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The Continuous Media File System, CMFS, supports real-time storage and retrieval of continu-
ous media data (digital audio and video) on disk. CMFS clients read or write files in ‘‘sessions’’,
each with a guaranteed minimum data rate. Multiple sessions, perhaps with different rates, and
non-real-time access can proceed concurrently. CMFS addresses several interrelated design
issues: real-time semantics of sessions, disk layout, acceptance test for new sessions, and disk
scheduling policy. We use simulation to compare different design choices.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File System Management −
access methods, file organization; D.4.8 [Operating Systems]: Organization and Design − real-
time systems

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Multimedia, disk scheduling
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1. INTRODUCTION

Current disk drives have raw data rates of 5 to 10 million bits per second (Mbps) or more.
Such rates suffice for many forms of digital audio and motion video (continuous media, or CM)
data: audio data rates are from 8 Kbps to 1.4 Mbps, while compressed video ranges from one to
several Mbps. However, when a disk is accessed via a general-purpose file system, the data rates
seen by clients are generally lower and may vary unpredictably.

We have developed a Continuous Media File System (CMFS) whose clients read and write
files in ‘‘sessions’’, each with a guaranteed minimum data rate. Multiple sessions, perhaps with
different data rates, can coexist. CMFS can handle non-real-time traffic concurrently with these
real-time sessions.
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To provide data rate guarantees, CMFS addresses the following interrelated issues:

g Real-time semantics: The CMFS client interface, described in Section 2, has flexible but
well-defined real-time semantics.

g Disk layout: Section 4 gives the CMFS assumptions about disk layout.

g Acceptance test: Section 5 describes how CMFS determines if a new session can be
accommodated.

g Disk head scheduling: Several alternative policies for ordering disk read and write opera-
tions are discussed in Sections 6 and 7.

Several broad classes of CM data servers can be envisioned: workstation file systems that
handle voice mail messages as well as other data; network-accessible archives of data resources
(lectures, hypermedia documents, etc.) for research and education; and, with the advent of B-
ISDN networks, commercial information services offering movies, news, and music to hundreds
or thousands of concurrent clients. High-level issues such as security, naming and indexing, and
file structuring differ among these classes; we do not deal with these issues here. However, there
is a common need to store and retrieve data streams with predictable real-time performance; thus
the concepts and techniques of CMFS apply to each class.

CMFS is meant to serve as part of a distributed system that handles integrated audio and
video. End-to-end performance guarantees cannot, of course, be achieved by disk scheduling
alone. CMFS conforms to the ‘‘meta-scheduling’’ model [2], which provides a mechanism for
making such guarantees. The role of CMFS in this larger context is discussed in Section 3.

2. CLIENT INTERFACE

CMFS clients access real-time files in sessions. Each session has a FIFO buffer for data
transfer between the client and CMFS. For concreteness, assume that CMFS is part of an OS ker-
nel, a client is a kernel process, and FIFOs are circular buffers in physical memory. Alternatives
will be discussed in Section 3.1.

2.1. The Semantics of Sessions

The flow of data in a session is not necessarily smooth or periodic. Instead, session seman-
tics are defined in terms of a ‘‘logical clock’’ that runs at a fixed rate through the FIFO, stopping
if it catches up to the client’s position. CMFS promises to stay ahead of the logical clock by a
given positive amount (the ‘‘cushion’’). These semantics allow CMFS to handle variable-rate
files and other non-uniform access in a simple way. Because CMFS is guided by client behavior,
it need not know about data timestamps or file internals.

A session is created using

ID = request_session(
int direction, /* READ or WRITE */
FILE_ID name,
int offset,
FIFO* buffer,
TIME cushion,
int rate);

start_clock(ID);

If direction is READ, request_session() requests a session in which the given file is
read sequentially starting from the given offset (henceforth assumed to be zero). If the session
cannot be accepted, an error code is returned. Otherwise, a session is established and its ID is
returned. Start_clock() starts the session’s logical clock; the client can remove up to
cushion amount of data before calling this. The appropriate value for cushion depends on
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the client’s maximum delay in handling data (see Section 3.2). The client is notified (via an RPC
or exception) when the end of the file has been reached. CMFS provides a seek() operation
that flushes data currently in the FIFO and repositions the read or write point.

To describe the semantics of read sessions more formally, we use the following notation
(see Figure 1a).

R : the rate argument to request_session().
Y
h
: the cushion argument to request_session().

tstart : the time when start_clock() is called.
P (t ): the index of the next byte to be put into the FIFO by CMFS at time t .
G (t ): the index of the next byte to be removed from the FIFO by the client at time t .
C (t ): the value of the logical clock at time t .
B : the size of the FIFO buffer, in bytes.

The logical clock C (t ) is zero for t = tstart , and C (t ) increases at rate R whenever
C (t ) < G (t ). The following ‘‘Read Session Axioms’’ must hold for all t ≥ tstart :

(1)P (t ) − G (t ) ≤ B

(2)P (t ) − C (t ) ≥ Y
h
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Figure 1: The semantics of read and write sessions are described in terms of a ‘‘put pointer’’
P (t ), a ‘‘get pointer’’ G (t ), and a logical clock C (t ). The shaded rectangles represent data in the
FIFO.
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(3)G (t ) ≤ P (t )

These conditions say that CMFS does not overflow the FIFO, CMFS allows the client to read
ahead of the logical clock by up to Y

h
bytes, and the client does not read beyond the write point.

CMFS therefore provides a guaranteed minimum data rate, but only as long as the client keeps up
with its reading. There is no upper bound on the actual data rate; the client and CMFS can in
principle work arbitrarily far ahead of the logical clock.

In a write session, the client transfers data into the FIFO buffer and CMFS moves data from
the buffer to disk. We describe the semantics of write sessions using the same notation as above.
In this case, P (t ) is the index of the next byte to be inserted in the FIFO by the client, and G (t ) is
the index of the next byte to be removed by CMFS. The logical clock C (t ) increases at rate R
whenever C (t ) < P (t ). The following ‘‘Write Session Axioms’’ must hold for all t ≥ tstart (see
Figure 1b):

(4)P (t ) − G (t ) ≤ B

(5)C (t ) − G (t ) ≤ B − Y
h

(6)G (t ) ≤ P (t )

These conditions say that the client does not overflow the FIFO, that CMFS removes data from
the FIFO fast enough so that the client can always write ahead of the logical clock by at least Y

h
,

and that CMFS does not read beyond the write point.

