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Abstract— A number of recent empirical studies of traf-

fic measurements from a variety of working packet net-
works have convincingly demonstrated that actual net-

work traffic is self-.szmdar or long-range dependent in na-

ture (i. e., bursty over a wide range of time scales) – in

sharp contrast to commonly made traffic modeling as-

sumptions. In this paper, we provide a plausible physical

explanation for the occurrence of self-similarity in high-
speed network traffic. Our explanation is based on con-

vergence results for processes that exhibit hagh uariabihty
(i.e., infinite variance) and is supported by detailed sta-

tistical analyses of real-time traffic measurements from

Ethernet LAN’s at the level of individual sources.

Our key mathematical result states that the superpo-

sition of many ON/OFF sources (also known as packet
trams) whose ON-periods and OFF-periods exhibit the
Noah Effect (i. e., have high variability or infinite vari-

ance) produces aggregate network traffic that features

the Joseph E~ect (i.e., is self-similar or long-range de-
pendent). There is, moreover, a simple relation be-

tween the parameters describing the intensities of the

Noah Effect (high variability) and the Joseph Effect (self-

similarity). An extensive statistical analysis of two sets

of high time-resolution traffic measurements from two

Ethernet LAN’s (involving a few hundred active source-

destination pairs) confirms that the data at the level of
individual sources or source-destination pairs are con-

sistent with the Noah Effect. We also discuss implica-

tions of this simple physical explanation for the presence
of self-similar traffic patterns in modern high-speed net-
work traffic for (i) parsimonious traffic modeling, (ii) effi-

cient synthetic generation of realistic traffic patterns, and

(iii) relevant network performance and protocol analysis.

1, INTRODUCTION

Starting with the extensive analyses of traffic measure-
ments from Ethernet LAN’s over a 4-year period described
m [16], there have been a number of recent empirical stud-
ies that provide evidence of the prevalence of sel~-similar
or jractal traffic patterns m measured traffic from today’s
high-speed networks. Prominent among these studies are
the in-depth statistical analysls of large amounts of wide-
area traffic measurements reported in [24] and the detailed
investigation of traffic data collected at the packet level from

multiple NSFNET core switches presented in [13]. One of
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the most surprising findings from these and other studies

concerns the ease with which it is possible to statistically

distinguish between measured network traffic and traditional

traffic models: actual traffic exhibits correlations over a wide

range of time scales (i.e., has long-range dependence), while

traditional traffic models typically focus on a very limited

range of time scales and are thus short-range dependent in

nature. Although such findings can in general be expected

to favor the use of self-similar models over traditional mod-

els from a statistical perspective, there has been consider-

able resistance toward self-similar traffic modeling on prac-

tical grounds. One of the major reasons for this resistance

has been the absence of satisfactory answers to the follow-

ing 2 questions. (1) What is a physical “explanation” for

the observed self-similar nature of measured traffic from to-

day’s packet networks? and (2) What is the impact of self-

similarity on network and protocol design and performance

analysis?

In this paper, we present an answer to question (1) by

providing the appropriate mathematical results and by vali-

dating our findings with detailed statistical analyses of two

representative sets of high time-resolution traffic measure-

ments from two different Ethernet LAN’s. In particular,

we provide a plausible and simple explanation for the ob-

served self-similarity of measured aggregate packet traffic in

terms of the nature of the traffic generated by the individ-

ual sources or source-destination pairs that contribute to the

aggregate packet stream. Developing an approach originally

suggested by Mandelbrot [19], we show that the superpo-

sition of many (idealized) ON/OFF sources, each of which

exhibits a phenomenon called the “Noah Effect”, results in

self-similar aggregate traffic. By expressing the results in

the well-known framework of ON/OFF source models (also

known as “packet train models”), we identify the Noah Effect

as the essential point of departure from traditional to self-

similar traffic modeling. Intuitively, the Noah Effect for an

individual ON/OFF source model results in highly variable

ON- and OFF-periods, i.e., “train lengths” and ‘(intertrain

distances” that can be very large with non-negligible prob-

ability. In other words, the Noah Effect guarantees that

each ON/OFF source individually exhibits characteristics
that cover a wide range of time scales. The Noah Effect is

synonymous with the mjinzte war-lance syndrome – the em-

pirical observation that many naturally occurring phenom-

ena can be well described using distributions with infinite

variance. Mathematically, we use heavy -taded distributions

with infinite variance (e. g , certain Pareto and stable distri-

butions) to account for the Noah Effect, and the parameter

a describing the “heaviness” of the tail of such a distribu-

tion gives a measure of the intensity of the Noah Effect, We

also provide a simple relation between a and the Hurst pa-

rameter H, where the latter has been suggested in [16] as a

measure of the degree of self-similarity (or equivalently, of

the ‘[Joseph Effect” ) of the aggregate traffic stream.
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In sharp contrast to our findings, traditional traffic mod-

eling, when cast in the framework of ON/OFF source mod-

els, without exception assumes finite variance distributions

for the ON- and OFF-periods (e.g., exponential distribution,

geometric distribution). These assumptions drastically limit

the ON/OFF activities of an individual source, and as a re-

sult, the superposition of many such sources behaves like

white noise in the sense that the aggregate traffic stream

is void of any significant correlations, except possibly some

in the short range. This behavior is in clear contrast with

measured network traffic (for details, see for example [17]).

Note that the results of the present study suggest yet an-

other, equally simple, statistical method for distinguishing

between traditional and self-similar traffic: an analysis of

network traffic that checks for the presence or absence of the

Noah Effect in the traffic generated by the individual sources

or source-destination pairs. To demonstrate the effective-

ness of such an analysis, we used two sets of Ethernet LAN

traffic measurements, generated by about 100 and 3,200 in-

dividual sources (resulting in about 700 and 10,000 active

source-destination pairs), respectively. The data were col-

lected at the Bellcore Morristown Research and Engineering

Center (MRE). One of the data sets was collected in August

of 1989, has been studied extensively in the past (at the ag-

gregate packet level), and was, in fact, part of the analysis

presented in [16]. The second data set represents a very re-

cent (December 1994) collection of high time-resolution traf-

fic measurements, was obtained from a different Ethernet

LAN than the first set, and includes applications that were

non-existent in the first data set (e.g., WWW and Mbone).

Although the main objective of this paper is to provide an

answer to question (1) (physical “explanation”), our results

concerning individual source behavior are clearly significant

for answering question (2) (impact of self-similarity on net-

work and protocol design and performance analysis). Start-

ing with the work by Norros [22], there has been mounting

evidence that clearly shows that the performance of queue-

ing models with self-similar inputs can be radically different

from the performance predicted by traditional traffic models,

especially by Markovian models (e.g., see [5], [4], [7]). Here

we complement this evidence by illustrating the practical

relevance of our findings for (i) parsimonious traffic model-

ing for high-speed networks, (ii) efficient simulation of actual

network traffic, and (iii) analyzing queueing models and pro-

tocols under realistic traffic scenarios.

Two previous studies of LAN traffic measurements are

of particular relevance in the present setting. Jain and

Routhier [12] used packet data collected at a ring network

at MIT and proposed a “packet train” (or ON/OFF) source

model in order to capture the observed burstiness in actual

packet streams. In this context, our results show that packet

train models are consistent with traffic data collected at the

level of individual source-destination pairs - once the Noah

Effect for the packet-train lengths and the inter-train dis-

tances has been accounted for. By doing so, some of the
shortcomings of the original packet train modeling approach

(e.g., lack of any physical interpretation, arbitrary choice of

crucial parameter values) are remedied. Of particular impor-

tance to our work are Gusella’s extensive studies [8], [9], [10]

of traffic measurements from a 10 Mb/s Ethernet LAN. In

view of the results discussed in the present paper, Gusella’s

work falls strictly within the traditional approach to traf-

fic modeling: phenomena like the Joseph and Noah Effects

are attributed to non-stationarity in the data and are ig-

nored in subsequent data modeling. Naturally, the resulting

models, based on burstiness characterizations using indices

of dispersion, are adequate only over a limited range of time

scales. Our approach suggests a viable alternative: by ex-

panding the range of traditional traffic models to account for

the Joseph and Noah Effects, it is possible to describe these

phenomena in a strictly stationary setting. The benefits for

doing so include new insights into the time dynamics of high-

speed network traffic, and the applicability of simple mod-

els for the very complex traffic patterns observed in today’s

networks. Finally, with regard to an intuitive physical ex-

planation at the application level of the empirically observed

self-similar nature of wide-area network traffic, we refer to

[24], as well as to [13]. Note that in these application-level

studies, the Noah Effect also plays a crucial role.

