, A2 is connected to B1, and A2 to B2. These connection information is thenused to construct the SCT in Figure 10.From the SCT, the automated discovery loop builds the corresponding graph as shown in Figure 10, andgenerates the following set of cycles of predicates:linkedTo(X1X3) canReach(X1X3)canReach(X1X2) linkedTo(X2X3) canReach(X1X3)linkedTo(X3X1) canReach(X1X2) linkedTo(X2X3)A set of transitivity patterns are then generated and evaluated against the database. If the base valuethreshold is set to b = 0:1 and the strength threshold s = 0:7, we get the same concept as FOIL:di�erence for what threshold to use, except that when o is set to 0.5, one redundant pattern comes back: linkedTo(X1; X2)canReach(X2;X4)! canReach(X1;X4) [0.14, 1.0]. 18



linkedTo(X1X3)! canReach(X1X3) [1.0, 1.0]canReach(X1X2) ^ linkedTo(X2X3)! canReach(X1X3) [0.14, 1.0]If we use a lower threshold, e.g., s = 0:1, our system has found the following patterns as well:canReach(X1X3)! linkedTo(X1X3) [1.0, 0.5]canReach(X1X2) ^ canReach(X1X3)! linkedTo(X2X3) [1.0, 0.1]canReach(X1X3) ^ linkedTo(X2X3)! canReach(X1X2) [0.63, 0.4]The �rst pattern re
ects the fact that half the entries in table \canReach" are the same entries in table\linkedTo". The second pattern says that if two nodes can be reached from the same node (a fork shape),then they are linked by a single arrow. At this point, however, its strength, 0.1, is low. Similarly, the thirdpattern is about two paths that have the same ending node.8.2 A Family Tree ExampleThe second illustration of the automated discovery loop is a family tree example. It was �rst used by Hintonin his neural network system [9], and then used by Quinlan in his FOIL system. Again, using this example,Quinlan shown that given a concept and its positive and negative examples, FOIL can learn its relationalde�nition. Here, we show that the concept can be learned without supervision2.In this example, there are two isomorphic family trees, each with twelve members, as shown in Figure 11.There are twelve relations in the trees | wife, husband, mother, father, daughter, son, sister, brother, aunt,
Christopher = Penelope Andrew = Christine

Margaret = Arthur Victoria = James Jennifer = Charles

Colin Charlotte

Roberto = Maria Pierro = Francesca

Gina = Emilio Lucia = Marco Angela = Tomaso

Alfonso SophiaFigure 11: A family tree example, where \=" means \married to."uncle, niece, and nephew. And two trees can be represented as twelve tables, each corresponding a relation.For example, table Wife corresponds to relation wife.Once again, our system goes through the same procedure to construct signi�cant connection table, toconvert the table to graph, to generate transitivity patterns from the graph, and to evaluate the patterns2Quinlan's paper didn't give the actual concept de�nitions that learned by FOIL. It reports only a better accuracy 78/80obtained by FOIL over 7/8 obtained by Hinton's network. Since our goal is to show that relational concept de�nitions can belearned without supervision, we will just report the concept de�nitions learned by the automated discovery loop.19



