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Fairness is a mathematical abstraction: in a multiprogramming environment, fairness abstracts
the details of admissible (“fair”) schedulers; in a distributed environment, fairness abstracts the
relative speeds of processors. We argue that the standard definition of fairness often is unnec-
essarily weak and can be replaced by the stronger, yet still abstract, notion of finitary fairness.
While standard weak fairness requires that no enabled transition is postponed forever, finitary
weak fairness requires that for every computation of a system there is an unknown bound k such
that no enabled transition is postponed more than k consecutive times. In general, the finitary
restriction fin(F ) of any given fairness requirement F is the union of all ω-regular safety properties
contained in F . The adequacy of the proposed abstraction is shown in two ways. Suppose we prove
a program property under the assumption of finitary fairness. In a multiprogramming environ-
ment, the program then satisfies the property for all fair finite-state schedulers. In a distributed
environment, the program then satisfies the property for all choices of lower and upper bounds
on the speeds (or timings) of processors. The benefits of finitary fairness are twofold. First, the
proof rules for verifying liveness properties of concurrent programs are simplified: well-founded
induction over the natural numbers is adequate to prove termination under finitary fairness. Sec-
ond, the fundamental problem of consensus in a faulty asynchronous distributed environment can
be solved assuming finitary fairness.
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1. INTRODUCTION

Formal methods for specification and verification offer a systematic approach to the
design and implementation of concurrent systems and have been demonstrated to be
useful in detecting logical errors in early stages of design (see Clarke and Wing [1996]
for a survey). A key component of a formal approach is the mathematical modeling
of concurrency. A popular abstraction for modeling concurrent computation is the
interleaving assumption. In this approach, a computation of a concurrent system
is obtained by letting, at each step, one of the enabled processes execute an atomic
instruction. If all interleaving computations of a system satisfy a property, then
the property holds for all implementations of the program, independent of whether
the tasks are multiprogrammed on the same processor and which scheduling policy
is used, or whether the system is distributed and what the speeds of different
processors are. Furthermore, the interleaving model is very simple, as it reduces
concurrency to nondeterminism.

The interleaving abstraction is adequate for proving safety properties of systems
(a safety property is of the form “something bad never happens,” for example,
mutual exclusion). However, it is usually not suitable to prove guarantee proper-
ties (a guarantee property is of the form “something good will eventually happen,”
for example, termination) or more general liveness properties. The traditional ap-
proach to establishing guarantee properties is to require that all fair computations,
instead of all computations, satisfy the property. Intuitively, fairness means that
no individual process is ignored forever. Since all reasonable implementations of
the system, whether in multiprogramming or in multiprocessing, are expected to
be fair, if we prove that a program satisfies a property under the assumption of
fairness, it follows that the property holds for all possible implementations of the
program.

While the theory of specification and verification using different forms of fair-
ness is well understood (e.g., see Lehman et al. [1982], Francez [1986], and Manna
and Pnueli [1991]), fairness has two major drawbacks. First, the mathematical
treatment of fairness, both in verification and in semantics, is complicated and re-
quires higher ordinals. Second, fairness is too weak to yield a suitable model for
fault-tolerant distributed computing. This is illustrated by the celebrated result of
Fischer, Lynch, and Paterson that, under the standard fairness assumption, pro-
cesses cannot reach agreement in an asynchronous distributed system if one process
fails. We quote from their paper [Fischer et al. 1985]:

These results do not show that such problems [distributed consensus] cannot
be solved in practice; rather, they point out the need for more refined models of
distributed computing that better reflect realistic assumptions about processor
and communication timings.

We propose one such “more refined” model by introducing the notion of finitary
fairness. We argue that finitary fairness (1) is sufficiently abstract to capture all
possible implementations, both in the context of multiprogramming and in the
context of distributed computing, and (2) does not suffer from either of the two
aforementioned disadvantages associated with the standard notion of fairness.
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1.1 Justification of Finitary Fairness

A fairness requirement is specified as a subset F of the set of all possible ways of
scheduling different processes of a program. Let us first consider a multiprogram-
ming environment, where all tasks are scheduled on a single processor. A scheduler
that meets a given fairness requirement F is a program whose language (i.e., set of
computations) is contained in F . The language of any program is a safety prop-
erty. Furthermore, if the scheduler is finite-state, then its language is ω-regular.
Thus, to capture all finite-state schedulers that implement F , it suffices to consider
the (countable) union of all ω-regular safety properties that are contained in F .
There are several popular definitions of F , such as weak fairness, strong fairness,
etc. [Francez 1986; Lehman et al. 1982]. For every choice of F , we obtain its finitary
version fin(F ) as the union of all ω-regular safety properties contained in F . In
the case of weak fairness F , we show that the finitary version fin(F ) is particularly
intuitive: while F prohibits a schedule if it postpones a task forever, fin(F ) also
prohibits a schedule if there is no bound on how many consecutive times a task
is postponed. In general, if the fairness requirement F is any ω-regular liveness
property, we show that the finitary version fin(F ) is still live (but not necessarily
ω-regular).

Now let us consider a distributed environment, where all tasks are executed
concurrently on different processors. Here, finitary fairness corresponds to the as-
sumption that the execution speeds of all processors stay within certain unknown,
but fixed, bounds. Formally, a distributed system can be modeled as a transition
system that imposes lower and upper time bounds on the transitions [Henzinger
et al. 1994]. We show that a timed transition system satisfies a property for all
choices of lower and upper time bounds iff the underlying untimed transition sys-
tem satisfies the same property under finitary weak fairness. This correspondence
theorem not only establishes the adequacy of finitary fairness for distributed sys-
tems, but in addition provides a method for proving properties of timed systems
whose timing is not known a priori.

To summarize, finitary fairness abstracts the details of fair finite-state schedulers
and the details of the independent speeds (timings) of processors with bounded
drift. The parametric definition of finitary fairness also lends itself to generaliza-
tions such as computable fairness: the computable version com(F ) of a fairness
requirement F is the (countable) union of all recursive safety properties that are
contained in F . In a multiprogramming environment, computable fairness abstracts
the details of fair computable schedulers; in a distributed environment, computable
fairness abstracts the independent speeds of processors whose drift is bounded by
any recursive function.

1.2 Benefits of Finitary Fairness

1.2.1 Program Verification. We address the problem of verifying that a program
satisfies a property under a finitary fairness requirement fin(F ). Since fin(F ) usu-
ally is not ω-regular, it may not be specifiable in temporal logic. This, however, is
not an obstacle for verification. For finite-state programs, we show that a program
satisfies a temporal-logic specification under fin(F ) iff it satisfies the specification
under F itself. This means that for finite-state programs, the move to finitary
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fairness does not call for a change in the verification algorithm.
For general programs, the proof rules for verifying liveness properties are simpli-

fied if finitary fairness is used. Suppose we wish to prove that a program terminates.
To prove that all computations of a program terminate, one typically identifies a
ranking (variant) function from the states of the program to the natural numbers
such that the rank decreases with every transition of the program. This method
is not complete for proving the termination of all fair computations. First, there
may not be a ranking function that decreases at every step. The standard com-
plete verification rule, rather, relies on a ranking function that never increases and
is guaranteed to decrease eventually [Francez 1986; Lehman et al. 1982]. For this
purpose, one needs to identify so-called “helpful” transitions that cause the ranking
function to decrease. Second, induction over the natural numbers is not complete
for proving fair termination, and one may have to resort to induction over ordinals
higher than ω.

We show that proving the termination of a program under finitary weak fairness
can be reduced to proving the termination of all computations of a transformed
program. The transformed program uses a new integer variable, with unspecified
initial value, to represent the bound on how many consecutive times an enabled
transition may be postponed. Since the termination of all computations of the
transformed program can be proved using a strictly decreasing ranking function on
the natural numbers, reasoning with finitary fairness is conceptually simpler than
reasoning with standard fairness.