The rest of the paper is organized as follows. In Sec-

tion II, we introduce an idealized ON/OFF source model

and present the convergence theorems that form the basis of

our approach. In Section III, we discuss the available traffic

measurements and present our statistical analysis of these

data, concentrating on detecting the Noah Effect in traffic

generated by individual source-destination pairs. Finally, in

Section IV we illustrate the significance of the presence of

the Noah Effect at the source level and its implications for

aggregate traffic streams with a number of examples that are

relevant and of practical importance for the design and per-

formance analysis of modern communication networks and

protocols.

II. SELF-SIMILARITY THROUGH HIGH-VARIABILITY

The models presented here were first introduced by Man-

delbrot [19] and Taqqu and Levy [29] and were originally

cast in an economic setting involving commodity prices.

The models are based on renewal reward processes and

are rephrased here in the context of packet traffic model-

ing. Intuitively, they take into account the presence of long

packet trains ( ‘{ON-periods”, i.e., periods during which pack-

ets arrive at regular intervals) and long inter-train distances

( ‘(OFF-periods”, i.e., periods with no packet arrivals) in

traffic generated by individual sources or individual source-

destination pairs in a LAN. We will show in this section

that the superposition of many such packet trains exhibits,

on large time scales, the self-similar behavior that has been

observed in the Ethernet LAN traffic data in [16].

We consider here zdeulized ON/OFF models where an ON-

period can be followed by an ON-period and an OFF-period

can succeed another OFF-period. Although the ON/OFF

models commonly considered in the communications liter-

ature have strictly alternating ON- and OFF-periods and

hence differ from the idealized models considered here, we

chose the idealized setting because it allows for an immediate

application of some known results in [19], [29]. It also allows

for the distributions of the ON and OFF times to vary. The

study of the more traditional (i.e., alternating) ON/OFF

models, as well as a comparison between the idealized and

strictly alternating setting will appear in a subsequent pa-

per. Moreover, below we present only the simplest case of an

idealized ON/OFF model; generalizations (e. g., different dis-

tributions for the ON- and OFF-periods, non-homogeneous

sources) are possible, but the details are also deferred to a
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later paper.

Following Mandelbrot’s original work, an tdealwed

ON/OFF source model, or simple packet train model, is

characterized by a reward sequence {W(l), 1 = O, 1, .}, i.e.,

a O/l-valued discrete time stochastic process {w’ (1)}, with

W(L) = 1 or O, depending on whether or not there is a

packet at time 1. Thus, the reward sequence {W(1)} con-

sists of a sequence of 1‘s ( “ON-periods”) and O’s (‘(OFF-

periods” ). Let p ~ P( a given period is an ON-period

) = 1/2, and assume that the lengths of the ON- and OFF-

periods are independent and identically distributed (i.i.d.)

positive random variables, denoted uk, k = 1,2,... (U de-

notes an arbitrary uk, with finite expectation E(U)). Let

Sk = SO + UI + U2 + + uk, k >0 be the corresponding
renewal times. We assume that {Sk, k > O} is stationary.

This can be achieved by choosing the distribution of SO in

the following special way:

P(SO =u) = (E(U) )-l P(U~u+ l), u = 0,1,2,...

To ensure the stationarity of the reward sequence {W(l), 12

O}, let 1 = O be in an ON-period with probability 1/2.

Next suppose that there are M i.i.d. sources, where the

‘h source (m = 1, ..., ill) has it own reward sequence

TM’(m) (1), 1 ~ 0}, Then the superposition or cumulative

reward (“packet load” ) at time 1 is ~~=1 W’(m)(1). Aggre-

gating this load through (non-overlapping) time blocks of

size b, we get

b(j+l) M

W;fjb(j) = ~ ~ w(m)(~)) j ‘ 0,1,2 )...,

l=bj+l m=l

where j denotes the aggregation block number. We are inter-

ested in the statistical behavior of the sequence {W&, b} for

large M and b. This behavior can only depend on the distri-

bution of U, the one element we have not yet specified. Mo-

tivated by the empirically derived fractional Gaussian noise

model for aggregate packet traffic in [16], we want to choose

the distribution of U in such a way that, as M -+ m and

b ~ co, {WJ,b } adequately normalized is fractional Gaus-
szan nozse {GH,u(t), t z O}, the only Gaussian sequence

which 1s self-similar (with Hurst varameter ~ < H < 1)
at all scales. By this we mean that the fmit~-d~mensional

distributions of b-~ ~&~~)l G~,~(l), j = O, 1,2,... are

ithe same whatever the va ue of the block aggregation size

b. (For more information about fractional Gaussian noise

and the corresponding cumulative process, called jractzonal

Brownzan motzon, we refer for example to [27, Chapter 7].)

In our setting, to obtain fractional Gaussian noise we sup-

pose that U has a hyperbolic tail distribution, that is, it

satisfies

P(u > u) - Cu-” asu-+m, l<a <2, (1)

where c is a positive fimte constant, independent of u,

Mandelbrot refers to property (1) as the infintte varz.ante

syndrome or the Noah Effect Note that CY < 2 Implies

E(U2 ) = m, while the choice a >1 ensures that E(U) < m

and hence that SO is not infinite. For example, U may have

a discrete Pareto-type distribution or be some discrete ver-

sion of a one-sided stable distribution (e.g. ,see [27]). One

can show, as in [29], that under the conditions stated above

the following holds.

Theorem 1. For large enough source number M and block

aggregation sw.e b, the cumulaihve load {W~,b(j), J > O}

behaves statastacally as

1
bi?l~ + bH~l’2GH,o(j)

where H = %jQ and U2 = 4E(~)2(a–l; (2–a)(3–a) More pre-

czsely,

where .C lam means convergence an the sense of the fintte-

dtmenszonal dtstributzons (convergence m law).

Heuristically, Theorem 1 states that the mean level bM/2

provides the main contribution for large M and b; fluctu-

ations from that level are given by the fractional Gaussian

noise GH,a (j) scaled by a lower order factor bH M 1’2. Note

that it is essential that the limits be performed in the order

indicated. Also note that 1 < a < 2 lrnphes 1/2 < H < 1.
Thus, the main ingredient that is needed for the limiting re-

sult to hold is the hyperbolic tail behavior (1), which guar-

antees the infinite variance property (i.e., high variability) of

the ON- and/or OFF-periods of a “typical” source; whether

the ON/OFF periods form a strictly alternating renewal pro-

cess or an i.i. d sequence is not essential.

Theorem 1 can be generalized in a number of different di-

rections. In particular, we mention here the possibility for

(i) allowing rewards in an ON-period to be given by positive

i.i. d. random variable with finite variance (e. g., the rewards

can equal the number of bytes in a packet), and (ii) consider-

ing heterogeneous sources (i.e., each source type satisfies the

hyperbolic tail property of the form (1), where the index a is

type-dependent). In the case of heterogeneous sources, the

limit is a superposition of independent fractional Gaussian

noises with different (type-specific) H’s, As far as the fluc-

tuations are concerned, however, the term with the highest

H (or equivalently, the term corresponding to the smallest

a for which the corresponding proportion of source types to

total number of sources does not converge to O) ultimately

dominates as b ~ co. When the distribution of the length of

packet trains has finite variance, the corresponding source

types will contribute to the limit an ordinary white noise

component. Details about the proofs of these generaliza-

tions of Theorem 1, as well as a statement for the case of the

superposition of strictly alternating ON/OFF models will

appear in a later paper.