2.2. File Creation and Non-Real-Time Access

CMFS supports both real-time and non-real-time files. A real-time file is created using

create_realtime_file(
BOOLEAN expandable,
int size,
int max_rate);

expandable indicates whether the file can be dynamically expanded. If not, size gives its
(fixed) size. max_rate is the maximum data rate (bytes per second) at which the file is to be
read or written. CMFS rejects the creation request if it lacks disk space or if max_rate is too
high.

Non-real-time operations may be performed on either type of file. CMFS provides two
non-real-time service classes: interactive and background. Interactive access is optimized for fast
response, background for high throughput. There are no performance guarantees for non-real-
time operations.

2.3. The Symmetry of Reading and Writing

In describing session acceptance and scheduling algorithms, the redundancy of treating read
and write sessions separately can be avoided by observing the following symmetry between read-
ing and writing. Suppose a write session SW has fixed parameters tstart , B , Y

h
, and R and time-

varying parameters CW (t ), PW (t ), GW (t ). Consider an (imaginary) read session SR having the
same tstart , B , Y

h
and R parameters, and for which

(7)GR (t ) = PW (t )

(8)PR (t ) = GW (t ) + B

(see Figure 2). Each disk block written by CMFS in SW advances PW , and thus corresponds to a
disk block read by CMFS in SR .
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in file
byte offset

PR (t )GR (t )CR (t )
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(CMFS read) (client write)

a) write session
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(client read) (CMFS write)
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Figure 2: By interchanging empty/full and read/write, a write session (a) is transformed into a
read session (b) that is equivalent with respect to scheduling.
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Claim 1. Suppose SW is a write session, and SR is defined as above. Then CR (t ) = CW (t ) for
all t ≥ tstart , and SR satisfies the Read Session Axioms (Eqs. 1, 2, and 3) if and only if SW satisfies
the Write Session Axioms (Eqs. 4, 5, and 6).

Proof. When G (t ) is substituted for P (t ) in the definition of CW (t ), the result defines CR (t ).
Thus the logical clock advances in SR exactly when it advances in SW , and at the same rate, so
CW (t ) = CR (t ). The equivalence of the Read and Write axioms then follows from substituting
Eqs. 7 and 8 in Eqs. 1 and 2. `

So, from the point of view of scheduling in CMFS, reading and writing are essentially
equivalent. The main difference is the initial condition: an empty buffer for a write session
corresponds to a full buffer for a read session. In describing CMFS’s algorithms for scheduling
and session acceptance, we will refer only to read sessions.

2.4. Using the CMFS Interface

An idealized client might read 1 byte from the FIFO every 1/R seconds, beginning at the
moment of session acceptance. In general, however, this uniformity is neither necessary nor
desirable. For example: 1) data may be grouped into large chunks (for example, video frames)
that are needed at a single moment; 2) data may have long-term rate variation (perhaps because of
variable-rate compression); 3) clients may delay initial I/O to synchronize multiple sessions; 4)
clients may pause and resume I/O during sessions; 5) clients may ‘‘work ahead’’, filling up inter-
mediate buffers to improve overall performance.

The CMFS interface accommodates these requirements. To show this, we start by defining
a notion of temporal data with variable but bounded rate.

Definition: A bounded-rate file F has parameters R and E , and the i th byte of F has a
timestamp T (i ) ≥ 0 such that T (i ) ≤ T ( j ) for i < j , and

(9)i − j ≤ R (T (i ) − T ( j )) + E
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for all i > j (see Figure 3). In other words, the amount of data in a time interval of length T is at
most RT + E . (In a digital video file, for example, R is the maximum long-term data rate, and E
is the maximum number of bytes per frame.) The timestamps may be explicit (embedded in the
data) or implicit.

Definition: Suppose a client reads a bounded-rate file F . We say that the file is read in real
time starting at t 0 with buffer size N if 1) byte i is read (i.e., removed from the FIFO) before
t 0 + T (i ) and 2) at any time t , no more than N bytes i such that T (i ) > t − t 0 have been read.

Intuitively, this means that the client reads the file fast enough to get the data on time, but
slow enough so that only N bytes of additional buffer space are needed. The CMFS interface
allows a client to read a bounded-rate file in real time using limited buffer space:

Claim 2. Suppose a client creates a session reading a bounded-rate file F with parameters
R and E , and the session begins at time 0. Then it is possible for the client to read F in real time
starting at E /R with buffer size E .

The proof is given in an Appendix.

The implicit flow control provided by the CMFS interface and can accomplish other goals
as well:

g A client can pause a session by simply stopping the removal of data from the FIFO; the log-
ical clock will stop soon thereafter. Data rate and buffer-requirement guarantees will
remain valid after the client resumes reading. (The pause/resume is equivalent to shifting
the timestamps of the remaining data.)

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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Figure 3: A bounded-rate file contains timestamped data. This example represents a file of 30
frames/second video data with a varying number of bytes per frame; each frame is shown as a
vertical bar. The file has parameters R and E ; the number of bytes with timestamps in an interval
of length T cannot exceed TR + E , as shown.
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g Suppose a client plays several files, transmitted via network connections from different
CMFS servers, in synchrony on a single workstation. The I/O server on the workstation
handles the synchronization; it begins output only when sufficient data has been received on
each connection (as done, for example, by the ACME server [3]). CMFS handles this case
with no client intervention: logical clocks pause during the initial synchronization period,
and resume thereafter.

g The client can, if the hardware is fast enough, read arbitrarily far ahead of the logical clock.
This ‘‘workahead’’ data can then be buffered (in distributed applications, the buffers may
be spread across many nodes), protecting against playback glitches and allowing improved
system response to transient workload.

