To appear, IEEE Trans. on Software Engineering.

A Programming Methodology for Dual-tier Multicomputers

Scott B. Baden
University of California, San Diego,
Department of Computer Science and Engineering
9500 Gilman Drive, La Jolla, CA 92093-0114 USA
Tel. +1 (858) 534-8861
Fax. +1 (858) 534-7029
email: baden@cs.ucsd.edu

Stephen J. Fink
IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598 USA
Tel. +1 (914)784-7776
Fax. +1 (914)784-6201
email:sjfink@us.ibm.com

A Programming Methodology for Dual-tier Multicomputers

Abstract

Hierarchically-organized ensembles of shared memory multiprocessors possess a richer
and more complex model of locality than previous generation multicomputers with single
processor nodes. These dual-tier computers introduce many new factors into the program-
mer’s performance model. We present a methodology for implementing block-structured
numerical applications on dual-tier computers, and a run-time infrastructure, called KeLP2,
that implements the methodology. KeLP2 supports two levels of locality and parallelism via
hierarchical SPMD control flow, run-time geometric meta-data, and asynchronous collective
communication. KeLLP applications can effectively overlap communication with computation
under conditions where non-blocking point-to-point message passing fails to do so. KeLP’s
abstractions hide considerable detail without sacrificing performance, and dual-tier applica-
tions written in KeLP consistently outperform equivalent single-tier implementations written
in MPI. We describe the KeLP2 model and show how it facilitates the implementation of
five block-structured applications specially formulated to hide communication latency on
dual-tiered architectures. We support our arguments with empirical data from running the
applications on various single- and dual-tier multicomputers. KeLP2 supports a migration
path from single-tier to dual-tier platforms, and we illustrate this capability with a detailed

programming example.

Index words: dual-tier parallel computers, hierarchical parallelism, KelLP, block-structured

scientific applications, scientific application requirements, C++ framework, SMP clusters.

1 Introduction

Memory locality models on parallel computers are becoming increasingly complex, in
order to bridge the widening gap in processor and memory speeds. Another contributing
factor has been the emergence of the dual-tier multicomputer: a hierarchically-organized
parallel computer with two levels of locality and parallelism. Dual-tier clusters of SMP
workstations have taken a role for solving diverse computationally-intensive problems [1],
and tighter coupled dual-tier parallel computers with faster interconnect have appeared as
well [2].

Compared with single-tier multicomputers—which have a single compute processor at
each node dual-tier computers have a multi-processor at each node, which is typically a
symmetric multiprocessor (SMP). This is shown in Fig. 1. Communication in dual-tier
multicomputers exhibits a two-level cost function. Processors within a single node may
communicate relatively quickly through shared memory, whereas processors on different
nodes communicate relatively slowly via the inter-node interconnect.

Although dual-tier architectures can potentially deliver unprecedented performance for
computationally intensive scientific calculations, realizing the hardware’s potential remains
a formidable task. The principal difficulty is that increased node performance due to mul-
tiprocessing amplifies the cost of inter-node communication. Relative to the computational
rate, the available inter-node bandwidth on dual-tier systems tends to be lower than for
single-tier systems with the same number of processors. Thus, the need to tolerate commu-
nication latency is extremely important, as any failure of the message passing layer to meet
the needs of the application compounds the high cost of communication.

At present, a general purpose programming methodology appropriate for implementing
scientific applications on dual-tier computers remains elusive. The programmer must care-
fully orchestrate parallelism and locality in the application, managing the interaction of
processes, threads, shared memory, message-passing, synchronization, scheduling, and load
balancing [3, 4, 5]. Such software techniques are beyond the reach of many application
programmers, and the lack of effective software tools hinder efficient implementations of

scientific calculations on dual-tier architectures by the scientific community:.

This paper presents a domain-specific programming methodology for dual-tier multicom-
puters running bulk-synchronous numerical algorithms, that carry out relatively long periods
of computation interspersed with coarse grain communication. We have implemented our
methodology as a C++ framework called KeLP2 [4, 6, 7]. (From now on we will refer to the
system simply as KeLP, dropping the 2.)