1.2.2 Distributed Consensus. A central problem in fault-tolerant distributed
computing is the consensus problem, which requires that the nonfaulty processes of
a distributed system agree on a common output value [Pease et al. 1980]. Although
consensus cannot be reached in the asynchronous model if one process fails [Fis-
cher et al. 1985], in practice, consensus is achieved in distributed applications using
constructs like timeouts. This suggests that the asynchronous model with its stan-
dard fairness assumption is not a useful abstraction for studying fault-tolerance.
One proposed solution to this problem considers the unknown-delay model (also
called partially synchronous model) in which there is a fixed upper bound on the
relative speeds of different components, but this bound is not known a priori [Alur
et al. 1997; Dwork et al. 1988; Rhee and Welch 1992]. The asynchronous model
with the finitary fairness assumption is an abstract formulation of the unknown-
delay model. In particular, we prove that the asynchronous model with the finitary
fairness assumption admits a wait-free solution for consensus that tolerates an ar-
bitrary number of process failures, by showing that finitary fairness can replace the
timing assumptions of the solution of Alur et al. [1997].

The relationship between finitary fairness and the unknown-delay model is useful
for two reasons. First, since the unknown-delay model is already popular in the
distributed-computing community, it suggests that the proposed notion of finitary
fairness is a reasonable one. Second, it implies that the proof rules for establishing
temporal properties of programs under finitary fairness give, for the first time, a
general methodology for reasoning about systems in the unknown-delay model.
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1.3 Overview

The remainder of the article is organized as follows. Section 2 gives an informal
introduction to the definition of finitary fairness. Section 3 defines the operator
fin and presents its theoretical properties. In particular, it establishes connections
between finitary fairness and the model of timed transition systems with unknown
lower and upper bounds. Section 4 addresses verification under finitary fairness:
model checking of finite-state programs, and proof rules for general programs. In
particular, we show that proving termination of an arbitrary program under fini-
tary fairness can be reduced to proving the termination of a transformed program
without fairness assumptions. Section 5 illustrates the power of finitary fairness by
presenting a wait-free solution to the distributed consensus problem. We conclude
with Section 6, which summarizes the contributions.

2. INFORMAL MOTIVATION: BOUNDED FAIRNESS

Before introducing the general definition of finitary fairness (Section 3) and its
applications (Sections 4 and 5), we begin by motivating the finitary version of weak
fairness through the intuitive concept of bounded fairness. Consider the following
simple program P0 with a boolean variable x and an integer variable y:

initially x = true, y = 0;
repeat x := ¬x forever ‖ repeat y := y + 1 forever.

The program P0 consists of two processes, each with one transition. We use l
and r to denote the two transitions: the transition l complements the value of the
boolean variable x; the transition r increments the value of the integer variable y.
A computation of P0 is an infinite sequence of states, starting from the initial state
(x = true and y = 0), such that every state is obtained from its predecessor by
applying one of the two transitions. For the purpose of this example, a schedule is
an infinite word over the alphabet {l, r}. Each computation of P0 corresponds, then,
to a schedule, which specifies the order of the transitions that are taken during the
computation. The two processes of P0 can be executed either by multiprogramming
or in a distributed environment.

2.1 Multiprogramming

In a multiprogramming environment, the two processes of P0 are scheduled on a
single processor. A scheduler is a set of possible schedules. One typically requires
that the scheduler is “fair”; that is, it does not shut out one of the two processes
forever. Formally, a schedule is fair iff it contains infinitely many l transitions and
infinitely many r transitions; a scheduler is fair iff it contains only fair schedules.

Let F∞ ⊆ (l+r)ω be the set of fair schedules. If we restrict the set of computations
of the program P0 to those that correspond to fair schedules, then P0 satisfies a
property φ iff every computation of P0 whose schedule is in F∞ satisfies φ. For
instance, under the fairness requirement F∞, the program P0 satisfies the property

φ∞ : 23 (x = true) ∧ 23 even(y);

that is, in any fair computation, the value of x is true in infinitely many states, and
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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the value of y is even in infinitely many states.1 Note that there are computations
of P0 that correspond to unfair schedules and do not satisfy the formula φ∞. Thus,
the fairness assumption is necessary to establish that the program P0 satisfies the
property φ∞.

The fairness requirement F∞ is an abstraction of all admissible real-life sched-
ulers, namely, those that schedule each transition “eventually.” Any (nonproba-
bilistic) real-life scheduler, however, is finite-state (i.e., uses finitely many variables,
each of which can take only finitely many values) and therefore must put a bound
on this eventuality. Consider, for instance, a round-robin scheduler that schedules
the transitions l and r alternately. For round-robin schedulers, we can replace the
fairness requirement F∞ by the much stronger requirement F1 that contains only
two schedules, (lr)ω and (rl)ω . Under F1, the program P0 satisfies the property

φ1 : 23 (x = true ∧ even(y)),

which implies the property φ∞. We call F1 a 1-bounded scheduler. In general,
for a positive integer k, a k-bounded scheduler never schedules one transition more
than k times in a row. Formally, a schedule is k-bounded, for k ≥ 1, iff it contains
neither the subsequence lk+1 nor rk+1; a scheduler is k-bounded iff it contains only
k-bounded schedules (a similar definition is considered in Jayasimha [1988].

Let Fk be the set of k-bounded schedules. The assumption of k-boundedness
is, of course, not sufficiently abstract, because for any k, it is easy to build a fair
finite-state scheduler that is not k-bounded. So let us say a schedule is bounded iff it
is k-bounded for some positive integer k, and a scheduler is bounded iff it contains
only bounded schedules. Clearly, every fair finite-state scheduler is bounded. In
order to prove a property of the program for all implementations, then, it suffices
to prove the property for all bounded schedulers.

Let Fω =
⋃
k≥1 Fk be the set of bounded schedules. If we restrict the set of

computations of the program P0 to those that correspond to bounded schedules,
then P0 satisfies a property φ iff every computation of P0 whose schedule is in Fω
satisfies φ. We call Fω the finitary restriction of the fairness requirement F∞. Three
observations about Fω are immediate. First, the set Fω is a proper subset of F∞;
in particular, the schedule lrllrlllrllllr . . . is fair but unbounded, and therefore
belongs to F∞ \ Fω. Second, the set Fω itself is not a finite-state scheduler, but is
the countable union of all fair finite-state schedulers. Third, Fω is again a liveness
property, in the sense that a stepwise scheduler cannot go wrong by making any
finite number of scheduling decisions [Apt et al. 1988]: every finite word over {l, r}
can be extended into a bounded schedule.

Since the finitary fairness requirement Fω is stronger than the fairness require-
ment F∞, a program may satisfy more properties under Fω . Consider, for example,
the property

φω : 3 (x = true ∧ ¬power-of-2 (y)),

1The operators 2 and 3 are the standard temporal modalities of linear temporal logic. For a

state predicate p, an infinite sequence of states satisfies the formula 2 p (“always p”) if all states
satisfy p; the formula 3 p (“eventually p”) if some state satisfies p; and the formula 23 p (“always
eventually p”) if infinitely many states satisfy p. We refer the reader to Manna and Pnueli [1991]
for an introduction to temporal logic.
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where the state predicate power-of-2 (y) is true in a state iff the value of y is a
power of 2. If a computation of P0 does not satisfy φω , then it must be the case
that the transition l is scheduled only when power-of-2 (y) holds. It follows that
for every positive integer k, there is a subsequence of length greater than k that
contains only r transitions. Such a schedule does not belong to Fω , and hence the
program P0 satisfies the property φω under Fω. On the other hand, it is easy to
construct a fair schedule that does not satisfy φω, which shows that P0 does not
satisfy φω under F∞.2

2.2 Multiprocessing

In a distributed environment, the two processes of P0 are executed simultaneously
on two processors. While the speeds of the two processors may be different, one
typically requires of a (nonfaulty) processor that each transition consumes only
a finite amount of time. Again, the fairness requirement F∞ is an abstraction
of all admissible real-life processors, namely, those that complete each transition
“eventually.” Again, the fairness requirement F∞ is unnecessarily weak.