3. SYSTEM INTEGRATION ISSUES

3.1. Implementation Alternatives

Our implementation of CMFS runs as a user-level process on UNIX, accesses a SCSI disk
via the UNIX raw disk interface, and communicates with clients via TCP connections. Other
architectures, however, are possible (see Figure 4). For example, CMFS could be implemented at
either kernel or user level. The client control interface could be provided either as system calls
(for local clients only) or by remote procedure call.

The client data interface (the mechanism by which data is removed from a read session’s
FIFO) can take several forms. A general approach is to have data sent out on a flow-controlled
network connection, established as part of the request_session() call. Data is removed
from the FIFO whenever the protocol allows it. If the client is a user-level process on the same
machine as CMFS, the FIFO could be a shared-memory buffer or ‘‘memory-mapped stream’’ [6].
Finally, if the data is consumed by an I/O device on the same machine as CMFS, the FIFO might
reside in kernel memory, accessed directly by the I/O device interrupt handler.

These alternatives have different performance implications. For example, a kernel-level
implementation might have lower CPU scheduling overhead (most work could be done at the
interrupt level) and improved control of physical memory. However, the issues addressed by
CMFS (disk scheduling, buffer allocation, etc.) apply regardless of the alternative chosen.

3.2. End-to-End Scheduling

In typical applications, CM data is handled by many shared hardware ‘‘resources’’: disk,
CPU, network, bus, memory, etc. To provide applications with deterministic end-to-end perfor-
mance, we must integrate the scheduling of all these resources. CMFS is designed to serve as
part of such a ‘‘meta-scheduling’’ scheme, the CM-resource model [2]. In this scheme, each
resource can be reserved in ‘‘sessions’’ with fixed workload and delay bounds. The parameteri-
zation of workload and delay lets resources ‘‘work ahead’’ on real-time streams so they can
response quickly to non-real-time workload.

A CMFS session’s ‘‘cushion’’ parameter Y
h

allows the adjacent resource (typically the CPU)
to have looser delay bounds. For example, suppose a client runs on the same host as CMFS (as in
Figure 4c) and does CPU processing on the data before sending it to the next resource (say, a net-
work). The client determines an upper bound on the CPU time per unit of data it requires, and
reserves a session with the CPU resource. This session has a delay bound, say Y . It is easy to
show the following:

Claim 3. Suppose, in the above situation, that the client successfully creates a CMFS ses-
sion with cushion Y , starts the session when it has processed Y amount of data (say, at time 0),
and thereafter processes data without (voluntarily) pausing. Then at all times t ≥ 0, the client has
processed at least Rt bytes of data (R is the session data rate).
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Figure 4: The CMFS prototype is a user-level process that communicates with its clients over
network connections (a). Alternatively, it could be implemented in an OS kernel, with client data
access by system calls (b), memory-mapped streams (c), or device interrupts (d).
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(Note that this would not hold if the cushion were less than the CPU delay bound, because it
would then be possible for the logical clock to stop.) Claim 3 can be generalized to bounded-rate
files. This provides a more useful version of Claim 2, which makes the unrealistic assumption
that client CPU processing is instantaneous and can be scheduled at precise instants.

4. DISK LAYOUT ASSUMPTIONS

We assume that the CMFS uses a single-spindle disk drive; disk operations are done
sequentially. The disk is read and written in blocks of fixed size (a multiple of the hardware sec-
tor size). The CMFS reservation and scheduling algorithms do not mandate a particular disk lay-
out. Instead, we assume that the layout allows the following ‘‘bounding functions’’ UF and VF to
be obtained:

(1) For a given file F , UF (n ) is an upper bound on the time to read n logically contiguous
blocks of F (including all seek and rotation time), independent of the position of the disk
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head and the starting block number to be read.

(2) VF (i , n ) is an upper bound on the time needed to read the n blocks of file F starting at
block i .

The bounds need not be tight; slackness in the bounds may, however, cause sessions to be
rejected unnecessarily.

The functions U and V should take into account sector interleaving, interrupt-handling
latency, the CPU time used by CMFS itself, features (such as track buffering) of the disk con-
troller, and bad sectors detected when the disk is initialized.

4.1. Examples of Disk Layouts

Our CMFS prototype uses contiguous allocation. Each file begins at some point within a
cylinder, filling the remainder of that cylinder, zero or more adjacent cylinders, and part of a final
cylinder. The number of sectors per block is a fixed parameter. Ignoring CPU overhead and
other factors, bounds functions for this layout are easy to derive. We assume Lseek_min and Lseek_max

are bounds on the 1-track seek time and the worst-case seek time respectively, Lblock is the time to
read one block, Lrotation is the rotation time, and N is the number of blocks per cylinder. Further-
more, we assume that the controller does track-buffering; it reads a track into a local buffer
immediately after seeking to it. Hence, if an entire track is read, rotational latency is negligible
regardless of the order in which the sectors are read. Possible bounds functions are then

(10)UF (n ) = Lseek_max + nLblock +
R
J
JN

nhh
H
J
J
Lseek_min + 2Lrotation

and

VF (i , n ) = Lseek_max + nLblock + (k −1)Lseek_min +
N
jhhLrotation

where k is the number of cylinders storing the n blocks of F starting at offset i , and j is the
number of blocks not in F in the first and last of these cylinders. To account for CPU overhead,
it would be necessary to leave a gap between blocks (perhaps by interleaving them) and to
modify U and V accordingly.

A contiguous layout policy is feasible for read-only file systems or if disk space is abun-
dant. For more flexibility, a variant of the 4.2BSD UNIX file system layout [8] could be used. A
real-time file might consist of clusters of n contiguous blocks, with every sequence of k clusters
constrained to a single cylinder group. n and k are per-file parameters; they are related to the
max_rate parameter of the file. Bounds functions U and V can be computed from n , k , the
size of a cylinder group, the disk parameters, and the overhead of reading and writing allocation
map and index blocks. Allocation and compaction strategies would pose a complex set of issues;
we do not discuss them here.

5. ACCEPTANCE TEST

CMFS can accept a new session S only if its data rate requirements, together with those of
existing sessions, can be guaranteed. For this, a sufficient condition is the existence of a static
schedule (that cyclically reads fixed numbers of blocks of each session) satisfying the rate
requirements of all session under worst-case assumptions, and for which enough buffer space is
available.