KeLP supports hierarchical control flow and data decompositions, as well as a hierarchi-
cal model of collective asynchronous communication. These mechanisms expose opportuni-
ties for improving performance by expressing latency-tolerant, dual-tier parallel algorithms.
While the KelLP programmer must consciously attend to high-level algorithmic decisions,
KelLP provides intuitive, concise abstractions to help the programmer implement efficient
algorithmic decisions. In a variety of applications, KeLP’s dual-tier formulations consistently
outperform equivalent single-tier implementations hand-coded in MPI [8]. This observation
is consistent with previous experience with a single-tier variant of KelLP, which has been in
use for the past three years [9, 10, 11, 12, 13, 14].

This paper focuses on software engineering issues; detailed performance studies are re-
ported elsewhere [4, 6, 7]. We describe how the KeLLP dual-tier model meets the requirements
of five different block structured applications: single-mesh and multi-level finite difference
methods, the Fast Fourier Transform, and two blocked algorithms for dense numerical linear
algebra matrix multiply and blocked LU decomposition with partial pivoting. We discuss

the current limitations of KeLP and suggest future research directions.

Interconnection Network Interconnection Network

I I [[
[™]
A) S e e
OINIOINICINIO P00 |POOC|PEOd|[PEE®

Figure 1: Block diagram of a single-tier (left) and dual-tier (right) computer. In this figure,
P=processor, M=memory, C=external cache.

2 Assumptions

2.1 System Assumptions

We employ the following definition of a dual-tier parallel multicomputer as illustrated
on the right side of Fig. 1. A dual-tier parallel multicomputer is hierarchical collection
of n compute nodes each comprising p processors. The nodes execute n separate system
images, and the p processors on each node share the private address space managed by the
node. Parallelism exists at two levels: across the n nodes of the machine, and among the p
processors within each node. Computations on a node are multi-threaded, and we assume
that the thread scheduler does a fair job of assigning threads to processors, or that we can
achieve a good schedule by binding threads to processors. We consider dedicated hardware
running a single application at a time, without interference from other users.'

We assume blocking and non-blocking forms of point-to-point communication are sup-
ported, and that communication between nodes is costly relative to the collective floating
point performance delivered by each node. In practice, communication may be far more
costly than on a single-tier multi-computer, which is a special case of a dual-tier system
with p = 1.

Although some designs may include a communication co-processor at each node to as-
sist in managing communication, we do not assume that the co-processor can completely
and effectively overlap non-blocking communication with computation as expressed by the
messaging layer, e.g. MPI. This condition arises for a two principal reasons. First, the
co-processor may be able to realize overlap only under limited operating conditions [15].
Second, the messaging layer implementation may not take advantage of the co-processor
hardware’s overlapping capabilities. In the interest of conserving development costs, a de-
veloper may choose to defer treatment of “advanced” capabilities in the messaging layer. For
example, linearization of non-contiguous messages is particularly troublesome in MPI. The
programmer is often better off packing their own data instead of relying on the MPI data
typing mechanism to handle the activity?. This behavior reduces the effectiveness of overlap,

tying up the “compute” processor with activities that the programmer might assume were

!Though operating system activities may occasionally interfere, their affect is assumed to be benign.
2Rusty Lusk, private communications, 1998.

handled by the co-processor.

2.2 Hardware Platforms

The results reported here were obtained from three platforms: a cluster of Digital
AlphaServer 2100’s with four Alpha 21064A processors per node interconnected by 155
Mbit/sec ATM; a cluster of 50MHz quad-processor SparcStation 20’s interconnected by
10 Mbit/sec Ethernet; and a single-tier platform, the Cray T3E with 300MHz Alpha 21164
processors. All platforms use MPI [8] for message passing. The Alpha and Sun Clusters ran
MPICH 1.0.12 [?], while the Cray T3E ran with the manufacturer-supplied version of MPI.

2.3 Application Domain

KeLP implements a domain-specific programming model targeted to block-structured
applications. These applications carry out highly repetitive computations on coupled collec-
tions of uniform blocks of data, represented by multi-dimensional arrays. (Figs. 2 and 10.)
Applications execute in bulk-synchronous SPMD fashion with long periods of computation
interspersed by shorter periods of communication. Nodes transmit regular sections of data,

3 Message lengths in KeLP applications

attaining near-peak communication delivery rates.
tend to be tens to hundreds of thousands of bytes or longer.