III. ETHERNET LAN TRAFFIC MEASUREMENTS AT THE

SOURCE LEVEL

In this section, we first describe two sets of Ethernet LAN

traffic measurements that will be used in our subsequent

analysis. The two sets result in about 500 and 10,000 ac-

tive source-destination pairs, respectively. This wealth of

data presents a considerable challenge when trying to inves-

tigate in a statistically rigorous manner the presence of the

Noah Effect in the traffic streams generated by all or part

of these individual active source-destination pairs. Thus,

one of the main objectives of this section is to illustrate the

use of exploratory data analysis tools that can assist in ex-

tracting essential information out of an abundance of traffic

measurements, While some of the tools applied below are
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well-known, others are less familiar and will be explained in

more detail as they are used. Finally, note that we are not

interested in precise point estimates for the index a appear-

ing in equation (1) nor in measuring the exact intensity of

the Noah Effect for a given source or source-destination pair,

but are instead concerned about the range of a-values that

is consistent with the data representing individual source-

destination pairs,

A. Tra@c Measurements

The first set of traffic measurements is the busy hour of

the August 1989 Ethernet LAN measurements presented and

analyzed (and denoted by AUG89.HB and AUG89.HP in

Table 1) in [16]. (Source-level analyses of the other data sets

considered in [16] result in similar conclusions – for further

details about these data sets, see also [17]. ) In addition to

the information about time stamp and size (in bytes) of every

packet seen during this hour, this first data set also contains

the source and destination address of each recorded packet.

During this busy hour, 105 hosts sent or received packets

over the network (out of 121 hosts that were active during

the whole 27 hour long monitoring session), Upon further

inspection, out of 11,025 possible source-destination pairs,

only 748 or about 6.8~0 were actually sending or receiving

packets (this effect has also been observed in previous traffic

studies, e.g., [3], [23]), The most active hosts were sources

1, 7, 11, 27, 32, 58 (6 Sun-3 fileservers), sources 2 and 47 (2

DEC 3100 fileservers), source 34 (a Sun-4 server), sources 6,

15, 20, 25, 30, 63 (6 diskless Sun-3 clients), source 8 (a DEC

3100 client), and sources 10 and 17 which served as routers.

Only about 5% of the traffic on this network was external,

i.e., destined for machines on other networks or outside the

company.

The second data set is new and represents a “typical”

hour of Ethernet LAN traffic collected during a 9 day-long

measurement period in December 1994 (additional hour-long

periods of this traffic trace have also been analysed and show

similar results, despite differences in the traffic mix). The

traffic was gathered from the stub Ethernet between the

router provided by Bellcore’s Internet service provider and a

second Bellcore-controlled router that enforces security. The

measurements are made up entirely of remote traffic, i.e., of

packets destined for points on the Internet outside of Bell-

core or for Bellcore from the outside (all via a 1.5 Mb/s T-1

link). Our motivation for including a very recent set of traffic

measurements in our study was to demonstrate the robust-

ness of traffic characteristics such as the Joseph and Noah

Effects under a variety of changes that working LANs ex-

perience in practice over time. LAN environments undergo

considerable changes with regard to network configuration,

host population, hardware and software upgrades, user ap-

plications, etc. For this data set, the number of active hosts

(based on 1P addresses) turns out to be about 3,500, while

the percentage of active to possible source-destination pairs

is about 0.25Y0, The most active host in this data set was

the machine outside of Bellcore that sent Mbone packets (see

below and Section 111.F for more details regarding Mbone).

AISO included in the most active machines were four ma-
chines outside of Bellcore supplying data in response to file

transfer (FTP) sessions, along with one Bellcore host sup-

plying file transfer, E-mail, and Domain name service to the

outside world. Other active hosts included one Bellcore host

supplying Network News to the outside and three machines

supplying news to Bellcore. Of the two Bellcore machines

mentioned above, one is a Sun Sparcserver 690MP and the

other (the network news supplier) is a Spare-l. Note that all

remote traffic is bandwidth limited by Bellcore’s 1.5 Mb/s

link to the outside world.

It is also known that LAN environments can experience

drastic changes at the user application level within relatively

short periods of time (for a similar finding regarding WAN

traffic, see [23]). A brief investigation of what services gener-

ated this second hour-long data set revealed that a new Inter-

net service called Mbone (see for example, [18]) was respon-

sible for over 50% of the recorded traffic (in bytes). Another

new service, the World Wide Web (WWW) information re-

trieval service (e.g., see [I]), made up 9.4% of the total traf-

fic. Neither Mbone nor WWW traffic was present in the first

data set, nor in any of the earlier data sets studied in [16].

Services such as file transfer (14.5%), telnet/rlogin (2.8%),

electronic mail (SMTP) (3.2Yo) and Network News transfer

(NNTP) (12.2%) still present significant components of the

total traffic but no longer dominate it.

B. Textured Plots and the Packet Tram Assumption

We consider here the first data set that has been shown in

[16] to be consistent with second-order self-similarity, with a

Hurst parameter of H x 0.90 for the time series represent-

ing the packet counts per 10 milliseconds. This conclusion

was reached by treating the Ethernet packets as black boxes,

i.e., without using any information contained in the packet

header fields. In contrast, for the present study, we extracted

from the header field of each packet monitored during this

hour the corresponding pair of source-destination addresses.

This process resulted in 105 individual time series represent-

ing the packet arrivals on the Ethernet from the 105 hosts

that were active (i.e., sent or received packets) during this

hour. Furthermore, separating the packets generated by a

given source depending on the packet’s destination address

yields a total of 748 time series corresponding to the num-

ber of active source-destination pairs. In view of the results

presented in Section II, we are thus faced with the chal-

lenging task of analyzing 748 time series with sufficient sta-

tistical rigor and accuracy to conclude whether or not these

data support our physical explanation for self-similarity, i.e.,

whether or not the data are consistent (i) with the ON/OFF

traffic model assumption for individual sources or source-

destination pairs and (ii) with the crucially important as-

sumption of the Noah Effect for the corresponding ON- and

OFF-periods. To this end, our goal is not to provide a single

point estimate for the intensity a of the Noah Effect, but to

examine if there is evidence for the Noah Effect in the data

and if so, to determine the “typical” range of a-values. Note

that because of the basic relation H = (3 – a)/2 (see Theo-

rem 1), the earlier findings in [16] of H w 0.90 for the time

series of (aggregate) packet counts suggests the presence of

the Noah Effect with a low a-value of about 1.20.

For the purpose of checking the appropriateness of the

ON/OFF traffic modeling assumption for individual sources

or source-destination pairs, we first make use of a simple

exploratory data analysis tool called textured dot strap plot

or simply teztured plot, originally proposed in [30] (see also

[28]). Intuitively, the idea of textured plots is to display one-

dimensional data points in a strip in an attempt to show all
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Fig, 1. Textured plots of packet arrival times for source 10 and source-destination pairs 10-1, 10-18, 10-70, 10-13 and 10-17.

data points individually. Thus, if necessary, the points are

displaced vertically by small amounts that are partly ran-

dom, partly constrained. The resulting textured dot strip

facilitates a visual assessment of changing patterns of data
intensities in a way other better-known techniques such as

histogram plots, one-dimensional scatterplots, or box-plots

are unable to provide, especially in the presence of extreme
values. To illustrate the effectiveness of textured plots for

assessing the bursty or ON/OFF nature of traffic generated

by an individual saurce or source-destination pair, we dis-

play in Figure 1 six textured plots associated with source

10 (other sources result in similar plots). Each point in the

plots represents the time of a packet arrival. Serving as a

router, source 10 contributed 1.85% to the overall number
of packets and sent data to 25 different destinations. The

top plot in Figure 1 represents the textured dot strip corre-

sponding to the arrival times of all packets originating from

source 10 (there are 26,330 packets), and the subsequent 5

panels result from applying the textured plot technique to

the arrival times of all packets originating from source 10 and
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destined for sources 1, 18, 70, 13 and 17, respectively. These

5 source-destination pairs were responsible for 5,901, 4,050,

3,407, 2,135, and 1,918 packets, respectively, and make up

about 66!Z0 of all the packets generated by source 10.