In this section we give an algorithm for deciding whether such a schedule exists. The algo-
rithm constructs the shortest such schedule; this minimal static schedule also plays an important
role in dynamic scheduling (see Section 6).
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5.1. Properties of Static Schedules

Suppose that sessions S 1
. . . Sn read files F 1

. . . Fn at rates R 1
. . . Rn . An operation set φ

assigns to each Si a positive integer Mi . CMFS performs an operation set by seeking to the next
block of file Fi , reading Mi blocks of the file, and doing this for every session Si (the order of
operations is not specified). From Section 4,

L (i ) = UFi
(Mi )

(11)L (φ) =
i =1
Σ
n

UFi
(Mi )

are upper bounds on the elapsed time of Si ’s operation and φ as a whole, respectively.

The data read in φ ‘‘sustains’’ session i for a period
Ri

Mi Ahhhhh , where A is the block size in

bytes; we denote this period Di (φ). D (φ), the period for which the data read in φ sustains all the
sessions, is then

1≤ i ≤ n
min Di (φ).

If the data read in φ ‘‘lasts longer’’ than the worst-case time it takes to perform φ, we call it
a workahead-augmenting set (WAS). This holds if L (φ) < D (φ), or equivalently

(12)Mi A > Ri L (φ)

for all i .

If the amount of data read for each session in an operation set φ fits in the corresponding
FIFO, we say that φ is feasible. This holds if, for all i ,

(13)(Mi + 1)A + Y
h

i ≤ Bi

where Bi is the size of the FIFO buffer used by Si and Y
h

i is the cushion parameter of Si (Section
2.1). This inequality reflects the worst case in which a fractional block is already buffered and
the client has used none of its cushion.

An operation sequence Φ is a pair (π, φ), where π is a permutation of 1 . . . n and φ is an
operation set. CMFS performs an operation sequence by doing the operations in φ in the order
π(1) . . . π(n ). Φ is called workahead-augmenting if φ is workahead-augmenting; likewise Φ is
feasible if φ is feasible.

At time t , the duration of data buffered for session Si , above and beyond the client’s
cushion Y

h
, is given by (P (t ) − C (t ) − Y

h
)/R , where P , C , Y

h
and R are the parameters for Si . We

call this the ‘‘workahead’’ of Si and denote it by Wi (t ). We say that Si starves if Wi becomes
negative. The file system state W (t ) at time t is the vector <W 1(t ) . . . Wn (t )>.

Let Φ be an operation sequence. Suppose that enough data is buffered so that, if Φ is per-
formed immediately, no session starves before its operation is completed. We then say that the
state is safe relative to Φ. This holds if

W π( j )(t ) ≥
i =1
Σ

j

L (π(i ))

for all j (recall that L ( j ) is the worst-case time needed for S j ’s operation).

The following two claims show that CMFS can accept a set of session if there is a feasible
workahead-augmenting sequence. The order π is not important; for simplicity we assume it is the
identity permutation.

Claim 4. If Φ is workahead-augmenting and feasible, then there is a system state that is
safe relative to Φ.
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Proof. Let W be the state in which all buffers are full. Then for all j we have

W j (t ) = (P (t ) − C (t ) − Y
h

)/R

= (B j − Y
h

)/R

> (M j A )/R

> L (Φ)

≥
i =1
Σ

j

L (i )

so W is safe relative to Φ (the final three steps use Eqs. 13, 12, and 11). `

Claim 5. Suppose that there is a feasible workahead-augmenting operation sequence Φ,
and assume that at time t 0 the state W is safe relative to Φ. Then the CMFS can satisfy the Read
Session Axioms (Eqs. 1 and 2) for all i and t ≥ t 0.

Proof. We prove this by defining a disk scheduling policy, called the Static policy, that
satisfies the axioms. The policy is as follows. Repeatedly apply the schedule given by Φ, with
the following exception: if P (t ) + A − G (t ) > Bi at the point of starting a block read for Si , then
immediately skip to the next session (since reading the block could cause a buffer overflow). It is
clear that this policy preserves Eq. 1.

Consider a particular session Sk during one ‘‘cycle’’ of Φ, starting at time t = 0 (see Figure
5). Let tD denote the time at which Sk ’s operation ends. Eq. 2 holds during [0, tD ] since

tD ≤
i =1
Σ
k

L (i ) ≤ Wk (0)

and C (t ) advances by at most R bytes/second. The operation for Sk either reads the full amount
or is truncated; in either case

(14)Wk (tD ) > L (Φ)

since Φ is workahead-augmenting. Let tE denote the time at which the cycle ends. Then

(15)tE − tD ≤
i =k +1
Σ
n

L (i )

Combining Eq. 14, Eq. 15, and the clock rate bound R , we see that Wk remains positive during
[tD , tE ], and moreover

(16)Wk (tE ) ≥
i =1
Σ
k

L (i )

Therefore no starvation occurs during the cycle, and (by Eq. 16) the state W at the end of the
cycle remains safe relative to Φ. Hence the Static scheduling policy maintains the Read Session
Axioms for all sessions. `

5.2. The Minimal Feasible WAS

Claim 5 shows that CMFS can satisfy the data rates of a set of sessions if there is a feasible
WAS. We now describe an algorithm to compute the minimal feasible WAS φ

h
(the feasible WAS

for which L (φ) is least). Clearly, a minimal feasible WAS exists if and only if a feasible WAS
exists.

Suppose that sessions S 1
. . . Sn are given. Let Di be the ‘‘duration’’ of one block of data for

Si , given by A /Ri . Let {t 0 < t 1 < . . . } be the set of numbers of the form kDi for k ≥ 0 and i ≥ 0
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Figure 5: Diagram for the proof of Claim 5, showing the workahead Wk of a session Sk during
one cycle of the Static scheduling policy. At the start of the cycle, Sk has enough workahead to
last until time tD , when its operation is finished. The amount of data read suffices for at least
L (φ), which exceeds the length tE of the cycle. Therefore Wk is always positive; i.e., Sk never
‘‘starves’’.
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(see Figure 6). Let Ii denote the interval (ti , ti +1]. Let φi denote the operation set
< R
JR1ti

H
J

. . . R
JRn ti

H
J>. Note that φi +1 differs from φi by the addition of 1 block to all sessions whose

data periods divide ti +1; hence the sequence of φi is easy to compute. Note also that
L (φi ) < L (φi +1) for all i .