Block-structured applications typically exhibit highly correlated patterns of collective
communication involving sets of atomic regular section moves of multidimensional slices of
data [9, 17, 18]. These patterns may not be known at compile time. They can depend on the
input to the problem, to conditions evolving at run time, or both. We may describe these
block-structured communication patterns using a table of meta-data, containing descriptions
of the regular sections to be moved, i.e. a communication schedule [19]. This model is
sufficiently general to treat a wide range of applications, including uniform finite difference
methods (Fig. 2), blocked numerical linear algebra (Fig. 10), and irregular adaptive and
multilevel methods [6].

We have just seen how a collective model captures the communication patterns inherent

in a variety of block structured problems. For various reasons, non-blocking point-to-point

3Though the underlying blocks of data are structured, their sizes may be non-uniform, giving rise to an
irregular communication structure.

communication may be inappropriate to express communication overlap in such applications.
We have previously identified some common technological causes in §2.1. In addition, the
non-blocking point-to-point communication model may also be inappropriate from software
and algorithmic viewpoints. For example, multi-phase communication algorithms, such as
dimension exchange or hypercube broadcast, impose a strict ordering on message transmis-
sions. As a consequence, overlap strategies based on non-blocking communication must poll
several times to ensure correct synchronization of the communication sequence. The inclusion
of multiple synchronization points within application software tangles program structure, es-
pecially in cases where the number of synchronization points depends on quantities which
cannot be known at compile time, such as the number of processors. Profligate synchroniza-
tion can disrupt the execution of tightly optimized loop nests, lowering CPU performance.
The techniques required to work around this difficulty, e.g. mixed mode programming, are
beyond the means of many programmers. The interaction between message passing and

threads is difficult to understand [3, 4, 5].*

2.4 Summary

We have now identified a set of system and application requirements. In sum, we require
run-time data decomposition and collective communication models that may be customized
to the needs of the application and even to the specific input. Communication is assumed
to be expensive and we require a means of overlapping it with computation. However, due
to variations among different computing systems, we must be able to express such overlap

without knowing the details of how the system will support the activity.

3 A Motivating Example
3.1 A Finite Difference Method
Consider a typical iterative finite difference application: solve Poisson’s equation in three

dimensions with a 7-point stencil using the Gauss-Seidel method with red-black ordering.

We will refer to this application as RedBlack3D. We begin with a single-tier implementation

4The emerging OpenMP standard can simplify shared memory parallelization in mixed mode program-
ming, but doesn’t eliminate the underlying performance interactions between message passing and threads.

XArray X, MotionPlan M
for each 1 € X

‘GhOSt (?GHS | N | R : Region RX = X (i).region()
N L 3 ! :L ! Region RI = trim(RX)
:r ! : | for each j € X
i *“ if (i # j) then
sl o ‘ Region R = RI N X (j)
| | | ‘ﬁ‘ : ! M.Copy(X,i,R, X,j, R)
R P | 3 | | end if
| | Partit}on end for
end for

Figure 2: A close up view of a block-partitioned two-dimensional grid, showing the ghost
region for a typical partition (left). The middle figure shows some of the dependencies that
must be satisfied to refresh the ghost cells on one processor’s local grid. The right figure
shows the KelLP code to express the communication, and will be described in a later section.

written with explicit message passing, e.g. MPI. The customary approach to parallelizing
this iterative method is to split the subdomain into subregions using a regular blocked
decomposition, and then surround each subdomain with a buffer called a ghost region, holding
off-processor data used to update the boundary points of the subdomain. (Fig. 2.) The
calculation consists of successive steps that compute and then communicate to fill the ghost

cells.

3.2 Single-Tier Implementation

If we run our program on the Digital SMP cluster described in the last section, with one
MPI process per processor, we treat the n x4 machine as a flattened structure with 4-n nodes.
This seems reasonable since MPI is portable. However, performance may not be portable.
When we run a 128% problem on 1 node, we observe that performance is 23 megaflops. If we
run on 8 nodes, scaling the number of unknowns in proportion to the number of nodes, we
find that performance is only 65 megaflops on a 256* problem. Hardware utilization is low—
about 35%. We may improve performance significantly if we reorganize the mapping of data
to processors. In our original code we let MPI decide how to assign the work. MPI configured
the 32 processors into an 8 x 4 array, with each node occupying a single 4-processor column of

the array. A hierarchical decomposition can improve locality, by configuring the nodes into

a 4 x 2 array, and the processors on each node into a 2 x 2 array. This optimization increases

the ratio of on-node to off-node communication, improving performance to 114 megaflops.