Assume that the transition l, executed on Processor I, requires at least time `l
and at most time ul, for two unknown rational numbers `l and ul with ul ≥ `l > 0.
Similarly, the transition r, executed on Processor II, requires at least time `r > 0
and at most time ur ≥ `r. Irrespective of the size of the four time bounds, there
is an integer k ≥ 1 such that both k · `l > ur and k · `r > ul. Each computation
corresponds, then, to a k-bounded schedule. It follows that finitary fairness is an
adequate abstraction for speed-independent processors. It should be noted that
finitary fairness is not adequate if the speeds of different processors can drift apart
without a constant bound. For this case, we later generalize the notion of finitary
fairness.

3. FORMAL PARAMETRIC DEFINITION: FINITARY FAIRNESS

3.1 Sets of Infinite Words

An ω-language over an alphabet Σ is a subset of the set Σω of all infinite words
over Σ. For instance, the set of computations of a program is an ω-language over
the alphabet of program states. Note that the alphabet Σ need not be finite.

3.1.1 Regularity. An ω-language is ω-regular iff it is recognized by a Büchi au-
tomaton, which is a nondeterministic finite-state machine whose acceptance condi-
tion is modified suitably so as to accept infinite words [Büchi 1962]. The class of
ω-regular languages is robust, with many alternative characterizations (see Thomas
[1990] for an overview of the theory of ω-regular languages). In particular, the set
of models of any formula of (propositional) linear temporal logic (PTL) is an ω-
regular language [Gabbay et al. 1980]. The set of computations of a finite-state
program is an ω-regular language. The set F∞ (Section 2) of fair schedules over
the alphabet {l, r} is an ω-regular language (23 l ∧ 23 r), and so is the set Fk of
k-bounded schedules, for every k ≥ 1.

2It should also be noted that the set Fω does not capture randomized schedulers. For, given a
randomized scheduler that chooses at every step one of the two transitions with equal probability,
the probability that the resulting schedule is in Fω is 0. On the other hand, the probability that
the resulting schedule is in F∞ is 1.
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3.1.2 Safety and Liveness. For an ω-language Π ⊆ Σω, let pref (Π) ⊆ Σ∗ be
the set of finite prefixes of words in Π. The ω-language Π is a safety property (or
limit-closed) iff for all infinite words w, if all finite prefixes of w are in pref (Π)
then w ∈ Π [Alpern et al. 1986]. Every safety property Π is fully characterized by
pref (Π). Since a program can be executed step by step, the set of computations
of a program is a safe ω-language over the alphabet of program states. A safety
property is ω-regular iff it is recognized by a Büchi automaton all of whose states
are accepting. For every k ≥ 1, the set Fk of k-bounded schedules is an ω-regular
safety property.

The ω-language Π is a liveness property iff pref (Π) = Σ∗ [Alpern and Schneider
1985]; that is, every finite word can be extended into a word in Π. The set F∞ of
fair schedules is an ω-regular liveness property.

3.1.3 Topological Characterization. Consider the Cantor topology on infinite
words: the distance between two distinct infinite words w = w0w1w2 . . . and w′ =
w′0w

′
1w
′
2 . . . is 1/2i, where i is the largest nonnegative integer such that wj = w′j for

all 0 ≤ j < i. The closed sets of the Cantor topology are the safety properties; the
dense sets are the liveness properties. All ω-regular languages lie on the first two-
and-a-half levels of the Borel hierarchy: every ω-regular language is in Fσδ ∩Gδσ.3

There is also a temporal characterization of the first two-and-a-half levels of the
Borel hierarchy [Manna and Pnueli 1990]. Let p be a past formula of PTL. Then
every formula of the form 2 p defines an F-set; every formula of the form 3 p, a
G-set; every formula of the form 23 p, a Gδ-set; and every formula of the form
32 p, an Fσ-set. For example, the set F∞ of fair schedules is a Gδ-set.

3.2 The Finitary Restriction of an ω-Language

Now we are ready to define the operator fin: the finitary restriction fin(Π) of an
ω-language Π is the (countable) union of all ω-regular safety properties that are
contained in Π. By definition, the finitary restriction of every ω-language is in Fσ.
Also, by definition, fin(Π) ⊆ Π. In the following, we list some additional properties
of the operator fin in the form of propositions.

Proposition 1. Let Π and Π′ be ω-languages. Then

(1 ) fin(fin(Π)) = fin(Π);
(2 ) fin is monotonic: if Π ⊆ Π′, then fin(Π) ⊆ fin(Π′); and
(3 ) fin distributes over intersection: fin(Π ∩Π′) = fin(Π) ∩ fin(Π′).

Proof. The first two assertions follow immediately from the definition of fin.
Since Π ∩ Π′ is contained in Π as well as in Π′, from the monotonicity property,
we have fin(Π ∩ Π′) ⊆ fin(Π) ∩ fin(Π′). To prove the inclusion fin(Π) ∩ fin(Π′) ⊆
fin(Π ∩ Π′), consider a word w ∈ fin(Π) ∩ fin(Π′). From the definition of fin,
there exist ω-regular safety properties Π1 ⊆ Π and Π′1 ⊆ Π′ such that w ∈ Π1 and
w ∈ Π′1. The class of safety properties is closed under intersection, and so is the

3The first level of the Borel hierarchy consists of the class F of closed sets and the class G of open
sets; the second level, of the class Gδ of countable intersections of open sets and the class Fσ
of countable unions of closed sets; the third level, of the class Fσδ of countable intersections of
Fσ-sets and the class Gδσ of countable unions of Gδ-sets.
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class of ω-regular languages. Hence, Π1 ∩Π′1 is an ω-regular safety property. Since
w ∈ Π1 ∩Π′1 and Π1 ∩Π′1 ⊆ Π ∩Π′, we have w ∈ fin(Π ∩Π′), and (3) follows.

The next proposition formalizes the claims we made about the example in Section 2.
It also shows that the finitary restriction of an ω-regular language is not necessarily
ω-regular.

Proposition 2. Let F∞ be the set of fair schedules from Section 2, and let Fω
be the set of bounded schedules. Then Fω is the finitary restriction of F∞ (that is,
Fω = fin(F∞)), and Fω is neither ω-regular nor safe.

Proof. Recall that Fω =
⋃
k≥1 Fk, and fin(F∞) is the union of ω-regular safety

properties contained in F∞. Each Fk is an ω-regular safety property and Fk ⊂ F∞.
Hence, Fω ⊆ fin(F∞).

Now consider an ω-regular safety property G contained in F∞. Suppose that G
is accepted by a Büchi automaton MG over the alphabet {l, r}. Since G is a safety
property, all states of MG are accepting. It suffices to prove that if MG has k states,
then G ⊆ Fk. Suppose not. Then there is a word w such that MG accepts w and w
contains k + 1 consecutive symbols of the same type, say l; that is, w = w1l

k+1w2

for w1 ∈ (l + r)∗ and w2 ∈ (l + r)ω . Since MG has only k states, it follows that
there is a state s of MG such that there is a path from the initial state to s labeled
with w1l

i for some 0 ≤ i ≤ k, and there is a cycle that contains s and all of whose
edges are labeled with l. This implies that MG accepts also the word w1l

ω, which
is not a fair schedule, a contradiction to the inclusion G ⊆ F∞.

Observe that, for each k ≥ 1, the schedule lk can be extended to a word in Fk,
and hence lk ∈ pref (Fω). However, lω 6∈ Fω, implying that Fω is not limit-closed.
Thus, Fω is not a safety property.

Now we prove that Fω is not ω-regular. Suppose that Fω is ω-regular. From the
closure properties of ω-regular languages, the set G = F∞ \ Fω of unbounded fair
schedules is also ω-regular. We know that G is nonempty (it contains the schedule
lrllrlllrllllr . . .). From properties of the ω-regular languages it follows that G
contains a word w such that w = w1w

ω
2 for two finite words w1, w2 ∈ (l+r)∗. Since

w ∈ F∞, the word w2 contains at least one l and one r symbol. This means that,
for k = |w1| + |w2|, the word w is k-bounded, a contradiction to the assumption
that w 6∈ Fω.

In other words, although Fω is a countable union of safety properties that are
definable in PTL, Fω itself is neither a safety property nor definable in PTL. To
define Fω in temporal logic, one would need infinitary disjunction. However, Fω is
a liveness property, and thus suitable as a fairness assumption. In general, when
applied to ω-regular properties, the operator fin preserves liveness. This is the
contents of the next proposition.