Figure 1 supports two important observations regarding

the bursty behavior of traffic generated by (i) a reasonably

active individual source (e. g., source 10) and (ii) a “typical”

individual source-destination pair (e.g., source-destination

pair 10-18). First, a close look at the top plot of Figure 1

clearly reveals the burstiness expected from actual packet

traffic, but offers little hope for su~~ortin~ the ON/OFF
..v

nature of the underlying traffic that gave rise to this strip

plot. The plot is even more discouraging from the point of

view of hoping for some “objective” criterion for identify-

ing ON/OFF periods (but see Section 111.D for an appealing

robustness property). However, a glance at the 5 source-

destination plots in Figure 1 makes the ON/.OFF behavior

of the traffic generated by the individual source-destination

pairs immediately apparent. There is little question of what

is meant by an ON- or OFF-period, and subsequent extrac-

tion of the lengths of the ON- and OFF-periods from a given

source-destination traffic trace is greatly facilitated by use of

of the corresponding textured plot of packet arrival times.

C. Checktng for the Noah Effect

Next we illustrate the techniques used for determining the

presence or absence of the Noah Effect for the ON- and OFF-

periods derived from the traffic data generated by individual

sources or source-destination pairs. In the case where the

data are found to be consistent with the Noah Effect, these

techniques also allow for fast procedures (partly heuristic,

partly rigorous) for estimating the intensity a of the Noah

Effect. As we will demonstrate, these techniques work best

when applied in combination with each other and with at-

tention to the physical structure of the data. Specifically,

we make extensive use of complementary distribution plots

(related to the qq-plot method [14]) and Hill’s method [11],

[26] for estimating a,

In order to determine the presence or absence of the Noah

Effect in a given data set, we take logarithms of both sides

of relation (1), obtaining

log(P(U > u)) N log(c) – a log(u), as u -+ co, (2)

where 1 < a < 2. Using complementary distribution plots,

i.e., plotting (on a log – log scale) the complementary em-

pirical distribution function of a sample that was presum-

ably drawn from a distribution that exhibits hyperbolic tails

(i.e., satisfies (l)), results in an approximately straight line

for large u-values, with a slope of –cY, 1 < a <2. To illus-

trate the effectiveness of this technique for the data at hand,

we concentrate on source-destination pair 10-18 (Figure 1,

panel 3); other soure-destination pairs yield similar results.

Based on its textured plot, we define an OFF-period to be

any interval of length t >2 seconds that does not contain any

packet; this, in turn, defines the ON-periods unambiguously
and results in a total of 202 ON-periods and the same num-

ber of OFF-periods for this source-destination pair. (We will

return to the issues of the particular choice of the threshold t
and of the robustness of our results under different threshold

values in Section 111.C below. ) Figure 2 depicts the com-

plementary distribution plots of the ON-periods (top left)

and OFF-periods (top right) and indicates a straight line

behavior for large u-values, i.e., a hyperbolic tail distribu-

tion satisfying (1) for the ON- and OFF-periods. In fact, a

heuristic estimate (obtained by “eyeballing” a straight line

through the points to the right of the dashed vertical line)

yields a x 1.7 for the ON-periods and a = 1.2 for the OFF-

periods. To compare, Figure 2 also includes the complemen-

tary distribution plot of (i) an exponential distribution with

the same mean of 7.2 s as the ON-periods (bottom left), and

(ii) a Pareto distribution with a = 1.2 and the same mean

of 10.5 s as the OFF-periods (bottom right). Clearly, when

compared to the tail of the ON-periods, the tail of the expo-

nential distribution is concentrated on a very narrow range

of u-values and falls off far too fast. On the other hand, the

Pareto distribution covers practically the same range of time

scales as the empirically observed OFF-periods and matches

the straight line behavior of the data over practically the

whole x-axis.

While complementary distribution plots often provide

solid evidence for or against the Noah Effect in a given data

set, the eyeballing method described above for producing a

rough estimate for a is cumbersome and unsatisfactory. A
statktically more rigorous method for estimating the inten-

sity of the Noah Effect is known as Hill’s est%mate and is

described in [11] (see also [26]). Briefly, let UI, U2, . . . . U~
denote, for example, the observed ON-periods, and write

u(l) <fJ(2) <..._ < U(n) for the corresponding order statis-

tics. Hill’s estimate is given by

where the choice of 1 < k ~ n indicates how many of the

largest observations enter into the calculation of formula (3).

In practice, one plots Hill’s estimate c& as a function of k, for

a range of k-values. In the presence of a tail behavior in the

data that is consistent with (1), a typical Hz1l plot varies con-

siderably for small values of k (i. e., only a small fraction of

the largest observations are considered), but becomes more

stable as more and more data points in the tail of the distri-

bution are included (often up to a cut-off value, to the left

of which (1) no longer holds). An apparent straight line be-

havior for large u-values in the complementary distribution

plot corresponds to a region of k-values where the Hill esti-

mate remains stable. In the absence of such a straight line

behavior, Hill’s estimate will continue to decrease as k in-

creases, a strong indication that the data are not consistent

with the hyperbolic tail assumption (1). For further proper-

ties (and shortcomings) of the Hill estimate, see for example

[26]. Figure 3 depicts the Hill estimate plots corresponding

to the data used in Figure 2. Recalling that each data set

contains 202 observations, the top left plot depicts the Hill

estimate for the ON-periods and should be viewed together

with the top left plot in Figure 2; note the region of stability

in the Hill plot (k-values between 20 to about 70), i.e., the

tail of the distribution that is consistent with the hyperbolic
decay as given in (1) contains about 40V0 of all the obser-

vations. Moreover, the Hill estimate can be readily read off

from the y-axis and yields 6 = 1.7. In the case of the Hill

plot for the OFF-periods (top right) and the fitted Pareto

model (bottom right), the situation is obvious and in agree-

ment with the information contained in the corresponding

complementary distribution plots in Figure 2. Finally, the
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Fig. 2. Complementary distribution plots for ON-periods (top left) and OFF-periods (top right) for the source-destination pair 10-18,
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Fig, 3. Hill estimate plots for ON-periods (top left) and OFF-periods (top right) forthesource-destinatlon pair 10-18, using a threshold

value of t = 2s; for a sample from an exponential distribution that matches the ON-periods (lower left), and for a sample from a

Pareto distribution that matches the OFF-periods (lower right). (The vertical solid, dotted anddashed hnesmdlcatethat 10%, 20%
and 50’% of the largest order statistics have been included in the Hill estimation calculation, )

bottom left plot in Figure 3 illustrates the typical behavior of ior is caused by the concave shape (throughout the whole
the Hill plot when the data are inconsistent with assumption z-axis) of the complementary distribution plot (see bottom
(l); the plot does not settle down but continues to decrease left plot in Figure 2).
asmoreand more of thesmaller order statistics are included

in the calculation of the estimator. Intuitively, this behav-
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D. A Robustness Property of the Noah Effect

Before checking for the presence of the Noah Effect in the

traffic traces generated by the remaining source-destination

pairs, we first point out a robustness feature of the Noah Ef-

fect that should greatly diminish any reluctance toward us-

ing ON/OFF or packet train models at the source or source-

destination level. In the past, such reluctance has typically

been based on a lack of physical interpretation or intuition

for defining objectively the notion of an OFF-period (or,

using the notation of Section 111.B, for selecting the “right”

threshold value t).In the packet train terminology, the prob-

lem is to decide in a coherent manner on the “appropriate”

intertrain distance, i.e., on deciding when the “departure”

of the previous train took place and when the “arrival” of

the next train occurs. Here we show, that as far as the Noah

E#ect as concerned, at does not matter how the OFF-periods

or intertrain dtstances (and subsequently, the ON-perzods or

packet tram lengths) have been defined. In other words, the

Noah Effect is robust under a wide range of choices for the

threshold value t that we used in Section 111.B to explicitly

define OFF-periods as any interval of length t seconds or

larger that sees no packet arrival.