Claim 6. If φ is an operation set such that D (φ) ∈ Ii , then L (φ) ≥ L (φi ).

Proof. Any sequence φ for which D (φ) > ti must read at least R
Jti R j

H
Jblocks for each session

j , and hence L (φ) ≥ L (φi ). `

Claim 7. If there is a feasible WAS φ such that D (φ) ∈ Ii , then φi is feasible.

Proof. φ must read at least as many blocks for each session as does φi . Therefore, since φ is
feasible, so is φi . `

Claim 8. The following algorithm computes the minimal WAS:

(1) Let φ0 = <1, . . . , 1> (this is the minimal operation set for which D (φ) ∈ I 0).

(2) If φi is infeasible (i.e., there is no allocation < B 1
. . . Bn > of buffer space to client

FIFOs such that Mi A + Y
h

i ≤ Bi for all i ) stop; there is no feasible WAS.

(3) If L (φi ) ≤ D (φi ) stop; φi is the minimal feasible WAS.

(4) Compute φi +1 and go to (2).

Proof. Suppose the algorithm stops in step 3, returning a WAS in I j . Let φ be the minimal
WAS, and let i be such that D (φ) ∈ Ii . It is not possible that i < j , since then φi is feasible (Claim
7) and workahead-augmenting, so the algorithm would have terminated at iteration i . It is also
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D 1
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. . .
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S 3 time

Figure 6: A block of data for session Si has a ‘‘duration’’ Di that depends on the data rate of Si .
The set of all multiples of these periods defines a set of intervals Ii . Within each interval there is
a unique minimal-length operation set φi . By enumerating the φi we can find the minimal feasi-
ble WAS.
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not possible that i > j , since then L (φ) ≥ L (φi ) > L (φj ), contradicting the minimality of L (φ).
Therefore i =j and (from Claim 6) we must have L (φi ) = L (φ), so φi is the minimal WAS.

Finally, suppose that the algorithm terminates in step 2 for some i . Suppose that a feasible
WAS φ exists, with D (φ) ∈ I j . By the above arguments i ≤ j . But then φ reads at least as many
blocks for each session as does φi , so the buffer allocation feasible for φ is feasible for φi , which
is a contradiction. `

5.3. Buffer Space Allotment

Suppose that a fixed amount B of buffer space is available for CMFS client FIFOs. How
should this space be divided among the various clients? CMFS performs best when all sessions
can ‘‘work ahead’’ by about the same time (see Section 7). In other words, the buffer space allo-
cated to a session, beyond that needed for the client’s cushion Y

h
, should be roughly proportional

to the data rate R .

CMFS therefore uses following policy. Let Y =
i =1
Σ
n

Y
h

i and R =
i =1
Σ
n

Ri . Session S j is allocated

(17)Y
h

j +
R

(B −Y )R jhhhhhhhhh

bytes. This allocation is rounded up, if needed, to a multiple of the memory-allocation block
size.
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6. DISK SCHEDULING POLICY

On completion of each disk block I/O, CMFS decides which disk block to read or write
next, and issues the appropriate command (seek, read, or write) to the disk device driver. The
algorithm for this decision constitutes a disk scheduling policy. Such a policy must prevent star-
vation of current sessions, and must delay the return of the request_session() call for a
newly accepted session until it is safe to do so. It should also handle non-real-time workload
efficiently. Policies for real-time CPU scheduling, such as earliest-deadline-first [7], are not
immediately relevant because of seeks. In this section we describe several possible disk schedul-
ing policies. Some of these policies are defined in terms of slack time, which we will now define.

6.1. Slack Time

If, at a particular time, enough data is buffered for all sessions, CMFS is free to do non-
real-time operations or workahead for real-time sessions. The amount of this ‘‘slack time’’,
denoted H , is computed as follows. Suppose that the minimal WAS φ

h
takes worst-case time

L (1) + . . . + L (n ), where L (i ) = UFi
(Mi ). Let πbe a permutation of 1 . . . n , and let Φ be the opera-

tion sequence (π, φ
h

). If Φ is performed immediately, the workahead of session j will not fall

below H j = W j −
i =1
Σ

j

L (π(i )) (H j is called the slack time of session j). CMFS can safely defer start-

ing Φ for a period of H =
i =1
min

n

(Hi ).

Claim 9. Let π
h

be the ordering of sessions by increasing value of workahead Wi . Then,
among all permutations π, π

h
gives the maximal value of H .

Proof. Consider a permutation π in which Wi is not increasing; in particular suppose
Wi > W j , where π(i ) + 1 = π( j ). Let B and C denote the slack times of the two sessions. If we
reverse the order of the two sessions in π, then for the new slack times D and E we have C < D
and C < E (see Figure 7). The slack times of other sessions remain unchanged. Hence the
minimum of the slack times is not decreased by reversing the order. `

We therefore consider only the increasing-workahead ordering π
h

of sessions. Let Φ
hh

denote
(π
h

, φ
h

), and let Hi and H denote the corresponding slack times at a particular moment. It is impor-
tant to note that H < 0 does not imply that starvation has occurred or will occur. H is based on the
pessimistic assumption that an inter-file seek is needed prior to every operation in the WAS. For
example, if H < 0 during of a multi-block file operation, CMFS is compelled to finish the current
operation; starting a new WAS would incur an inter-file seek.

6.2. Real-Time Scheduling Policies

We now describe several possible disk scheduling policies. These policies all avoid starva-
tion; their relative performance is discussed in Section 7.

(1) The Static/Minimal policy (a special case of the Static policy described in Section 5)
simply repeats the minimal WAS.

(2) The Greedy policy does the longest possible read for each session. At each iteration, it
computes the slack time H , finds the session Si with smallest workahead, and reads
blocks for Si for a period of H + L (i ); in other words, it devotes the entire slack time to
reading ahead on Si .