Proposition 3. If Π is an ω-regular language, then pref (fin(Π)) = pref (Π).

Proof. Since fin(Π) ⊆ Π and pref is monotonic, pref (fin(Π)) ⊆ pref (Π). To
prove the inclusion pref (Π) ⊆ pref (fin(Π)), suppose that Π is an ω-regular language
over Σ, and consider w ∈ pref (Π). From the ω-regularity of Π, it follows that there
is a word w′ ∈ Π such that w′ = w w1w

ω
2 for finite words w1, w2 ∈ Σ∗. The

language containing the single word w′ is ω-regular, safe, and contained in Π.
Hence w′ ∈ fin(Π), and therefore w ∈ pref (fin(Π)).

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.



1180 · R. Alur and T.A. Henzinger

This immediately leads to the following corollary.

Corollary 4. If Π is an ω-regular liveness property, then fin(Π) is live.

Observe that the language F∞ is ω-regular and live, and hence Fω is also live:
pref (Fω) = (l+ r)∗. This means that after any finite number of steps of executing
the programs, there is a way to produce an infinite execution that satisfies the
fairness requirement Fω , just as in case of the original requirement F∞. While we
have seen that the operator fin preserves safety (trivially) and liveness (Corollary 4)
for ω-regular languages, this is not the case in general.

Proposition 5.

(1 ) There is an ω-regular language Π so that fin(Π) is not ω-regular.
(2 ) There is a safety property Π so that fin(Π) is not safe.
(3 ) There is a liveness property Π so that fin(Π) is not live.

Proof. The first assertion follows immediately from Proposition 2.
For the second assertion, consider the infinite word w = lrllrlllrllllr . . . and

the ω-language Π′ = {w′rω | w′ is a finite prefix of w}. The ω-language Π′ is not
limit-closed; its limit closure is the safety property Π = Π′ ∪ {w}. We claim that
fin(Π) = Π′. To see that Π′ ⊆ fin(Π), observe that for every infinite word w′′ ∈ Π′,
the singleton set {w′′} is an ω-regular safety property. To see that w 6∈ fin(Π),
suppose that w ∈ G for some ω-regular safety property G ⊆ Π. But any Büchi
automaton accepting G must also accept an infinite word of the form w1w

ω
2 , where

w2 contains an l. This word is not in Π, a contradiction to G ⊆ Π.
For the third assertion, consider the ω-language Π of all words over the alphabet
{l, r} that cannot be written in the form w1w

ω
2 , for a finite word w1 ∈ (l+ r)∗ and

an infinite word w2 ∈ (l + r)ω . The ω-language Π is a liveness property, because
w′w ∈ Π for every finite word w′ ∈ (l+r)∗ and the infinite word w = lrllrlllrllllr . . .
We claim that fin(Π) = ∅, which is not a liveness property. Suppose that w′′ ∈
fin(Π) for some infinite word w′′; that is, w′′ ∈ G for some ω-regular safety property
G ⊆ Π. Then the Büchi automaton that accepts G also accepts some infinite word
of the form w1w

ω
2 , a contradiction to G ⊆ Π.

The operator fin is illustrated on some important ω-regular languages below:

fin(3p) = 3p;
fin(2p) = 2p;
fin(32p) = 32p;
fin(23p) = {w | ∃k: every subsequence of length k contains a p};
fin(23p→ 23q) = {w | ∃k: every subsequence with k p’s contains a q}.

3.3 Transition Systems: From Standard Fairness to Finitary Fairness

Concurrent programs, including shared-memory and message-passing programs,
can be modeled as transition systems [Manna and Pnueli 1991]. A transition system
P is a triple (Q, T,Q0), where Q is a set of states, T is a finite set of transitions,
and Q0 ⊆ Q is a set of initial states. Each state q ∈ Q is an assignment of values
to all program variables; each transition τ ∈ T is a binary relation on the states
(that is, τ ⊆ Q2). For a state q and a transition τ , let τ(q) = {q′ | (q, q′) ∈ τ}
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 6, November 1998.
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be the set of τ -successors of q. A computation q of the transition system P is an
infinite sequence of states such that q0 ∈ Q0 and such that for every position i ≥ 0,
there is a transition τ ∈ T with qi+1 ∈ τ(qi). We write Π(P ) for the set of compu-
tations of P .4 The set Π(P ) is a safe ω-language over Q. If Q is finite, then Π(P )
is ω-regular.

A transition τ is enabled at the ith position of a computation q iff τ(qi) is
nonempty, and τ is taken at the ith position of q iff qi+1 ∈ τ(qi). Without loss of
generality, we assume that the set of program variables contains for every transi-
tion τ ∈ T a boolean variable enabled(τ) and a boolean variable taken(τ), whose
values indicate, at each position of every computation, which transitions are en-
abled and which are taken. Let the scheduling alphabet ΣT be the (finite) set of
interpretations for these boolean variables; that is, ΣT is the power set of the set
{enabled(τ), taken(τ) | τ ∈ T }. Given a computation q of P , the schedule σ(q) of q
is the projection of q to the scheduling alphabet. The set of schedules of P , then,
is a safety property over ΣT .

A fairness requirement F for the transition system P is an ω-language over the
finite scheduling alphabet ΣT . The fairness requirement restricts the set of legal
computations of the program. Usually, F is an ω-regular liveness property [Francez
1986; Manna and Pnueli 1991]. The requirement of liveness ensures that, when
executing a program, a fairness requirement does not become infeasible after any
finite number of scheduling decisions [Apt et al. 1988].

In particular, the requirement of weak fairness WF for P is the set of all infinite
words w ∈ ΣωT such that for every transition τ ∈ T , there are infinitely many
positions i ≥ 0 with taken(τ) ∈ wi or enabled(τ) 6∈ wi; that is, no transition is
enabled forever without being taken. It is specified by the temporal-logic formula∧

τ∈T
( 32 enabled(τ) → 23 taken(τ) ).

The requirement WF is ω-regular and live.
The requirement of strong fairness SF for P is the set of all infinite words w ∈ ΣωT

such that for every transition τ ∈ T , if there are infinitely many positions i ≥ 0 with
enabled(τ) ∈ wi, then there are infinitely many positions j ≥ 0 with taken(τ) ∈ wj ;
that is, no transition is enabled infinitely often without being taken. It is a stronger
requirement than weak fairness (SF ⊂WF ) and is specified by the formula∧

τ∈T
( 23 enabled(τ) → 23 taken(τ) ).

The requirement SF is again ω-regular and live. However, while the weak-fairness
requirement WF is a Gδ-set; the strong-fairness requirement SF is neither in Gδ

nor in Fσ, but lies in Fσδ ∩Gδσ. Since both WF and SF are ω-regular liveness
properties, their finitary restrictions fin(WF ) and fin(SF ), which belong to Fσ, are
again live (Corollary 4).

The next theorem (a generalization of Proposition 2) shows that the finitary
restrictions of weak and strong fairness coincide with the appropriate notions of

4Note that we consider only infinite, or nonterminating, executions to simplify the presentation.
A terminating execution can be modeled as an infinite execution by letting the program execute
a dummy (stutter) transition infinitely many times in the terminal state.
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bounded fairness. Define a schedule w ∈ ΣωT to be weakly k-bounded , for a positive
integer k, iff for all transitions τ of P , the transition τ cannot be enabled for
more than k consecutive positions without being taken; that is, for all positions
i ≥ 0, there is a position j, with i ≤ j ≤ i + k, such that either taken(τ) ∈ wj or
enabled(τ) 6∈ wj . A schedule is weakly bounded iff it is weakly k-bounded for some
k ≥ 1. Similarly, a schedule w is strongly k-bounded iff for all transitions τ , if a
subsequence of w contains k distinct positions where τ is enabled, then it contains
a position where τ is taken; that is, for all positions 0 ≤ i1 < i2 < · · · < ik, if
enabled(τ) ∈ wij for all 1 ≤ j ≤ k, then taken(τ) ∈ wi for some position i with
i1 ≤ i ≤ ik. A schedule is strongly bounded iff it is strongly k-bounded for some
k ≥ 1.