Schema and Data Ranges Table WifeTables Columns (Name Type[ValueRange]) A1 A2Wife A1 char(11) A2 char(11) penelope christopherHusband B1 char(11) B2 char(11) christine andrewMother C1 char(11) C2 char(11) margaret arthurFather D1 char(11) D2 char(11) victoria jamesDaughter E1 char(11) E2 char(11) jennifer charlesSon F1 char(11) F2 char(11) maria robertoBrother G1 char(11) G2 char(11) francesca pierroSister H1 char(11) H2 char(11) gina emilioAunt I1 char(11) I2 char(11) lucia marcoUncle J1 char(11) J2 char(11) angela tomasoNiece K1 char(11) K2 char(11)Nephew L1 char(11) L2 char(11)Figure 12: The family tree database(with length up to 3) against the database. The system has found the de�nitions of all the twelve conceptsthat are expected, and many other concepts as well. Some of those additional concepts, 41 patterns, aretrue in general, such as the following:husband(X2; X1)! wife(X1 ; X2) [1.0, 1.0]brother(X66; X65); niece(X65; X78)! nephew(X66; X78) [0.22, 1.0]daughter(X56; X57)brother(X57; X60)! son(X56; X60) [0.33, 1.0]Others (about 12 of them) are only true for this particular databases. For example,brother(X63; X64)! sister(X64; X63) [1.0, 1.0]is true here because all the families in the database have siblings of opposite gender.8.3 A Real-World Logistic DatabaseThis real-world logistic database has 104 tables. The largest table has 54 columns and 72,894 rows, and anaverage table has 16.37 columns and 5533.42 rows. Since the data in this database are collected directly fromreal-world applications, they contain noise and errors. To get a feeling of how our system would perform onsuch a real-world database, we have selected the following four tables: Table7, which has 18 columns and932 rows, TableSum, 16 columns and 45,207 rows, TableDAF, 11 columns and 32,866 rows, and TableUIC,14 columns and 766 rows.An application the method described in this paper to these four tables (with the threshold for overlapset to 0.0) has found 10 pairs of columns that are signi�cantly connected in about 56 minutes of real timeon a HP730 machine. Out of these ten connections, 37 cycles have been discovered and three metapatterns(of length 2, 3 and 4) are constructed. This step took less than 2 minutes of real time. Execution of thesemetapatterns (the average execution time for an instantiated pattern is about 20 minutes in real time) hasrevealed many interesting patterns, including, for example, the following two:Table7(NI,IU), TableUIC(IU,DAC) ! TableSum(NI,DAC)Table7(NI,IU), TableDAF(IU,DAC) ! TableSum(NI,DAC)20



The �rst pattern was known to us because it was suggested by an expert in order to provide a mappingfrom the feature IU of the objects in Table7 to the feature DAC of the objects in TableSum. The secondpattern, however, comes as a surprise, and in fact it provides an alternative (through TableDAF instead ofTableUIC) and more reliable mapping between Table7.IU and TableSum.DAC. This pattern turns out to bevery useful in integrating the information in the database to a domain model that is used by informationmediator. It provides the crucial mapping between the set of objects in Table7 and their superset in Table-Sum. Note that other experiments in this database are still in progress, but we are quite encouraged by theresults obtained so far.9 Conclusions and Future ResearchThis paper has presented an approach to combine a metapattern generator with an existing human-directeddiscovery loop in order to build an integrated data mining system that can automatically provide usefulfeedback and interaction for human users. Experimental results have shown that with this approach anintegrated data mining system can become both interactive and autonomous.The most signi�cant contribution of this work is the notion of metapatterns and its role in automaticallyexploiting the interdependencies between induction, deduction, and human guidance. Since metapatternsare a general mechanism, we expect researchers and developers in data mining to use them to integrate theirfavorite deductive and inductive techniques with human guidance. Using this technology, future discoverysystems can discover higher quality knowledge in a much more e�cient and focused manner, they canbe more productive and easier to use (i.e., users are not required to have speci�c knowledge about theunderlying techniques of induction and deduction), and the results of the discovered knowledge will be morecomprehensible to humans.The automated discovery loop also provides an algorithm that can learn relational patterns directly fromdatabases without humans to label the data as positive and negative for some given target concepts. Thisnew learning algorithm advances the state-of-art of relation-based concept learning from raw data in severalrespects. Humans will not need to specify which hypotheses and examples to learn; nor will it be necessaryto preclassify the items in databases as positive or negative. Furthermore, just like the latest developmentsin this �eld (see for example, [11]), our patterns have estimated statistical signi�cance for re
ecting thecharacteristics of the data (such as exceptions and noise); and our mechanism has built-in connections toreal databases and can accept human guidance interactively during the discovery process.This research has also revealed several important directions for future research. We would like to conductmore theoretical analysis and practical experiments for our unsupervised relational learning algorithm. Wealso like to investigate more constraints, in addition to those from the schema, the value ranges, and thepreviously learned patterns, on how to control the search. Constraints used by FOCL, such as multipleargument constraints and partial operational concept de�nitions, can be used as a start point. Furthermore,21
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