(3) The Cyclical Plan policy differs from Greedy in that it tries to distribute current slack
time among the sessions in a way that maximizes future slack time. It augments the
minimal WAS Φ

hh
with H seconds of additional reads (these reads are done, for each ses-

sion Si , immediately after the read for Si in Φ
hh

). The policy distributes workahead by
identifying the ‘‘bottleneck session’’ (that for which Hi is smallest) and schedules an
extra block for it, updating Hi and H ; this is repeated until H is exhausted. The resulting
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Figure 7: Slack time is maximized by ordering sessions by increasing workahead. Suppose a se-
quence has two sessions Si and S j that are not in this order. The bold lines represent their worka-
heads W , and their slack times are B and C as shown (A denotes the maximum time needed for
operations preceding i ; Li is the time bound for the operation of session Si ). By reversing the
order of the two sessions, the slack times are D and E . Simple algebra shows that C < D and
C < E . Global slack time is the minimum of the session slack times, so the result follows.
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schedule determines the number for blocks read for the least-workahead session; when
this read completes, the procedure is repeated.

In both the Greedy and Cyclical Plan policies, the least-workahead session is serviced
immediately. Therefore the value of H used by these policies can be computed as the minimum
of the slack times of all sessions except the least-workahead session, yielding Aggressive ver-
sions of each policy. All policies skip to the next session when a buffer size limit is reached. If
at some point all buffers are full, no operation is done; when a client subsequently removes
sufficient data from a FIFO, the policy is restarted.

Greedy and Static/Minimal have low CPU overhead: in our prototype, on a 15 MIPS works-
tation and with three sessions, they use about 200 microseconds per scheduling decision.
Because Cyclical Plan builds its schedule one block at a time, it uses CPU time proportional to
buffer space on each transition between sessions. This limits its utility.

6.3. Non-Real-Time Operations

A non-real-time operation N with worst-case latency L can safely be started if L ≤ H . How-
ever, the policy of servicing non-real-time operations whenever it is safe to do so may tend to
keep H low. This forces the scheduler to do short real-time operations (close to the minimal
WAS), causing the system to run inefficiently. It may be preferable to do non-real-time opera-
tions only when H exceeds some nonzero threshold.

To avoid the seek overhead of rapidly alternating between real-time and non-real-time
operations, CMFS uses the following slack time hysteresis policy for non-real-time workload. An
interactive operation can be started whenever H ≥ H 2. Initially, interactive operations can be
started if H ≥ H 1; however, if H falls below HI 1 no further interactive operations are started until
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H exceeds HI 2. Similarly, background operations are done within a hysteresis interval [HB 1, HB 2].
No background operation is started if an interactive operation is eligible to start. In Section 7 we
examine the effects of hysteresis, and of the hysteresis parameters, on system performance.

6.4. Session Startup

A newly-accepted session is said to start when its request_session() call returns.
This must occur only when the system state is safe with respect to the new WAS. A special
mechanism is needed for handling this ‘‘startup’’ phase.

Suppose sessions S 1
. . . Sn are currently active, and session Sn +1 has been accepted but not

yet started. Let φn and φn +1 denote the feasible WASs for the sets S 1
. . . Sn and S 1

. . . Sn +1 respec-
tively. Sn +1 is started as follows. CMFS adjusts FIFO buffer sizes according to the procedure
described in Section 5.3. It can shrink a buffer by discarding data from the end of the FIFO if
needed (it must later reread the data from disk). The scheduler then goes into ‘‘startup mode’’
during which its policies are changed as follows:

(1) Non-real-time operations are queued for later execution.

(2) For scheduling purposes, slack time H is computed relative to φn . However, in the Cycli-
cal Plan policy the allocation of slack time for workahead is done relative to φn +1, using a
session ordering in which the new session appears first (however, no I/O for Sn +1 is done
during this phase).

(3) When the system state is safe with respect to φn +1, a read of φn +1(n +1) blocks for Sn +1 is
started. When this read is completed, the system state is ‘‘safe’’ for all n +1 sessions. The
request_session() call for Sn +1 is allowed to return, φn +1 becomes the system’s
WAS, and the system leaves startup mode.

Step (3) can be omitted for write sessions because the equivalent read session starts with a
full buffer (Section 2.3).

7. PERFORMANCE

In this section we study the effects of disk scheduling policies and hardware parameters on
CMFS performance. Our study uses simulation. We chose not to use the ‘‘real I/O’’ version of
CMFS because of the scheduling vagaries of UNIX, the poor performance of its SCSI disk I/O,
and the restriction to our available disk.

We wrote the CMFS prototype so that disk I/O operations can optionally be simulated
rather than performed. The simulator keeps track of the disk head radial and rotational position,
and models latencies realistically. Other actions (e.g., CPU execution) are modeled as instantane-
ous. Unless otherwise stated, the simulations use the Cyclical Plan policy, and assume a disk
with 11.8 Mbps transfer rate and 39 ms worst case seek time. Block size is 512 bytes.

7.1. Number of Concurrent Sessions

Figure 8 shows the maximum number of concurrent sessions accepted by CMFS as a func-
tion of total buffer space. This is shown for two different session data rates: 64 Kbps and 1.4
Mbps. In each graph, curves are given for three different disk types: 39 ms maximum seek time
and 11.8 Mbps transfer rate (CDC Wren V), 35 ms maximum seek time and 8.6 Mbps transfer
rate (CDC Wren III) and, 180 ms maximum seek time and 5.2 Mbps transfer rate (Sony 5.25"
optical disk).

The disk transfer rate imposes an upper bound on the number of concurrent sessions that
can be accepted. Unbounded buffer space is needed as this limit is approached. To reach 90% of
the limit with a Wren V disk requires 4 MB for 1.4 Mbps sessions and 85 MB for 64 Kbps ses-
sions. The efficiency depends on the length of operations in the minimal WAS; 64 Kbps sessions
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require a proportionally longer WAS and therefore more buffer space. When the number of
accepted sessions is fixed, a disk with higher seek time needs a longer minimal WAS and there-
fore more buffer space.