The reason behind this insensitivity of the Noah Effect

for (non-degenerate) OFF-periods to different choices of the

threshold t is the well-known scaling property of distribu-

tions that satisfy the hyperbolic tail condition (1). Here, by

scaling property we mean that if the distribution of U satis-

fies (1) and t denotes a threshold value, then for sufficiently

large u, t with u > t,

P(u>u]u>t) ~ (;)-”,1<a’ <2, (4)

(see [20] and also [24], where this property is discussed and

used for an intuitive explanation of the Joseph Effect in mea-

sured TELNET traffic traces). Thus, the tail behavior of

the (conditional) distributions of U given U > t, for dif-

ferent choices of the threshold t, differs only by a scaling

factor and hence gives rise to complementary distribution

plots with identical asymptotic slopes but different inter-

cepts. This appealing robustness property of the Noah Ef-

fect for the OFF-periods with respect to the choice of t is

illustrated in Figure 4 where we show the complementary

distribution plots (top row) and corresponding Hill estimate

plots (bottom row) for three different ways of defining the

OFF-periods for the traffic associated with source 10 (see top

plot of Figure 3). More specifically, we chose t-values that

span 3 orders of magnitude, namely t= 1s (left column, 313

observations), t= 0.2s (middle column, 4,537 observations)

and t = 0.025s (right column, 19250 observations). Figure

4 confirms the robustness property of the Noah Effect un-

der the different choices of t,with an estimated intensity

between 1.6 – 1.9.

Next recall that defining OFF-periods for a given source

or source-destination Dair bv usirw a s~ecific threshold value-.
t implicitly defines a ~orres~onding sequence of ON-periods.
However, in contrast to the OFF-periods, where the choice

of threshold values s < t leaves the OFF-periods obtained

via the t-threshold unaffected, ON-periods that were defined

based on the t-threshold will typically get fragmented into

smaller ON- and OFF- periods when threshold values s < t
are used, However, a similar investigation of the sensitiv-

ity of the ON-period distributions to the choice of thresh-

old value reveals the same appealing robustness feature of

the Noah Effect for the ON-periods as we observed for the

OFF-periods. For an intuitive explanation (assuming the

idealized modeling assumptions in Section H), recall that a

t-ON period (i.e., an ON-period that was obtained using the

threshold value t)typically consists of a number of s-ON

and s-OFF periods where s < t. However, if the s-ON/OFF

periods satisfy relation (1), then so does their sum (and vice

versa; e.g., see [27]). Subsequently, when interested in the

intensity of the Noah Effect for the ON-periods, fragmenta-

tion into smaller ON/OFF-periods as the threshold value t
decreases should have no effect, and suggests that the Noah

Effect for the ON-Deriod is robust. Note that in the case

of the ON-periods, determining a sensible range of t-values

for investigating this robustness property is facilitated by

the fact that as t gets small, the number of resulting ON-

periods quickly approaches the number of total packets in a

given traffic trace; in other words, for small enough t, prac-

tically every packet is counted as an ON-period, and every

packet interarrival time as an OFF-period. Clearly, sensible

threshold choices are those that stay well above such critical

values. To illustrate the robustness property of the Noah Ef-

fect for the ON-periods, we consider source 6 that generated

a total of 48,275 packets (of which 9T~0 went to source 32),

and depict in Figure 5 the complementary distribution plots

and Hill plots corresponding to the sequences of ON-periods

defined via the threshold values t = 1.0s, O.1s and 0.05s. As

can be seen, the intensity of the Noah Effect remains es-

sentially unaffected (and equals about 1.3), even though t
varies from seconds to 100 milliseconds to tens of millisec-

onds. Sources other than source 6 yield similar results and

provide convincing evidence of the robustness property of

the Noah Effect of the ON-periods: although there is no

“natural” division into ON/OFF-~ eriods at the source level,

such a division becomes apparen~ at all (a wide range of)

time scales; moreover, these divisions appear in a consistent

manner.

E. Self- S~mdarzty and the Noah Effect: 1989 Trajic Traces

To facilitate the full-fledged statistical analysis of the busy

hour of the August 1989 traffic measurements at the source-

destination level, we considered in detail only the 181 most

active (out of a total of 748 active) source-destination pairs.

Together, these 181 source-destination pairs generated more

than 93% of all the packets seen on the Ethernet during

this hour and represent more than 98% of the overall traf-

fic (in bytes). As a rule, we chose to neglected all source-

destination pairs that generated fewer than about 300 pack-

ets during the whole hour. Our statistical analysis of this

abundance of traffic data benefited tremendously from the

observed robustness property of the Noah Effects for the

ON- and OFF-periods and from the availability of graphical

tools that allow for effective visualization of complex data

structures.

The summary plots in Figure 6 were obtained by check-
ing, for each of the 181 source-destination pairs, for the

presence or absence of the Noah Effect in their corre-

sponding sequences of ON- and OFF-periods that were

generated using a variety of different threshold values,

typically ranging between 5 s and 0.01 s, depending

on the observed traffic. Instead of determining exact
point estimates for the intensities a of the Noah Effects
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for the ON- and OFF-periods, we marked each source- considered, the decision was based on a combination of (i)

destination pair, depending on whether the corresponding textured plots for visual assessment of ON/OFF nature of

estimates seemed to be consistent with a range of a-values the traffic, (ii) complementary distribution plots as a quick
in (0, .85),(.75,1.35),(1.25,1.75),(1.65,2.25) or (2.25,2.75), heuristic method for checking the tail behavior of a distribu-
representing the intuitively easy to define cases “definitely tion, and (iii) acareful interpretation of Hill plots (typically
below 1.0”, “around 1.0”, “somewhere in the middle of the in connection with information obtained via (ii)). The re-
interval (1,2)”, “around 2.0” , and ‘(definitely above 2.o or suits are shown in Figure 6, where we plot for each of the
inconclusive”, respectively. For each source-destination pair 181source-destination pairs its’’load” (in bytes, onlog scale)
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Fig. 6. Summary plot of ranges for the a-estimates for the ON-
periods (top) and OFF-periods (bottom) of the 181 most ac-
tive source-destination pairs, as a function of their “loads”.

against the range of a-values that is consistent with its traf-

fic trace. As can be seen, in the case of the ON-periods (top

plot), the a-estimates consistent with the data cover pretty

much the whole interval (1, 2). In comparison, the bottom

plot in Figure 6 shows that in the case of the OFF-periods,

a-estimates in the lower part of the interval (1, 2) clearly

dominate the picture.