3.3 Multi-Tier Implementation

The MPI implementation we used on the Alpha Cluster incurs the full TCP/IP overhead
even when passing messages between processors on a single node, rather than using a multi-
protocol messaging layer [5] to handle on-node messages via shared memory. We will try
an alternative dual-tier strategy. We run with one MPI process per node and parallelize
numerical computation on the node using shared memory techniques. We store ghosts calls
only for data coming from outside the node. This optimization increases performance to 134
megaflops, again on 32 CPUs.

Still, there is room for improvement. The hardware sits idle 40% of the time waiting
on communication. Our solution is to employ pre-fetching to mask the latency of commu-
nication [4, 20]. To implement this optimization we separate the points laying adjacent to
the ghost region from the remaining interior points, which do not depend directly on the
state of the ghost cells. (The left of Fig. 3). This partitioning enables communication to
execute concurrently with the bulk of the computation. Once communication completes, we
may then update the remaining work that borders the ghost cell region. The pre-fetching
strategy works well and improves performance on 32 CPUs by an additional 22% to 163
megaflops.®

We have improved the performance of the naive MPI implementation by a factor of 3.5
and are content with a scaled speedup of 7. However, the programming effort required
to implement the performance optimizations is substantial. The principal difficulty is that
the implementation of MPICH that we used on the AlphaServer is incapable of overlap-
ping communication via non-blocking point-to-point communication. (Another problem is
that we must we must manage irregular decompositions.) We must therefore resort to
multi-threading to provide the overlap we require. Thus, we must employ a hybrid program-

ming model managing threads, processes, synchronization, messages, and shared memory.

5We might be able to increase performance slightly by decreasing the granularity of our pre-fetch strategy,
e.g. a wavefront method. This technique is admitted by KeLP, though we did not implement it.

a) b)

Figure 3: (a) Collective-level partitioning over 4 nodes showing the halo region, and (b) the node-
level partitioning on dual-processor nodes, detailing the irregular partitioning used to implement a
pre-fetching strategy. The regions marked 0 and 1 correspond to the FloorPlan F; in the code of
Fig. 8, and the regions marked 2 through 5 to FloorPlan Fj,. This decomposition is duplicated on
each node.

Managing the interactions between these mechanisms adds considerable complexity to the
programming effort, and is beyond the reach of many application programmers. This large
programming overhead motivates the design of higher level abstractions to hide the low-level

interactions.

3.4 Software Engineering Issues

A major requirement of our abstractions is to separate the expression of correct programs
from optimizations that affect performance. This type of separation of concerns results in
easier-to-develop, more maintainable code [21], with three three benefits. First, we may
optimize the single processor performance of the numerical inner loops independently of
how we parallelize the application. This permits us to build upon existing serial numerical
code [11], which has often been carefully optimized. Second, we obtain a convenient migration
path: a systematic approach to converting a single-tier program to an equivalent dual-tier
version. Finally, we obtain backward compatibility: our dual-tier program may run efficiently
on a single-tier computer, which is just a special case of a dual-tier computer with one
processor per node. In fact, our dual-tier application outperforms the MPI implementation
running on two single-tier configurations of the AlphaServer: a single SMP, or the entire
machine running just one processor per node. On the Cray T3E, the dual-tier KelLP code

runs within 1.5% of the performance of the hand-coded MPI variant.

10

Our simple programming example reveals a number of important requirements which
generalize to a diversity of block-structured applications. We next describe our programming

model more formally and then discuss its application to four other numerical problems.