Theorem 6. Consider a transition system with the transition set T and the weak
and strong fairness requirements WF and SF . For all infinite words w over ΣT ,
w ∈ fin(WF ) iff w is weakly bounded, and w ∈ fin(SF ) iff w is strongly bounded.

Proof. We will consider only the case of weak fairness. The set of weakly k-
bounded schedules, for a fixed k, is defined by the formula∧

τ∈T
2 ( wf (τ) ∨ ©wf (τ) ∨ ©2wf (τ) ∨ · · · ∨ ©kwf (τ) ),

where wf (τ) stands for the disjunction taken(τ) ∨ ¬enabled(τ). It follows that the
set of weakly k-bounded schedules is safe and ω-regular, for all k ≥ 0. Thus, every
weakly bounded schedule is in fin(WF ).

Now consider an ω-regular safety property G contained in WF . Suppose that G
is accepted by a Büchi automaton MG over the alphabet ΣT . Since G is a safety
property, all states of MG are accepting. It suffices to prove that if MG has k
states, then every schedule in G is weakly k-bounded. Suppose not. Let us say
that a symbol of ΣT is weakly unfair to a transition τ if it contains enabled(τ)
but does not contain taken(τ). By assumption, there is a word w accepted by MG

and a transition τ such that w contains k + 1 consecutive symbols all of which are
weakly unfair to τ . Since MG has only k states, it follows that there is a cycle in
MG all of whose edges are labeled with symbols that are weakly unfair to τ . This
implies that MG accepts a schedule that is not weakly fair to τ , a contradiction to
the inclusion G ⊆WF .

Observe that for the example program P0 of Section 2, we have T = {l, r}, the
propositions enabled(l) and enabled(r) are true in every state, and the fairness
requirement F∞ equals both WF and SF . This implies that there is a transition
system with two transitions such that both fin(WF ) and fin(SF ) are neither ω-
regular nor safe.

A computation q of the transition system P is fair with respect to the fairness
requirement F iff σ(q) ∈ F . We write ΠF (P ) for the set of fair computations of P .
A specification Φ for the transition system P is a set of infinite words over the
state alphabet Q. The transition system P satisfies the specification Φ under the
fairness requirement F iff ΠF (P ) ⊆ Φ. If we prove that P satisfies Φ under the
fairness requirement F , then P satisfies Φ for all implementations of F ; if we prove
that P satisfies Φ under the finitary restriction fin(F ), then P satisfies Φ for all
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finite-state implementations of F . In Section 4, we show that proving the latter is
conceptually simpler than proving the former.

3.4 Timed Transition Systems: From Timing to Finitary Fairness

Standard models for real-time systems place lower and upper time bounds on the
duration of delays [Henzinger et al. 1994; Merritt et al. 1991]. Since the exact values
of the time bounds are often not known a priori, it is desirable to design programs
that work for all possible choices of time bounds. It has long been realized that
the timing-based model with unknown delays is different from, and often more
appropriate than, the asynchronous model (with standard fairness) [Alur et al.
1997; Dwork et al. 1988; Rhee and Welch 1992]. We show that the unknown-delay
model is equivalent to the asynchronous model with finitary fairness.

Real-time programs can be modeled as timed transition systems [Henzinger et al.
1994]. A timed transition system P`,u consists of a transition system P = (Q, T,Q0)
and two functions ` and u from the set T of transitions to the set Q>0 of pos-
itive rational numbers. The function ` associates with each transition τ a lower
bound `τ > 0; the function u associates with τ an upper bound uτ ≥ `τ . The in-
terleaving semantics of transition systems is extended to timed transition systems
by labeling every state of a computation with a real-valued timestamp. A time
sequence t is an infinite nondecreasing and unbounded sequence of nonnegative
real numbers. For t to be consistent with a given computation q of the underlying
transition system P , we require that a transition τ has to be enabled continuously
at least for time `τ before it is taken, and it must not stay enabled continuously
longer than time uτ without being taken. We assume that the transition from state
qi to state qi+1, for all i ≥ 0, is taken at time ti+1; that is, if a transition τ is
enabled at all positions k of the computation q, for i ≤ k ≤ j, and τ is not taken
at any position k, for i ≤ k < j, then τ is enabled continuously for time tj+1 − ti.
Therefore, the time sequence t is consistent with the computation q iff for every
transition τ ∈ T ,

[Lower bound ] if taken(τ) ∈ qj , then for all positions i with 0 ≤ i < j
and tj+1 − ti < `τ , enabled(τ) ∈ qi and taken(τ) 6∈ qi;

[Upper bound ] if enabled(τ) ∈ qk for all positions k with i ≤ k ≤ j, and
taken(τ) 6∈ qk for all positions k with i ≤ k < j, then tj+1 − ti ≤ uτ .

A timed computation (q, t) of the timed transition system P`,u consists of a com-
putation q of P together with a consistent time sequence t. The first component
of each timed computation of P`,u is an untimed computation of P`,u. We write
Π`,u(P ) for the set of untimed computations of P`,u. In general, Π`,u(P ) is a strict
subset of Π(P ); that is, the timing information ` and u plays the same role as
fairness, namely, the role of restricting the admissible interleavings of enabled tran-
sitions. If Q is finite then, like Π(P ), the set Π`,u(P ) is ω-regular [Alur and Dill
1994] (but not necessarily safe).

While the timed computations are required for checking if a system satisfies a
specification that refers to time, the untimed computations suffice for checking if
the system satisfies an untimed specification Φ ⊆ Qω: the timed transition system
P`,u satisfies the specification Φ iff Π`,u(P ) ⊆ Φ. In the unknown-delay model,
we do not know the bound functions ` and u, but rather wish to prove that a
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transition system P satisfies the specification Φ for all possible choices of bound
functions; that is, we wish to prove that the union

⋃
`,u Π`,u(P ) is contained in Φ.

The following theorem shows that in order to verify a system in the unknown-delay
model, it suffices to verify the system under finitary weak fairness; that is, the union⋃
`,u Π`,u(P ) is the same as the set Πfin(WF)(P ).

Theorem 7. Let P be a transition system with transition set T ; let WF be
the weak-fairness requirement for P ; and let q be a computation of P . Then q ∈
Πfin(WF)(P ) iff there are two functions ` and u from T to Q>0 such that q ∈
Π`,u(P ).

Proof. Consider a weakly bounded computation q ∈ Πfin(WF)(P ). From The-
orem 6, there is a positive integer k such that the schedule corresponding to q is
weakly k-bounded. Let the bound functions be defined as `τ = 1 and uτ = k + 1
for every transition τ . Consider the time sequence t = (0, 1, 2, 3, . . .) (i.e., ti = i
for all i ≥ 0). Since time increases by 1 at every position, it is clear that the lower
bound requirement is trivially satisfied. Since q is weakly k-bounded, no transition
is enabled for more than k consecutive positions (and hence, for more than k + 1
time units) without being taken. Thus, the consistency requirements are satisfied,
and (q, t) is a timed computation of P`,u, implying q ∈ Π`,u(P ).

To prove the converse, suppose that q ∈ Π`,u(P ) for some choice of ` and u. Let t
be a time sequence such that (q, t) is a timed computation of P`,u. Let the number
of transitions in T be n. Let `∗ be the (nonzero) minimum of all the lower bounds
`τ , and let u∗ be the (finite) maximum of all the upper bounds uτ . Let k be an
integer such that k > n · u∗/`∗. We claim that the schedule corresponding to q is
weakly k-bounded. Suppose not. Then there is a transition τ and a position i ≥ 0
such that τ is enabled but not taken at all positions j of q with i ≤ j ≤ i + k. At
every position of q, taken(τ ′) holds for some transition τ ′. Since k > n · u∗/`∗, it
follows that there is a transition τ ′ such that taken(τ ′) holds at more than u∗/`∗

distinct positions j of q with i ≤ j ≤ i+ k. Since `(τ ′) ≥ `∗, from the assumption
that t satisfies the lower-bound requirement of consistency, we have ti+k − ti > u∗,
and therefore ti+k − ti > u(τ). But this implies that t violates the upper-bound
requirement of consistency, a contradiction. In conclusion, q is weakly k-bounded,
and hence q ∈ Πfin(WF)(P ).