When combined, the two plots in Figure 6 provide strong

statistical evidence in favor of our proposed physical expla-

nation for the empirically observed self-similarity property of

the aggregate packet process, in terms of the nature of traf-

fic generated by each individual source-destination pair that

sent packets over the Ethernet. In particular, our analysis

shows that the data at the source-destination level are con-

sistent with an ON/OFF modeling assumption for individual

sources or source-destination pairs, and are in strong agree-

ment with the assumption of the Noah Effect for the distri-

butions of the corresponding ON/OFF-periods. (We have

also done extensive testing of the independence assumption

for the ON-periods and OFF-periods and have found the

data to be in full agreement with it. ) In fact, one of the

most astonishing findings from our analysis has been the ex-

tremely widespread and often very obvious presence of the

Noah Effect, expressed via relation (1), in measured source-

level traffic data, regardless of whether the source represents

a fileserver or a client machine. Possible “explanations” for

this phenomenon include an empirically observed hyperbolic

10

tail behavior for the file sizes residing in file systems such

as file servers (see the discussion and references in [24]), a

Pareto-like tail behavior for measured CPU time used by a

typical Unix process (see [15]), and a measurements study

of an ISDN office automation application reported in [21]

that suggests that human-computer interactions occur over

a wide range of time scales and thus, may require models

based on infinite variance distributions. Finally note that

the results in Figure 6 seem to suggest the possibility of dif-

ferent a-values for the ON- and OFF-periods (higher for ON

than for OFF), thus pointing toward scenarios that are rel-

evant in practice and for which the mathematical results in

Section II should be generalized. While efforts in this direc-

tion are already under way, it is important to keep in mind

that the crucial piece of information contained in Figure 6

is the strong evidence for the presence of the Noah Effect in

the data (see Section II).

F. Self-Similarity and the Noah Effect: 1994 Trajfic Traces

Since networks such as Bellcore’s various Ethernet LANs

are known to often undergo drastic changes within relatively

short time periods, the question arises about the relevance

of traffic characteristics (e.g., the Joseph and Noah Effects)

observed in 5 year-old traffic traces for today’s networks,

In other words, how sensitive are traffic characteristics such

as the Joseph and Noah Effects under changes in network

topologies, hardware and software upgrades, changes at the

user application level, etc. ? Our main objective in including

the second data set collected during December 1994 in the

present study was to (i) provide insight into these questions

and (ii) demonstrate how the information gained from a de-

tailed statistical analysis of data sets of high time-resolution

traffic measurements from networks in the past can be used

to contribute to a better understanding of the traffic trans-

ported on today’s networks and to make educated guesses

about future network traffic dynamics. Here we briefly dis-

cuss some of the findings from our analysis of this second

data set, without going into any details; the results are

based on an analysis that combines techniques introduced

in [16] for analyzing aggregate traffic streams and methods

illustrated earlier in this section for dealing with individual

source-destination traffic traces.

Given the information provided in Section 111.A about

the second data set, we first split the hour-long trace into 2

subsets; the first subset represents the traffic sent from the

machine that furnishes Mbone traffic to Bellcore. It makes

up about 52’% of the total traffic (in bytes). The second

subset consists of the remaining, i.e., all non-Mbone pack-

ets recorded during the given hour. Concentrating first on

the non-Mbone traffic, an analysis along the lines of [161

of the aggregate traffic (number of packets per 10 millisec:

ends) reveals that this data set is consistent with second-

order asymptotic self-similarity, and as an estimate of the

degree of the Joseph Effect (i.e., the Hurst parameter), we

obtain an H-value between 0.85 and 0.90. After separating

the aggregate traffic into traffic traces generated by individ-

ual source-destination pairs, we get that the 300 most ac-

tive (out of a total of about 10,000) source-destination pairs

are responsible for 83% of the non-Mbone traffic. Analyz-

ing these 300 traces in the same way as above shows again

consistency of the data with the ON/OFF source modeling

assumption. However, in contrast to the first data set, our
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findings strongly suggest different intensities for the Noah

Effects for the ON- and OFF-periods, namely a-values be-

tween 1.0 and 1.5 for the OFF-periods, and a-values around

2.0 (i.e., on the borderline between finite and infinite vari-

ance) for the ON-periods. In light of the remarks in Sec-

tion II, this observation suggests that when moving from the

internal Ethernet traffic (first data set) to traffic that con-

sists entirely of remote packets, the empirically observed self-

similarity property of the aggregate packet stream is mainly

due to the relatively strong presence of the Noah Effect in

the OFF-periods of the individual source-destination pairs.

However, with the ever increasing demand for services such

as WWW, it is reasonable to expect that in the future, the

intensity of the Noah Effect for the ON-periods correspond-

ing to the individual source-destination pairs to increase (re-

sulting in a-values that move from around 2.0 toward 1.0); as

a result, future aggregate non-Mbone traffic can be expected

to move closer toward an exactly self-similar setting.

In the case of the Mbone traffic data set, only an anal-

ysis of the aggregate packet stream was performed. The

results indicate that Mbone traffic is asymptotically self-

similar, with an H-value in the high 0.9 range. Its distinctive

feature, however, is that only after aggregation levels beyond

100 ms does the strong intensity of the Joseph Effect be-

come obvious, i.e., does the correlation structure of Mbone

traffic remain unchanged as aggregation levels increase fur-

ther (WAN traces analyzed in [24] exhibit similar proper-

ties). Based on our current understanding (see Section II)

and on extensive simulation studies (see Section IV and, es-

pecially [25]), this property of Mbone traffic suggests the

absence of the Noah Effect for the ON-periods (i.e., a cor-

responding intensity level for the ON-period a that exceeds

2.0) and at the same time, the presence of a very strong

(i.e., a-values close to 1.0) intensity of the Noah Effect for

the OFF- periods of the individual user applications that

typically run over Mbone. On an intuitive basis, this ob-

servation agrees with the facts that Mbone uses compres-

sion on the video and audio streams it carries, and that the

compression algorithms in use are relatively unsophisticated,

resulting in packet bursts separated by comparatively large

idle periods. As before, it is reasonable to speculate that as

M%one will use more sophisticated compression schemes and

will provide a more heterogeneous mix of applications, the

Noah Effect of the resulting ON-periods will intensify, while

the Noah Effect for its OFF-periods is likely to become less

pronounced. In turn, Mbone traffic of the future is likely to

remain self-similar, possibly over a wider range of time scales

than today.

IV. IMPLICATIONS OF THE NOAH EFFECT IN PRACTICE

Recall that the empirically observed self-similarity prop-

erty in measured network traffic allows for a clear distinction
—on statistical grounds – between traditional traffic models

and actual traffic collected from working networks. The pro-

posed physical explanation based on the Noah Effect enables

us to phrase the essential difference between self-similar and

traditional traffic modeling in the setting of the well-known

ON/OFF source models. To wit, traditional traffic mod-

eling assumes finite variance distributions for the ON- and

OFF-periods (in fact, exponential or geometric distributions

are used almost exclusively), while self-similar modeling is

based on the assumption of the Noah Effect, i.e., requires

infinite variance distributions. Moreover, traditional traffic

modeling becomes a special case of the self-similar approach

by chosing a-values bigger than 2.0. From a more applied

viewpoint, questions related to the impact of self-similarity

in practice (e. g., generating realistic network traffic, perfor-

mance of networks, protocols, and controls) can be reduced

to the more basic question of the practical implications of

the Noah Effect. In this section, we illustrate its impact

with examples concerning traffic modeling, synthetic traffic

generation, and network performance analysis.

A. Tra@c Modelang and Generation

There is no question that today’s network traffic is com-

plex. Often, this is interpreted as saying that a mathemati-

cal model of this traffic must be complicated in nature, i.e.,

must be highly parameterized in order to realistically ac-

count for the observed complexity. One of the main results

of this paper is that although network traffic is intrinsicly

complex, parstmonzous modelzng is still possible; even more

so, we demonstrate that it gives rise to a physical explana-

tion for the self-similarity phenomenon that is simple and

fully consistent with actual traffic measurements. Thus, for

aggregate traffic measurements, insistence on parsimonious

modeling has lead to the use of self-similar (or long-range

dependent) processes for traffic modeling at the aggregate

level. In this paper, the desire for a “phenomenological” ex-

planation of self-similarity in network traffic has resulted in

new insights into the nature of traffic generated by the in-

dividual sources that contributed to the aggregate stream.