4 The KeLP Programming Model

4.1 Overview

KeLLP supplies mechanisms to help the programmer coordinate data decomposition, data
motion, and parallel control flow. While KeLLP hides the low-level details of managing
resources, e.g. message-passing, processes, threads, synchronization, and memory allocation,
it does not analyze program source code to make high-level restructuring and algorithmic
design decisions as in a compiled language like HPF [22]. Rather, the KeLLP philosophy
is to empower the user to make such decisions—possibly at run time-as necessary to meet
the requirements of the application [17]. Similarly, KeLP does not support automated data
partitioning. The user is presumed to know how best to accomplish this task. Instead, KelLP
provides a framework that facilitates the construction of partitioning libraries. Indeed, we
have developed a variety of such libraries, and all the applications described in this paper

have used at least one [6, 23].

4.2 Hierarchical Control Flow and Communication

Most existing SPMD parallel programming models reflect the single-tier design of previ-
ous generation multicomputers. They support two levels of control flow: collective level and
node level. This two-level approach is clearly articulated in the Phase Abstractions program-
ming model [24], which is embodied in MPT [8]. A program performs collective operations,
such as reductions, barriers and broadcasts, interspersed within a node level program. The
node-level instructions form separate threads of control and execute independently. In most
cases, the node level will invoke highly tuned serial numeric kernels.

In contrast to the two levels of single-tier SPMD programming, KeLLP supports three
levels of control: a collective level, a node level, and a processor level, as shown in Fig.4.
KelLP programs express parallelism at the node and processor levels and they express com-

munication at collective and node levels. We note, however, that processors on different

11

Data Layout
Data Motion
Global Operationg

Data Layout Data Layout N
Data Motion Data Motion
Global Operationg Global Operations
Serial Serial Serial Serial Serial Serial Serial Serial N , p
Computation Computation| | Computation| | Computation| | Computation Computation| | Computation| | Computation

Figure 4: The KeLP 3-level control hierarchy.

nodes must communicate via their respective nodes and may not communicate directly by
passing messages. Under KelLP, communication is always ascribed to the node rather than
to the individual processors. This three-level model is similar to that employed in PMH[25].
The collective and node levels each manage their own data layouts and data motion. The
processor-level control stream executes a serial instruction stream on a single physical pro-
cessor. KeLP abstractions help manage each level independently where desired, and also

help manage interactions between the levels where necessary.

4.3 Programming Abstractions

The KeLP abstractions fall into two categories: meta-data and instantiation. These ab-
stractions are listed in Table 1. KelLP meta-data objects represent the abstract structure
of some facet of the calculation, such as a decomposition or a communication pattern. In-
stantiation objects carry out program behavior based on information contained in meta-data
objects.

Meta-data abstractions. There are four meta-data abstractions: the Region, Motion-
Plan, Map, and FloorPlan. The Region represents a rectangular subset of Z"; i.e., a regular
section with stride one. KeLP provides the Region calculus, a set of high-level geometric
operations to help the programmer manipulate Regions. Typical operations include shift,
intersection, pad, and trim.

The Map class implements a function Map : {0,...,k — 1} — Z, for some integer k.

That is, for 0 < i < k, Map(i) returns some integer. The Map forms the basis for node and

12

Meta-Data Abstractions

Name ‘ Definition ‘ Interpretation

Point < int g, int 4y, ... int ip_; > | A point in Z”

Map f:40,...k—1} > Z an integer mapping

Region < Point [, Point h> A rectangular subset of Z7

FloorPlan < Array of Region, Map > A set of Regions,
each with an integer owner

MotionPlan | List of < Region Rg, int i, Block-structured communication

Region R, int 5 > | pattern between two FloorPlans
Instantiators

Name ‘ Description

Grid A multidimensional array whose index space is a Region

XArray An array of Grids; structure represented by a FloorPlan

Mover Object that atomically performs the data motion pattern

described by a MotionPlan

Table 1: A brief synopsis of the KeLP data types.

processor assignments in KelLP partitioning. The FloorPlan consists of a Map along with an
array of Regions, and it is a table of meta-data that represents a potentially irregular block
data decomposition. Alternatively, a FloorPlan can represent distribution of work among
processors within a single node, as it is derived from Map.

The MotionPlan implements a dependence descriptor, which is also known as a communi-
cation schedule [19]. The programmer builds and manipulates MotionPlans using geometric

Region calculus operations, a process which will be described shortly.

4.4 Storage Model

The Point, Region, Map, FloorPlan, and MotionPlan meta-data may live at any of the
three levels of control flow. Meta-data can pass through the levels from the top down.
For example, a FloorPlan written at the collective level may be read at the node level or
processor level. However, meta-data cannot pass up the program levels; e.g. the contents of
a FloorPlan written at the processor level are undefined at the node and collective levels.