7.2. Performance of Disk Scheduling Policies

Since non-real-time operations can be done only if there is enough slack time, an important
criterion for disk scheduling policies is how quickly they increase slack time. To study this, we
simulated CMFS with three concurrent 1.4 Mbps sessions, no non-real-time traffic, and 8 MB
system buffer size. From the results (Figure 9) we see that

Cyclical Plan performs slightly better than Greedy when slack is low, but Greedy quickly
catches up. Static/Minimal, because it cannot do long operations, performs much worse at higher
slack levels. With appropriate hysteresis values CMFS maintains moderate slack levels during
steady-state operation; thus the dynamic policies are preferable.

7.3. Response Time of Interactive Traffic

To study the effect of real-time traffic on interactive traffic, we simulated a fixed number of
sessions together with interactive requests that read randomly positioned blocks from disk. The
interactive request arrival is Poisson with mean arrival rate λ. We define the response time of an
interactive request as the time from its arrival to the start of the disk operation; the delay of the
operation itself, including the seek, is not included.

The effect of hysteresis parameters is most noticeable under heavy load (otherwise slack
remains high and hysteresis is not exercised). Figure 10 plots mean interactive response time

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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Figure 8: The number of sessions that can be accepted by CMFS depends on the available buffer
space. The disk transfer rate imposes an upper limit on the number of sessions; to reach 90% of
the limit with the 11.8 Mbps disk requires 4 MB of buffer space for 1.4 Mbps sessions and 85
MB for 64 Kbps sessions.
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Figure 9: Disk scheduling policies build up slack at different rates. The Aggressive Cyclical
Plan (solid line), Aggressive Greedy (dotted) and Static/Minimal (dashed) policies are shown
here (the non-aggressive versions, not shown, performed slightly worse).
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against HI 2, for different values of HI 1, under a heavy load. We observe that:

g For fixed HI 1 and increasing HI 2, interactive response time drops steeply and then rises gra-
dually. When HI 1 nearly equals HI 2, interactive response is poor because the system
switches rapidly between real-time and non-real-time operations, causing high seek over-
head. As HI 2 increases, this oscillation becomes less frequent and response improves.
Since interactive requests are queued while slack builds up from HI 1 to HI 2, response
degrades if HI 2 is increased past a certain point. For all HI 1, response is best when HI 2 − HI 1

is about 0.5 seconds.

g When HI 1 is very small (e.g., 0.1 sec in Figure 10), slack builds up slowly from HI 1 to HI 2 so
response is poor. A similar effect is observed if HI 2 exceeds about 0.95Hmax (H max denotes
the upper bound on H imposed by buffer space), since it is difficult to fill all buffers simul-
taneously.
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Figure 10: The effect of the hysteresis limits HI 1 and HI 2 on the mean response time for non-
real-time requests of the interactive class. This experiment was conducted with 2 MB total buffer
(H max is 3.4 seconds), 20 interactive arrivals per second and three 1.4 Mbps sessions.
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Based on these observations, reasonable ‘‘rule of thumb’’ values are HI 1 = H max/3 and
HI 2 − HI 1 = min(H max/3, 0.5).

Figure 11 plots mean interactive response time as a function of arrival rate, for different
values of system buffer size. If interactive arrival rate is low, system slack stays near H max (Fig-
ure 12) and most interactive requests are serviced without waiting for real-time traffic. At higher
arrival rates (in Figure 11, about 5 per second for the 500 KB case and 10 per second for 1 MB),
interactive response degrades because slack sometimes reaches the lower hysteresis limit HI 1, and
interactive requests then are blocked until slack reaches HI 2.

7.4. Throughput of Background Traffic

To estimate the effect of real-time traffic on background traffic throughput, we simulated
three 1.4 Mbps sessions and a single background task that sequentially reads a long,
contiguously-allocated file. We define the background throughput fraction T as the fraction of
residual disk bandwidth (i.e., disk bandwidth not taken up by real-time sessions) used by the
background task. For the same reasons as discussed in Section 7.3, T is low if HB 1 is very small,
HB 2 is close to H max, or HB 2 − HB 1 is small. In this case (since throughput, rather than response
time, is the goal) there is no penalty if HB 2 − HB 1 is large. We found that T was maximized for
(roughly) HB 1 = H max/4 and HB 2 = .9Hmax . Figure 13 plots T (with these hysteresis limits) against
buffer space.
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Figure 11: Mean interactive response time as a function of arrival rate, for different values of to-
tal buffer space. In this experiment there were four concurrent 1.4 Mbps sessions. The hysteresis
limits (0.04, 0.08) and (0.35, 0.65) were used for the 500 KB and 1 MB cases respectively. The
‘‘infinite buffer’’ curve was obtained analytically, modeling the file system as an M/G/1 queue.
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Figure 12: The variation of slack time H in the presence of interactive non-real-time traffic.
Three 1.4 Mbps sessions start at time zero, the system has 2MB of buffer space (H max is 3.4
seconds), and hysteresis limits are HI 1 = 1.0 and HI 2 = 2.0. If the interactive arrival rate is low
(10 per second in this case), H stays near H max. For high arrival rates (20 per second), H oscil-
lates between the hysteresis limits.
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Figure 13: Background throughput as a function of total buffer space, with a real-time workload
of three 1.4 Mbps sessions. As buffer space increases so does HB 2 − HB 1; this allows longer
periods of background I/O, and hence less seek overhead.
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7.5. Session Startup Time

Write sessions can usually be started immediately; see Section 2.3. To study startup time
for read sessions, we ran a simulation in which requests for six sessions arrive at time zero. Fig-
ure 14 shows the start times of the sessions. The difference between successive start times
increase; this is because the workaheads of existing sessions have to be increased to accommo-
date the new minimal WAS, which becomes longer as more sessions are added. Startup times are
on the order of one second, which is similar to the startup time of a consumer VCR. However, it
is too large for applications that require instantaneous response, such as interactive musical per-
formance using sounds stored on disk. This problem can be solved by storing an initial segment
of each sound file in memory.

8. RELATED WORK

Structural issues for multi-media files (sharing, parallel composition, annotations, etc.) have
been addressed in the Xerox Etherphone system [14], the Sun Multimedia File System [13], and
the Northwestern Network Sound System [12]. These projects do not concentrate on perfor-
mance or scheduling issues, and the systems cannot make performance guarantees.