We point out that all lower bounds are, although arbitrarily small, nonzero, and
all upper bounds are finite. This is necessary, and justified because we universally
quantify over all choices of bound functions. We also point out that reasoning in
a timing-based model with specific bound functions—i.e., reasoning about timed
computations—can be significantly more complicated than untimed reasoning [Hen-
zinger et al. 1994]. Our analysis shows, therefore, that the verification of specifica-
tions that do not refer to time is conceptually simpler in the unknown-delay model
than in the known-delay model.

3.5 The Gap between Finitary and Standard Fairness

The definition of finitary fairness replaces a given ω-language Π by the union of all
ω-regular safety properties contained in Π. While this definition seems satisfactory
in practice, there are obvious mathematical generalizations. We only point to some
of the possibilities, without developing them in detail.
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First, observe that the (uncountable) union of all safety properties contained in
Π is Π itself. Not all safety properties, however, are definable by programs. We can
obtain the computable restriction com(Π) of Π by taking the (countable) union of
all recursively enumerable (r.e.) safety properties that are contained in Π (an ω-
language is r.e. iff it is generated by a nonhalting Turing machine). Clearly, com(Π)
captures all possible implementations of Π, finite-state or not, and typically falls
strictly between fin(Π) and Π. Computable fairness, however, does not have the
two advantages of finitary fairness, namely, simpler verification rules and a solvable
consensus problem.

There are also alternatives between fin(Π) and com(Π), which capture all imple-
mentations of Π with limited computing power. Recall the sample program P0 from
Section 2. For every schedule in fin(Π), there is a bound, unknown but fixed, on how
long a transition can be postponed. Suppose that we let this bound vary and call
a schedule linearly bounded iff the bound is allowed to increase linearly with time.
While every bounded schedule is linearly bounded, the schedule lrllrlllrllllr . . . is
linearly bounded but not bounded. In general, given a function f(n) over the nat-
ural numbers, a schedule w ∈ (l + r)ω is O(f)-bounded iff there exists a constant
k such that each of the two transitions l and r appears at least once in the subse-
quence wiwi+1 . . . wi+k·f(i), for all i ≥ 0. Finitary fairness, then, is O(1)-fairness.
Moreover, for any fairness requirement F , we obtain a strict hierarchy of stronger
fairness requirements f(F ), where f(F ) is the union of all O(f)-bounded schedulers
that are contained in F . The algorithm presented in Section 5 can be modified so
that it solves distributed consensus under the fairness requirement f(F ) for any
fixed, computable choice of f .

4. APPLICATION: PROGRAM VERIFICATION

We now consider the problem of verifying that a program satisfies a specification
under a finitary fairness assumption.

4.1 Model Checking

If all program variables range over finite domains, then the set of program states is
finite. The problem of verifying that such a finite-state program satisfies a temporal-
logic specification is called model checking [Clarke and Emerson 1981]. Automated
tools for model checking have been used successfully to check the correctness of
digital hardware and communication protocols [Clarke and Kurshan 1996]. Here
we examine the effects of finitary fairness on the algorithms that underlie these
tools.

4.1.1 Untimed Systems. Consider a transition system P with finite state set Q.
The set Π(P ) ⊆ Qω of computations of P is an ω-regular safety property. Since
Q is finite, we can choose the scheduling alphabet to be Q itself. Let F ⊆ Qω be
an ω-regular fairness requirement, and let Φ ⊆ Qω be an ω-regular specification
(given, say, by a PTL formula or a Büchi automaton). The verification question,
then, is a problem of language inclusion: P satisfies Φ under F iff Π(P ) ∩ F ⊆ Φ.
This problem can be solved algorithmically, because all involved languages are
ω-regular. Assuming finitary fairness, we need to check the language inclusion
Π(P )∩fin(F ) ⊆ Φ. It is, however, not obvious how to check this, because fin(F ) is
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not necessarily ω-regular. The following theorem shows that finite-state verification
under finitary fairness can be reduced to verification under standard fairness.

Theorem 8. For all ω-regular languages Π1 and Π2, the set Π1 ∩ Π2 is empty
iff fin(Π1) ∩Π2 is empty.

Proof. We have fin(Π1) ∩ Π2 ⊆ Π1 ∩ Π2. Hence, if Π1 ∩ Π2 is empty, then so
is fin(Π1) ∩ Π2. Now suppose that Π1 ∩ Π2 is nonempty. Since both Π1 and Π2

are ω-regular, so is Π1 ∩Π2, and hence, it contains a word w such that w = w1w
ω
2

for (finite) strings w1 and w2. The language containing the single word w is safe,
ω-regular, and contained in Π1. Hence w ∈ fin(Π1), and therefore w ∈ fin(Π1)∩Π2,
implying that fin(Π1) ∩Π2 is nonempty.

As a corollary we obtain that for model checking under finitary fairness we can
continue to use the algorithms that have been developed to deal with standard
fairness.

Corollary 9. Let P be a transition system with finite state set Q, and let
F,Φ ⊆ Qω be two ω-regular languages. Then P satisfies the specification Φ under
the fairness requirement fin(F ) iff P satisfies Φ under the fairness requirement F .

Proof. We want to show that Π(P ) ∩ fin(F ) ⊆ Φ iff Π(P ) ∩ F ⊆ Φ. Let G be
the ω-language Π(P )∩ (Qω \Φ). From the assumption that P is finite-state, Π(P )
is ω-regular. Since Φ is also ω-regular, so is G. Now Π(P ) ∩ F ⊆ Φ iff F ∩ G is
empty iff fin(F ) ∩G is empty (by Theorem 8) iff Π(P ) ∩ fin(F ) ⊆ Φ.

4.1.2 Timed Systems. Consider a timed transition system P`,u with finite state
set Q. Suppose that the specification does not refer to time and is given as an
ω-regular language Φ ⊆ Qω. To verify that P`,u satisfies Φ, we need to check
the inclusion Π`,u(P ) ⊆ Φ. This problem can be solved by constructing a Büchi
automaton that recognizes the ω-regular language Π`,u(P ) [Alur and Dill 1994].
The method is applicable, however, only when the bound functions ` and u are fully
specified. If the bound maps are not fully specified, we obtain a parametric timing-
verification problem [Alur et al. 1993]. The bound functions {`τ , uτ | τ ∈ T } are
viewed as parameters: values of these parameters are not known, but are required
to satisfy certain constraints (such as `τ1 = uτ1 or uτ2 < `τ3). The parametric
timing-verification problem, then, is specified by

(1) a finite-state transition system P = (Q, T,Q0),
(2) an ω-regular specification Φ ⊆ Qω, and
(3) a set LU consisting of pairs (`, u) of functions from T to Q>0.

The verification problem is to check that, for every choice of (`, u) ∈ LU , the
resulting timed transition system P`,u satisfies the specification Φ. Define

ΠLU (P ) =
⋃

(`,u)∈LU
Π`,u(P ).

Then, we want to check whether ΠLU (P ) ⊆ Φ. Theorem 8, together with Theo-
rem 7, implies that the parametric timing-verification problem is decidable when
the set LU consists of all function pairs.
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Corollary 10. Let P be a transition system with finite state set Q and tran-
sition set T ; let Φ ⊆ Qω be an ω-regular language; and let LU = [T 7→ Q>0]2 be
the set of all pairs of functions from T to Q>0. The parametric timing-verification
problem of checking the inclusion ΠLU (P ) ⊆ Φ is decidable.

This is in contrast to the general parametric timing-verification problem, which
is undecidable if the set LU constrains, in simple ways, the legal choices of the
bound functions [Alur et al. 1993]. For instance, if LU requires that `τ = uτ for
each transition τ ∈ T (i.e., LU = {(`, `) | ` ∈ [T 7→ Q>0]}), then the parametric
timing-verification problem is undecidable.