KeLLP meta-data objects describe only the structure of data and communication within
a program. The KeLP Grid and XArray objects hold the actual data of an application. A

Grid is an array of objects all of the same type, whose index space is a Region. For example,

13

the Fortran 90 array real A(3:7) corresponds to a one-dimensional Grid A of real and has
a region A.region() == [3:7].

The Grid storage class may live only at the node level. This built-in assumption was
made in the interest of efficiency. A KeLP program may access the Grid data from the node-
level instruction stream at that node, or from processor-level instruction streams nested at
that node, but not from the collective level (or from other nodes). A collective Grid, in
effect, would define a shared-memory address space across all nodes. However, it cannot
be assumed that the hardware supports global shared memory, since code that made this
assumption could not offer portability with performance. KelLP’s minimalist philosophy is
to avoid abstractions that cannot be known to deliver portable performance. KeLLP provides
constructs such as the XArray and MotionPlan for building abstractions like grid partitioners.
The performance of such libraries can be readily understood, since all data motion is explicit.

An XArray is an array of Grids, whose structure is represented by a FloorPlan. It is
derived from Map. All elements must have the same number of spatial dimensions, but the
index set of each Grid component (KeLP Region) can be different. Grid components can
have overlapping Regions, but they do not share memory. The application is responsible
for managing any such sharing explicitly. An XArray is a collective object, and must be
created from the collective program level. Owing to built-in assumptions concerning the
Grid storage class, we also make the built-in assumption that an XArray lives only at the
collective level. An interesting variation would be to allow node level XArrays, and is the
subject of future research.

For an XArray X, X (i) denotes the ith Grid component of X. Processor assignments
are determined by the Map used to construct the XArray’s FloorPlan. The indices of an
XArray are virtual. The number of XArray elements may be greater than the number of
physical nodes or processors, and the mapping of XArray elements to processors may be
many-to-one. This capability is useful in handling load balancing.

KeLP supports a collective communication operation which performs block transfers of

regular array sections between two XArrays. We will discuss data motion in the next section.

14

5 Programming example

To illustrate KelLP’s programming constructs, we describe the implementation of Red-
Black3D, which was introduced in §3. We begin with a single-tier implementation for a
distributed memory computer with uniprocessor nodes. Then, we migrate the code to a
dual-tier architecture, adding optimizations that improve performance by overlapping com-
munication with computation. For illustrative purposes, our code examples use an abstract

syntax and in a few cases we substitute English descriptions for simple operations.

5.1 Single-tier code

The single-tier version of RedBlack3D manages a single level of parallelism and locality.
As described in §3 we follow the usual SPMD implementation strategy that employs HPF-
style BLOCK data decomposition [22] and carries additional ghost cells to buffer off-processor
data. Each relaxation sweep consists of two steps: (1) communicate with nearest neighbors
to exchange ghost cell values, and (2) independently relax on the local portion of the global
mesh. Fig. 5 shows the main routine for RedBlack3D. The program begins execution at the
collective program level, and there is a single logical thread of control. All nodes execute the
same statements in the main procedure.

Data distribution. We distribute the N x N x N computational domain (at line 1, the
Region object called domain) with the help of a partitioning library written in KeLP.® We
pad each node’s local subdomain with a layer of ghost cells at line (3); the pad() operation
adds space for ghost cells to each FloorPlan element T'(i).

With the FloorPlan T initialized, we instantiate storage by creating two XArrays: u
and rhs (lines 4-5) holding, respectively, the computed solution and right-hand side for the
Poisson equation. The XArray constructor creates an XArray with one Grid for each element
of T. The ith Grid of u, u(7), has the domain T'(7).region() and exists on node T.owner(i).

Data motion. We are now ready to handle data motion. As mentioned previously,
KeLP supports a collective model of communication. Two KeLP classes are used to express

communication: the MotionPlan and Mover. To understand the operation of the MotionPlan

6For example, KeLP2 includes a library called DOCK that implements run-time BLOCK decomposi-
tions [23].