We identified the Noah Effect as one of the essential ingre-

dients of these new insights, thus reducing the problem of

accurately and realistically modeling traffic in today’s net-

works to estimating a single parameter, namely the intensity

a of the Noah Effect in the ON- and OFF-periods of a ‘(typi-

cal” network host. We have also shown that while this result

(i e., Theorem 1) holds, strictly speaking, only in an idealized

setting (e.g., i.i.d. ON- and OFF-periods, one source type),

generalizations accommodating more realistic conditions are

possible (see the discussion in Section II), maintain the sim-

plicity of the basic result, and may require the addition of

only a small number of physically meaningful parameters.

Explaining, and hence modeling self-similar phenomena

in the traffic context in terms of the superposition of many

ON/OFF sources with infinite variance distribution for the

lengths of their ON/OFF-periods, leads to a straightforward

method for generating long traces of self-similar traffic within

reasonable (i. e., linear) time – assuming a parallel comput-

ing envn-onment. Indeed, the results (e. g., Theorem 1) are
tailor-made for parallel computing. letting every processor of

a parallel machine generate traffic according to an ON/OFF

model (same a), simply adding (i. e., aggregating) the out-

puts over all processors produces self-similar traffic. For ex-

ample, producing a synthetic trace of length 100,000 on a

MasPar MP-1216, a massively parallel computer with 16,384

processors, takes on the order of a few minutes. In fact, Fig-

ure 7 shows the result of a simulation where we used this

method (with alternating rather than i.i. d. ON/OFF peri-

ods – see Section II) to generate 27 hours worth of Ethernet-

like traffic at the 10 millisecond time scale (i.e., a time series

of approximately 10,000,000 observations). More precisely,

our objective here was to experimentally “verify” Theorem 1

in the context of the August 1989 traffic measurements, i.e.,
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to choose a = 1.2 (corresponding to the estimated Hurst

parameter of H = 0.9 that is consistent with the August

1989 data set) and ill = 500 (number of processors used

should correspond roughly to the number of active source-

destination pairs during the observed period), and to check

whether or not the resulting synthetic traffic trace “looks

like” actual Ethernet traffic as measured in August 1989.

We plot in Figure 7 (right most column) the synthetic trace

on 5 different time scales, the same way it was done in [17],

the original traffic measurements (left most column), and a

synthetic trace (middle column) generated from an appropri-

ately matched batch Poisson process (the latter was taken

as representative of traditional traffic modeling). As can be

seen, our synthetic traffic passes the “visual” test easily, with

the possible exception of the plot in the top row (the effect

of the daily cycle in the 27 hour trace of Ethernet traffic on

the 100 s time scale becomes noticeable, especially because

it is – by definition – not part of the stationary model that

gave rise to the top right plot), On a more rigorous level (not

shown here), the trace also fits the data well in a statistical

sense, i.e., the estimated Hurst parameter matches the one

from the data. Similarly striking agreement between syn-

thetically generated traffic and actual Ethernet traces was

obtained in a number of different scenarios, e.g., chosing

M = 16,000 (close to the total number of processors on

the MasPar machine), allowing for different source types,

selecting different a-values for the ON- and OFF-period dis-

tributions (including different combinations of finite/infinite

variance scenarios), and generating under the i.i. d. and al-

ternating renewal assumptions, respectively (see Section II).

Recall, that the Ethernet-like behavior of the synthetically

generated trace has been accomplished with only one prz-

rameter, namely the intensity a of the Noah Effect for the

ON/OFF-periods of the traffic generated by a “typical” user

– parsimonious modeling at its best, and proof that today’s

complex network traffic dynamics can be modeled in a simple

manner without requiring highly parameterized mathemat-

ical models. For a more refined modeling of the trace, 2-3

additional parameters may be necessary

B. Performance and Protocol analysu

The practical benefits of parsimonious modeling of mea-

sured network traffic become especially apparent when focus-

ing on the potential impacts of traffic characteristics such as

the Joseph and Noah Effects on queueing and network per-

formance, protocol analysis, and network congestion con-

trols. Clearly, the appeal lies in the small number of physi-

cally meaningful parameters whose practical impacts need to

be investigated. Starting with the empirical finding of self-

similarity in Ethernet LAN traffic data reported in [16], there

has been mounting evidence for the practical importance of

the Hurst parameter H for traffic engineering purposes. In

particular, work in [22], [5] (see also [7], [2]) demonstrates a

significant difference in queueing performance (expressed in

terms of the queue length distribution) between traditional

(Markovian) traffic models and those exhibiting the Joseph

Effect. More specifically, while the queue length distribution

of the former decreases exponentially fast, that of the latter

decreases much more slowly (depending on the intensity H

of the Joseph Effect), namely like the tail of a Weibull distri-

bution. In practice, not accounting for the Joseph effect at

the modeling stage can lead to overly optimistic performance

predictions and thus to quality-of-service requirements that

are impossible to guarantee in a realistic network scenario.

This observation is of particular importance in the context

of the widely used concept of equ~valent bandundth [6]. At

the same time, the presence of the Joseph Effect in mea-

sured traffic still allows for economies of scale (i. e., statistical

multiplexing gains) via multiplexing a large number of such

sources (see [4]).

In view of our physical explanation that the Joseph Effect

in aggregate traffic streams is caused by the Noah Effect

in the individual ON/OFF sources that generate the aggre-

gate stream, understanding the impacts of the Noah Effect in

simple ON/OFF source models on queueing performance be-

comes essential and is likely to provide valuable new insights

into questions related to the design of efficient protocols and

effective controls for realistic network traffic, In fact, work is

already under way that provides such new insights (e. g., see

[25], [2]). For example, investigating the queue length distri-

bution for ON/OFF traffic that exhibits the Noah Effect (ei-

ther directly or via a corresponding M/G/l model), these au-

thors show that the Noah Effect gives rise to an infinite mean

waiting time, i.e., to queue length distributions that them-

selves exhibit the Noah Effect and decrease even slower than

a Weibull distribution (i. e., the corresponding distribution

obtained when multiplexing many such ON/OFF sources).

Clearly, this is bad news from the point of view of trying to

keep the traffic generated by individual sources isolated from

other traffic as far into the network as possible: the result-

ing buffer requirements at each network node and the ensu-

ing potential delays will be overwhelming. Similarly, traffic

shaping at the source may not be feasible in practice due to

the naturally occurring large ON-periods for these sources,

which in turn would require huge buckets and thus give rise

to unreasonably large delays. On the other hand, the results

strongly suggest the idea of statistically multiplexing a large

number of sources that exhibit the Noah Effect at the earliest

possible stage in the network. By doing so, the theory pre-

dicts smaller buffer requirements for the network elements

and hence smaller packet delays. The simulation results

presented in [25] also suggest a wide range of possibilities

for protocols and controls for dealing with traffic scenarios

that consist of sources with different combinations of infinite

variance/finite variance ON- and OFF-periods, For exam-

ple, protocol design should be expected to be sensitive to

and take into account knowledge about network traffic such

as the presence or absence of the Noah Effect in a “typical”

traffic source. However, how to effectively design protocols

that take such information into account remains largely an
open issue. Similarly, congestion control schemes that in-

corporate information about the presence or absence of the

Noah Effect at the source level and the Joseph Effect at the

aggregate level have yet to be proposed and investigated.

V. CONCLUSION

Traditional ON/OFF source models typically assume ex-

ponential or geometric distributions for their ON- and OFF-

periods (or more generally, finite variance distributions).