4.2 Proof Rules for Termination

We now turn to the verification of programs that are not finite-state. Since safety
specifications are proved independent of any fairness assumptions, we need to be
concerned only with liveness specifications. We limit ourselves to proving the ter-
mination of programs (or, equivalently, to proving specifications of the form 3 p for
a state predicate p) under finitary weak fairness. It is straightforward to extend
the proposed method to the verification of arbitrary temporal-logic specifications
under the finitary versions of both weak and strong fairness.

4.2.1 Total Termination versus Just Termination. Let P = (Q, T,Q0) be a
transition system. The standard method for proving the termination of sequential
deterministic programs can be adopted to prove that all computations of the (non-
deterministic) transition system P terminate, which is called the total termination
of P . Essentially, we need to identify a well-founded domain (W,≺) and a ranking
(variant) function from the program states to W such that the rank decreases with
every program transition. As an example, consider the rule T from Lehman et
al. [1982]:

Rule T for proving total termination. Find a ranking function ρ from
Q to a well-founded domain (W,≺), and find a state predicate R ⊆ Q.
Then show

(T1) Q0 ⊆ R and
(T2) for all states q, q′ ∈ Q and all transitions τ ∈ T , if R(q)

and q′ ∈ τ(q), then R(q′) and ρ(q′) ≺ ρ(q).

The rule T is complete for proving total termination; that is, all computations of
a transition system P terminate iff the rule T is applicable [Lehman et al. 1982].
Furthermore, it is always sufficient to choose the set N of natural numbers as the
well-founded domain W .

Now consider the requirement that all weakly fair computations of P terminate,
which is called the just termination of P . While the rule T is obviously sound
for proving just termination, it is not complete. The problem is that there may
not be a ranking function that decreases with every program transition. The stan-
dard solution is to identify a ranking function that never increases and which is
guaranteed to decrease eventually. The decrease is caused by so-called “helpful”
transitions, whose occurrence is ensured by the weak-fairness requirement. As an
example, consider the rule J from Lehman et al. [1982]:
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λ = 0 λ = 1
x = 0

e3 : x > 0?

e2

e4 : x > 0→ x := x− 1

e1 : x := x+ 1

Fig. 1. Program P1.
.

Rule J for proving just termination. Find a ranking function ρ from Q
to a well-founded domain (W,≺), and find a set Rτ of state predicates,
one for each transition τ ∈ T . Let R be the union of all Rτ for τ ∈ T .
Show for all states q, q′ ∈ Q and all transitions τ, τ ′ ∈ T :

(J1) Q0 ⊆ R;
(J2) if q ∈ R and q′ ∈ τ(q), then q′ ∈ R and ρ(q′) � ρ(q);
(J3) if q ∈ Rτ and q′ ∈ τ(q), then ρ(q′) ≺ ρ(q);
(J4) if q ∈ Rτ and q′ ∈ τ ′(q) and ρ(q) = ρ(q′), then q′ ∈ Rτ ;
(J5) if q ∈ Rτ and some transition is enabled in q, then τ is

enabled in q.

The rule J is complete for proving just termination: all weakly fair computations of
a transition system P terminate iff the rule J is applicable. Completeness, however,
no longer holds if we require the well-founded domain to be the set N of natural
numbers: there are transition systems for which transfinite induction over ordinals
higher than ω is needed to prove just termination.

4.2.2 An Example. Before we present the method for proving termination of all
finitarily fair computations, let us consider an example. Consider the transition
system P1 of Figure 1. A state of the program P1 is given by the values of its two
variables: the location variable λ ranges over {0, 1}, and the data variable x is a
nonnegative integer; initially λ = x = 0. The four transitions e1, e2, e3, e4 are as
shown in the figure.

We want to prove that all weakly fair computations of P1 terminate. Initially
λ = 0, and both transitions e1 and e2 are continuously enabled. Fairness to e2

ensures that eventually λ = 1. Since e4 is enabled as long as x is positive, and
decrements x each time, fairness to e4 ensures that eventually x = 0, resulting in
termination. To prove termination formally, we apply the rule J. For the well-
founded domain, we choose the set N ∪ {ω} of natural numbers together with the
ordinal ω. Choose both Re1 and Re3 to be the empty set; a state (λ, x) belongs
to Re2 iff λ = 0, and belongs to Re4 iff λ = 1. The ranking function is defined by
ρ(0, x) = ω and ρ(1, x) = x. The transitions e1 and e3 leave the rank unchanged,
while e2 and e4 cause a decrease. The reader can check that the five premises (J1)–
(J5) of the rule J are indeed satisfied. Notice that there is no bound on the number
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λ = 0
x = c = 0

λ = 1

e4 : x > 0→ x := x− 1; c := 0

e2

e1 : x < b→ x := x+ 1 e3 : x > 0 ∧ c < b→ c := c+ 1

Fig. 2. Transformed program fin(P1).

of steps, as a function of the initial values of the variables, before P1 terminates.
This unbounded termination is what makes the mathematical treatment of fairness
difficult.

Proving the termination of all finitary weakly fair computations of P1—that is,
proving the finitary just termination of P1—is conceptually simpler. Recall that for
every computation in fin(WF ), there is an integer k such that a transition cannot
be enabled continuously for more than k steps without being taken (Theorem 6).
It follows that, under finitary weak fairness, P1 must terminate within a bounded
number of steps, where the bound depends on the unknown constant k. To capture
this intuition, we transform the program P1 by introducing the two auxiliary vari-
ables b and c. The initial value of the variable b is an unspecified positive integer,
and the program transitions do not change its value. The integer variable c is used
to ensure that no transition is enabled for more than b steps without being taken.
We thus obtain the new program fin(P1) of Figure 2.

The original program P1 terminates under the finitary weak-fairness requirement
fin(WF ) iff all computations of the transformed program fin(P1) terminate. Thus,
we have reduced the problem of proving the finitary just termination of P1 to the
problem of proving the total termination of fin(P1). Hence, the simple rule T with
induction over the natural numbers is sufficient to prove finitary just termination.
A state of fin(P1) is a tuple (λ, x, c, b). To apply the rule T, we choose the set R to
be the set of reachable states: (0, x, c, b) ∈ R iff c = 0 and x ≤ b; and (1, x, c, b) ∈ R
iff c ≤ b and x ≤ b. The ranking function is a mapping from R to the natural
numbers defined by ρ(0, x, 0, b) = 2b2 + 2b + 1 − x and ρ(1, x, c, b) = 2bx + b − c.
The reader should check that every transition, applied to any state in R, causes
the ranking function to decrease.

Notice that the transformed program fin(P1) has infinitely many initial states,
but for any given initial state, it terminates within a bounded number of steps.
Consequently, fin(P1) does not suffer from the problems caused by unbounded
termination. The trade-off between proving just termination of P1 and total ter-
mination of fin(P1) should be clear: while the rule J used for the former is more
complex than the rule T used for the latter, the program fin(P1) is more complex
than P1. This is similar in spirit to proving fair termination by introducing explicit
schedulers [Apt et al. 1984].
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4.2.3 The Finitary Transformation of a Program. We now present a generic
transformation for proving the finitary just termination of a transition system P =
(Q, T,Q0) using the rule T. Let T consist of m transitions τ1, . . . , τm. The finitary
transformation fin(P ) of the transition system P is obtained by introducing a
new positive integer variable b (the “bound”), and for each transition τj , where
1 ≤ j ≤ m, a new nonnegative integer variable cj (the “counters”). Thus, the state
space of fin(P ) is Q × N>0 × Nm. The initial value of the bound b is arbitrary;
the initial value of each counter cj is 0. Thus, the set of initial states of fin(P ) is
Q0×N>0×{0}m. For every transition τ ∈ T , the transition system fin(P ) contains
a transition fin(τ) such that (q′, b′, c′1, . . . , c′m) ∈ fin(τ)(q, b, c1, . . . , cm) iff

(1) q′ ∈ τ(q),

(2) b′ = b, and

(3) for all 1 ≤ j ≤ m, if τj(q) is empty or q′ ∈ τj(q), then c′j = 0; else cj < b and
c′j = cj + 1.

The following theorem establishes the transformation fin together with the simple
rule T as a sound and complete proof method for finitary just termination.