Other projects have addressed performance but without hard guarantees. Abbott gives a
qualitative discussion of disk scheduling for playback of multiple audio tracks [1]. He compares
a ‘‘balanced’’ policy in which read-ahead is divided among sessions, to a shortest-seek-first pol-
icy. His analysis does not, however, provide an acceptance test or performance guarantees.

Park and English [9] describe a system supporting single channel audio playback. Non-
real-time traffic may concurrently access the disk, causing available disk bandwidth to change.
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Figure 14: When six 1.4 Mpbs session requests arrive simultaneously at time zero, their actual
start times are staggered as shown.
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As an alternative to disk bandwidth reservation for the audio channel, they propose changing the
data rate of the channel dynamically, to accommodate non-real-time workload. The high data
rate is chosen if the workahead on the stream is above a fixed threshold. This strategy does not
guarantee a minimum data rate.

Yu et al. [15] discuss the layout of interleaved data streams with different data rates on a
compact disk for guaranteed-performance playback. Their assumptions (single session, fixed
rates, small buffers, no non-real-time traffic) are more restrictive than ours.

Gemmell and Christodoulakis [5] describe a file system supporting multiple audio channel
playback with concurrent non-real-time traffic. Like CMFS, this work provides a basis for hard
performance guarantees. However, it differs from CMFS in several respects. The channels must
have the same (constant) data rate and must start at the same time. The scheduling policy is
static: the system repeatedly applies a single feasible WAS for the audio channels, and reserves
‘‘free’’ time during each operation sequence to service non-real-time traffic. For non-real-time
traffic, this static policy may perform worse than CMFS because 1) CMFS can ‘‘interrupt’’ a
WAS, allowing non-real-time traffic to start immediately, and 2) CMFS can use accumulated sys-
tem slack to handle long bursts of non-real-time traffic.

Rangan and Vin [11] describe a system that combines disk input and display-device output
for multiple data streams. They give expressions for admission control under the assumption that
streams have equal data rates. Their disk scheduling policy is similar to Static/Minimum.

9. CONCLUSION

The Continuous Media File System (CMFS) provides guaranteed-performance read and
write ‘‘sessions’’. Several such sessions can coexist with non-real-time workload on a single
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disk. The central ideas of CMFS include the following:

g Semantics: The CMFS session interface supports a range of client requirements, including
variable-rate data, starting and stopping, synchronization of multiple streams, and client
workahead. The semantics are defined rigorously (Section 2.1), but they include a
‘‘cushion’’ factor Y

h
that provides flexibility in client CPU scheduling.

g Layout: CMFS requires that bounds functions U and V can be obtained (Section 4), but
does not mandate a particular disk layout.

g Session acceptance: To decide if a session request can be accepted, CMFS checks if a feasi-
ble WAS (Section 5.2) exists.

g Disk scheduling: We found that dynamic policies (Greedy and Cyclical Plan) performed
better than the Static/Minimal policy.

g Concurrent non-real-time access: CMFS handles non-real-time as well as real-time file
access; disk space can be dynamically used for either purpose. CMFS uses the slack time
hysteresis policy for scheduling non-real-time access. With appropriate parameters, this
policy allows long non-real-time operations to complete without interruption.

9.1. Refinements and Future Work

The following observations suggest possible improvements to CMFS. First, for a session
Si , the graph of workahead Wi as a function of time is roughly a ‘‘sawtooth’’ function. If we con-
sider two sessions S 1 and S 2 that have opposite phases in the scheduling cycle, then max(W 1 + W 2)
is generally less than max(W 1) + max(W 2). S 1 and S 2 can therefore share buffer space, possibly
improving non-real-time performance or increasing the number of sessions that can be accepted.
Second, the scheduling policy could take disk head position into account in various ways. For
example, it could yield a session ordering that is more efficient than smallest-workahead-first
(Section 6.1). Similarly, the use of a policy such as SCAN [4] for ordering non-real-time opera-
tions could improve their performance.

Although we have presented the CMFS algorithms in the context of a single-spindle disk
drive, they are equally applicable to a disk array in which files are ‘‘striped’’ across multiple
disks [10]. A client-level session could be composed of sessions on multiple disks, with each
disk reserved and scheduled as described here. This could be used to provide sessions with data
rates higher than those of the underlying disk drives. It could improve load-balancing and availa-
bility even for sessions with data rates lower than individual disks.
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APPENDIX

Proof of Claim 2: We will show a client behavior that is consistent with the Read Session
Axioms and that satisfies the above definition of reading a bounded-rate file in real time. Let the
client behave as follows. At time i /R (for each i ≥ 0) the client removes the next byte n from the
FIFO if T (n ) < (i +1)/R . It then waits until time (i +1)/R . Hence in each ‘‘time slot’’ of length 1/R
the client either reads a byte or skips to the next time slot. The clock C (t ) advances during a read
slot and pauses during a skip slot. The client ‘‘works ahead’’ by at most one byte, so (since the
workahead parameter Y

h
of the session is at least one) the Read Session Axioms are obeyed.

To verify the claim, we must first show that each byte n is read no later than T (n ) + E /R .
Suppose otherwise. Then some byte n is read at time j /R with

(18)j /R > T (n ) + E /R

If no skips occurred in slots 0 . . . j then let i = 0; otherwise let i be such that i −1 is the last skip
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slot before j . Let m be the index of the byte read in slot i . Then

(19)T (m ) > i /R

since otherwise m would have been read in slot i −1. Now combining Eqs. 18 and 19 we have

(20)T (n ) − T (m ) < ( j − i − E )/R

Since the client reads in every slot from i to j we have j − i = n − m . Therefore

(21)n − m > (T (n ) − T (m ))R + E

which contradicts the assumption that F is a bounded-rate file.

Finally we must show that at any time t , no more than E bytes i such that T (i ) > t − E /R
have been read. Let i be such that T (i ) > t − E /R . Then, given our specification of client
behavior, byte i must have been read at time t − E /R or later. The client reads at most E bytes in
time E /R , so the claim holds. `