These models are widely used and are especially popular

with queueing and performance analysts because of their an-

alytic tractability. However, in recent years, it has been rec-

ognized that multiplexing a large number of these sources

results in aggregate traffic that is inconsistent with traffic
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measurements from working networks. On the other hand,

Jain and Routhier’s packet train models [12], which arose di-

rectly from traffic measurement studies, were criticized be-

cause of their lack of a clear definition of a “train”, their

lack of suggestions for chosing the crucial model parame-

ters, and their lack of a physical interpretation. Motivated

by the desire to provide a physical explanation for the em-

pirically observed self-similarity property in actual network

traffic, we propose in this paper to expand the range of tra-

ditional traffic modeling at the level of individual sources to

account for the Noah Effect, i.e., for the ability of individ-

ual sources to exhibit characteristics that cover a wide range

of time scales ( “high-variability sources” ). By doing so, the

criticisms for the ON/OFF source model as well as for the

packet train model are deflected. Our results in Section II

show that the superposition of many ON/OFF models,, each

of which exhibits the Noah Effect, results in aggregate packet

streams that are consistent with measured network traffic,

and exhibits the same self-similar or fractal properties as

can be observed in the data, Moreover, our statistical anal-

ysis in Section III confirms the presence of the Noah Effect

in measured Ethernet LAN traffic at the source level, and

demonstrates an appealing robustness property that renders

the stated objections against packet train source models ir-

relevant.

By (i) reducing the self-similarity phenomenon for aggre-

gate traffic streams to properties of the individual traffic

components that make up the aggregate stream, (ii) express-

ing essential difference between traditional and self-similar

traffic modeling in the context of the well-known ON/OFF

source models, and (iii) identifying the Noah Effect as the

main point of departure from traditional to self-similar traffic

modeling, we hope to facilitate the acceptance of self-similar

traffic models as viable and practically relevant alternatives

to traditional models. The benefits for doing so are imme-

diate and include parsimonious and physically meaningful

models for the seemingly very complex traffic dynamics in

today’s networks, and new insights into problems related to

the performance and analysis of protocols and network con-

trols. We have discussed in Section IV some of the mounting

evidence for the practical importance of the Noah and Joseph

Effects for network engineering. We expect these empirically

observed traffic characteristics to play an increasingly impor-

tant role in the traffic modeling and network performance

work for tomorrow’s high-speed networks.

ACK~OWH,EDGNi~~T

We gratefully acknowledge the many helpful comments

and specific suggestions of Vern Paxson.

REFERENCES

[1]

[2]

[3]

[4]

[5]

T. Berners-Lee, R Cailliau, A. Loutonen, H. F. Nielsen and A.
Secret. The World-Wide Web. Cornmtmwattons of the ACM,

Vol. 37, pp. 76–82, 1994,
F. Brichet, J Roberts, A. Simonian, and D, Veitch. Heavy traffic

analysis of a fluid queue fed by on/off sources with long-range

dependence. Preprint, 1995,

P. Danzig, S Jamm, R. C&ceres, D, Mitzel and D. Estrin. An

Empirical Workload Model for Driving Wide-Area TCP/IP Net-

work Simulations, Intern etwor%tng: Research and Experience,

Vol. 3, pp. 1-26, 1992.

N. G. Duffield. Economies of scale in queues with sources having

power-law large deviation scalings, Preprint, 1994.

N G. Duffield and N O’Connell. Large deviations and overflow

probabilities for the general single-server queue, with applica-

tions. Proc. Cambrtdge Phd. Sot,, 1995 (to appear),

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[2s]

[29]

[30]

113

A. 1. Elwalid and D. Mitra. Effective bandwidths of general

Markovian sources and admission control of high speed networks.

IEEE/ACA4 Transactions on Networlwng, Vol. 1, PP. 329-343,
1993.
A. Erramilli, 0. Narayan, and W. Willinger. Experimental
queueing analysis with long-range dependent traffic. Preprint,
1994,
R. Gusella. A characterization of the variability of packet arrival
processes in workstation networks. Ph.D. dissertation, Univ. of
California, Berkeley, 1990.
R. Gusella. A measurement study of diskless workstation traffic
on an Ethernet. IEEE Transactions on Communications, Vol.

38, pp. 1557-1568, 1990.

R. Gusella. Characterizing the variability of arrival processes

with indexes of dispersion. IEEE Journal on Selected Areas tn

Commrmzcatzons, Vol. 9, pp. 203–211, 1991.

B. M. Hill. A simple general approach to reference about the tail

of a distribution The Annak of Stattsttcs, Vol. 3, pp 1163-

1174, 1975,

R. Jain and S. A. Routhier. Packet trains: Measurements and

a new model for Computer network traffic. IEEE Journal on

Selected Areas in Communications, Vol. 4, pp 9S6–995, 1986.

S. M. Klivansky, A. Mukherjee, and C. Song. On Long-Range

Dependence in NSFNET Traffic. Preprint, 1994.

M. F, Kratz and S. I. Resnick. The QQ-Estimator and Heavy

Tails. Preprint, 1995.

W. E. Leland and T, J Ott. Unix process behavior and load

balancing among loosely-coupled computers. In O. J. Boxma,

J.—W. Coben, and H. C. Tijms, editors, Teietrafic Analysts and

Computer Performance Evatuatzon, pp. 191–208, Amsterdam,

19S6, Elsevier Science Publishers B V.

W. E, Leland, M. S Taqqu, W. Willinger, and D. V. Wilson

On the self-similar nature of Ethernet traffic. A CM/SJGCOMM

Computer Commumcations Reuzew, Vol. 23, pp. 1S3–193, 1993.

Proceedings of the ACM/SIGCOMM’93, San Francisco, Septem-

ber 1993.

W. E, Leland, M. S. Taqqu, W. Willinger, and D. V, Wilson.

On the self-similar nature of Ethernet traffic (Extended Ver-

sion). IEEE/ACM Tr-ansacttons on Networking, Vol. 2, pp.

1–15, 1994.

H. Eriksson. Mbone: The Multicast Backbone. Comrnuntcatzons

o.f the ACM, Vol. 37, pp. 54–60, 1994.

B. B. Mandelbrot. Long-run linearity, locally Gaussian proceeses,

H-spectra and infinite variances. Inter-natzonal Economic Re-

vtew, Vol. 10, pp. 82–113, 1969.

B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman,

New York, 1983.

K. Meier-Hellstern, P. E. Wirth, Y.-L. Yan, and D. A. Hoeflin.

Traffic models for ISDN data users: Office Automation applica-
tion, In A, Jensen and V, B, Iversen, editors, Teletrr@c and

Datatrafic tn a Pemod of Change, Pr-oc of ITC13, Copen-

hagen, pp. 167-172, Amsterdam, 1991, Elsevier Science Publish-

ers B. V.

I. Norros. A storage model with self-similar input. Queueing

Systems, Vol. 16, pp. 3S7–396, 1994.

V. Paxson. Growth Trends in Wide-Area TCP Connections

IEEE Network, Vol. 8, pp. 8-17, 1994.

V. Paxson and S. Floyd. Wide-area traffic: The failure of Poisson

modeling. Proceedings of the ACM/SIG COMM’94, pp. 257–

268, 1994

P. Pruthi and A. Erramilli. Heavy-tailed on/off source behavior

and self-similar traffic. F%oc. IEEE ICC’95, Seattle, June 1995.

S. 1. Resnick and C. Starcia. Smoothing the Hill Estimator

Preprint, 1995.

G. Samorodnitsky and M. S. Taqqu. Stable .Non-Garmszczn Pro-

cesses: Stochastic Models wzth Infin%te Varzance. Chapman and

Hall, New York, London, 1994.

D. F, Swayne, D. Cook, and .4. Buja. XGobi: Interactive Dy-

namic Graphics in the X Window System with a Liuk to S.

1991 Proceedings of the Sect%on on Statzsttcal Graphtcs, pp.

1-8, 1991.

M. S. Taqqu and J. Levy. Using renewal processes to generate

long-range dependence and high variability In E. Eberlem and

M. S. Taqqu, editors, Dependence in Probabzl%t~ and Stattst%cs,

PP. 7+89, Boston, 1986. Birkhauser.
J W. Tukey and P. A Tukey Strips displaying empirical distri-
butions: 1. Textured Dot Strips. 13ellcor-e Z’echnzcal Memoran-

dum, 1990.