Theorem 11. The finitary weakly fair computations of the transition system P
terminate iff all computations of the transition system fin(P ) terminate.

Proof. Suppose that the program fin(P ) has a nonterminating computation q.
Consider the projection q′ of q on the state space of P . From the transition rules
of fin(P ), it is clear that q′ is a computation of P . The value of the bound variable
b stays unchanged throughout q; let it be k. Furthermore, cj ≤ k is an invariant
over the computation q for all 1 ≤ j ≤ m. Since for each transition τj , the counter
variable cj is incremented each time τj is enabled but not taken, it follows that the
computation q′ is weakly k-bounded. Hence, P has a weakly fair nonterminating
computation.

Conversely, consider a weakly fair nonterminating computation q of P . From
Theorem 6, the computation q is weakly k-bounded for some k. Define the sequence
q′ over the state space of fin(P ) as follows. For all positions i ≥ 0, let q′i =
(qi, k, ci1, . . . , cim) be such that cij is the maximal nonnegative integer n ≤ i such
that the transition τj is enabled but not taken at all positions n′ with i−n ≤ n′ < i.
It is easy to check that, since q is weakly k-bounded, if the transition τj is enabled
but not taken at position i, then cij < k. Consequently, q′ is a (nonterminating)
computation of fin(P ).

Thus, the language Πfin(WF)(P ) of the finitary weakly fair computations of the
transition system P is the projection of the language Π(fin(P )) of the transformed
transition system fin(P ). It is known that given a transition system P and a
fairness requirement F , there exists a transition system P ′ such that ΠF (P ) =
Π(P ′) [Vardi 1987]. This transformation, however, requires uncountably many
states (the transformed system P ′ has one initial state for every fair computation
in F ) and does not yield a proof principle for which well-founded induction over N
is adequate.
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5. APPLICATION: DISTRIBUTED CONSENSUS

We consider the consensus problem in a shared-memory model where the only
atomic operations allowed on a shared register are read and write. Formally, the
consensus problem is defined as follows. There are n processes Pi, for 1 ≤ i ≤ n,
each with a boolean input value ini ∈ {0, 1}. The process Pi decides on the value
v ∈ {0, 1} by executing the statement decide(v). To model failures, we introduce a
special transition fail i for each process. The transition fail i is enabled only if the
process Pi has not yet decided on a value. When Pi takes the transition fail i, all
of its transitions are disabled, and Pi stops participating.

A solution to the consensus problem must satisfy agreement (that is, no two
processes decide on conflicting values) and validity (that is, if a process decides
on the value v, then v is equal to the input value of some process). Apart from
these two safety properties, we want the nonfailing processes to decide eventually:
wait-freedom asserts that each process Pi eventually either decides on some value or
fails. Thus a process must not prevent another process from reaching a decision, and
the algorithm must tolerate any number of process failures. The implicit fairness
assumption in the asynchronous model is the weak-fairness requirement WF for
all program transitions except the newly introduced fail i transitions. It is known
that, even for n = 2, there is no program that satisfies all three consensus properties
under the weak-fairness requirement WF [Fischer et al. 1985; Loui and Abu-Amara
1987].

On the other hand, consensus can be solved in the unknown-delay model, where
it is assumed that there is an upper bound ∆ on memory-access time, which is
unknown to the processes a priori: a solution is required to work for all values
of ∆ [Alur et al. 1997]. We show that the consensus algorithm of Alur et al. [1997]
for the unknown-delay model solves, in fact, consensus under the finitary weak-
fairness requirement fin(WF ). The algorithm is shown in Figure 3. The algorithm
proceeds in rounds and uses the following shared data structures: an infinite two-
dimensional array x[∗, 2] of bits and an infinite array y[∗] whose elements have
the value ⊥, 0, or 1. The decision value (i.e., the value that the processes decide
on) is written to the shared bit out, which initially has the value ⊥. In addition,
each process Pi has a local register vi, which contains its current preference for the
decision value, and a local register ri, which contains its current round number.

If all processes in a round r have the same preference v, then the bit x[r,¬v]
is never set to 1, and consequently, processes decide on the value v in round r.
Furthermore, if a process decides on a value v in round r, then y[r] is never set
to the conflicting value ¬v, and every process that reaches round r + 1 has the
preference v for that round. This ensures the agreement property (see Alur et
al. [1997] for more details of the proof). It is easy to check that if all processes
have the same initial input v, then no process will ever decide on ¬v, implying the
validity property.

It is possible that two processes with conflicting preferences for round r cannot
resolve their conflict in round r, and proceed to round r + 1 also with conflicting
preferences. This happens only if both of them find y[r] =⊥ first (line 3), and one of
them proceeds and chooses its preference for the next round (line 7) before the other
one finishes the assignment to y[r]. The finitary weak-fairness requirement ensures
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Shared registers: initially out =⊥, y[1..] =⊥, x[1..,0..1] = 0;
Local registers: initially ri = 1, vi = ini;

1. while out =⊥ do
2. x[ri, vi] := 1;
3. if y[ri] =⊥ then y[ri] := vi fi;
4. if x[ri,¬vi] = 0 then out := vi
5. else for j = 1 to ri do skip od;
6. vi := y[ri];
7. ri := ri + 1
8. fi
9. od;
10. decide(out).

Fig. 3. Consensus, assuming finitary weak fairness (program for process Pi with input ini).

that this behavior cannot be repeated in every round. In every finitary weakly fair
computation, there is a bound k such that every process that has neither failed
nor terminated takes a step at least once every k steps. Once the round number
exceeds the (unknown) bound k, while a process is executing its for loop, all other
processes are forced to take at least one step. This suffices to ensure termination.

Theorem 12. The program of Figure 3 satisfies the properties of agreement,
validity, and wait-freedom under the finitary weak-fairness requirement fin(WF ).

By contrast, the program does not satisfy wait-freedom under the standard weak-
fairness requirement WF . Also observe that the algorithm uses potentially un-
bounded space, and therefore is not a finite-state program. Corollary 9, together
with the impossibility result for consensus in the asynchronous shared-memory
model, implies that there is no algorithm that uses a fixed number of bounded
registers and solves consensus under finitary fairness.

Theorem 13. For two processes, there is no algorithm that uses finite mem-
ory and satisfies the properties of agreement, validity, and wait-freedom under the
finitary weak-fairness requirement fin(WF ) (or equivalently, in the unknown-delay
model).

The unknown-delay model of Dwork et al. [1988] consists of distributed processes
communicating via messages, where the delivery time for each message is bounded,
but is not known a priori. They establish bounds on the number of process failures
that can be tolerated by consensus protocols under various fault models. By Theo-
rem 7, these bounds can also be established using finitary weak fairness. A similar
observation applies to the results on the session problem for the unknown-delay
model [Rhee and Welch 1992].

6. CONCLUSIONS

To establish liveness properties of concurrent programs, one needs fairness assump-
tions about the scheduling of enabled transitions. We have proposed to revisit the
standard definitions of fairness and consider, instead, the corresponding finitary
versions. Intuitively, where standard fairness means “infinitely often,” finitary fair-
ness means “at least once every k steps, for an unknown constant k.” The main
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contribution of the article is the mathematical formulation of this intuitive con-
cept. The finitary restriction fin(F ) of any given ω-language F is the union of
all ω-regular safety properties contained in F . This definition allows us to define
finitary versions of different fairness requirements such as weak and strong fairness.

To illustrate that the proposed notion is adequately abstract, we have shown
that finitary fairness is equivalent to, in a precise mathematical sense, timing-
based models with unknown bounds on delays. Two advantages of finitary fairness
over the standard definitions have been demonstrated. First, we have given a
program transformation that reduces proving termination under finitary fairness to
total termination. This implies that, unlike termination under standard fairness,
termination under finitary fairness can always be established using well-founded
induction over the natural numbers. Second, strengthening the assumption from
standard fairness to finitary fairness allows the design of algorithms for problems
that are unsolvable under standard fairness. This is illustrated by the fact that the
fundamental problem of consensus in a faulty asynchronous distributed environment
can be solved assuming finitary fairness.
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