15

Region domain =[1: N,1: N,1: N]
Floorplan T = blockPartition(domain)
for each i € T, T.setRegion(i,pad(7(i)))
XArray u(T)
XArray rhs(T)
MotionPlan M
BuildFillGhostPattern(u, M)
Mover mov(u,u, M)
InitialConditions(u, rhs, mov)
integer rb = 0
while (not converged) do

Relax(u, rhs, mur, rb)

rb= (rb+ 1) mod 2
end while

© 00 ~ O Ot = W N —
— N~ Y — N

e e e e R N N N N e N e N T
—_ = =
w N = O
~— — ~— ~—

Figure 5: Main procedure for redblack3D example.

and Mover, we use following notation. Let D and S be two XArrays, D(i) be element i of

D, and S(j) element j of S. Let R, and Ry be two Regions. Then, the notation
(D(i) on R4q) < (S(i) on Ry) (1)

denotes a block copy operation: copy the values from S(j) over all the indices in R, into
D(i) over the indices in R,;. We assume that R; and Ry contain the same number of points,
though their shapes may be different. The copy operation visits the points in R; and R, in
a defined systematic order, i.e. column major.

Now, we encode a communication pattern as records of a MotionPlan p, a list containing

entries p(k). These entries are 4-tuples of the following form:
(Region R, int i, Region Ry, int j). (2)

The components of the 4-tuple describe communication in a manner consistent with the
discussion of the previous paragraph. We use the add () member function to add new Mo-
tionPlan entries.

We instantiate a Mover object u by binding a MotionPlan p to two XArrays: Mover pu =

Mover (p, S, D). The result is an object with two operations, start() and wait(). The Mover

16

executes collective communication as an atomic operation, initiating the data transfers via
the start() member function. This call is asynchronous and a return does not indicate that
communication has completed. The wait() member function is used to detect completion.”

When the Mover returns from wait(), all transfers will have completed. In particular, the
Mover will have executed the following communication operation for each p(k) : (D(p(k).q)
on p(k).Ry) < (S(p(k).i) on p(k).Rs), where we designate the entries of the p(k) with the
C-style struct qualifiers p(k).Rs, p(k).Rq, p(k).i, p(k).j. Since the specific order of transfers
is not defined, correctness must not depend on that ordering.

When the Mover is invoked from the collective level, each node will synchronize its own
processors. There is no collective synchronization across nodes, since such synchronization
is implicit in the execution of the Mover, which satisfies inter-node dependencies.

Returning to our code of Fig. 5, we build a MotionPlan M (lines 6 and 7) to describe
the ghost cell update pattern, and then instantiate a Mover object (line 8) which will carry
out the communication. The algorithm to build the MotionPlan is simple and is shown in
Fig. 2.

We build a Mover for each data motion pattern to be executed. Since rhs is a static
data structure, we do not carry out any data motion on it, and so there is no need to build
a Mover for it. We note that the constructor arguments to the Mover mov (line 8) specify
that the source and destination XArray are the same.

The data motion is actually carried out in the Relax routine, which is shown in Fig. 6.
This code is written in single-tier form and will run on at most one processor per node.
Relax begins execution from collective control flow. At lines 1 and 2 the nodes invoke the
Mover to update the ghost cells.

The Mover start member function begins moving the data asynchronously (line 1). Since
we are not going to overlap communication and computation, we immediately call the Mover
wait member function to block until the data motion completes (line 2). Once wait returns,

the program performs the serial relaxation kernel on each node: it drops from the collective

"Individual nodes or processors may block on wait (), while other nodes or processors continue execu-
tion. Thus, the programmer may selectively block individual nodes or processors as dictated by the data
dependencies of the application, providing a more localized and less costly form of synchronization than a
barrier.

17

Relax(XArray u, XArray rhs, Mover mov, integer rb)

begin

(1) mov.start()

(2) mov.wait()

(3) for nodelterator ni € u do

(4) serialRelax(u(ni), rhs(ni), u.region(ni), rb)
end do

end

Figure 6: Single-tier KeLLP code for redblack3D relaxation.

control level to node-level control using the KeLP nodelterator loop (line 3).

The nodelterator constructor takes a Map, which specifies the number of loop iterations
and the mapping of these iterations to nodes. Recall that XArray is derived from Map.
Thus, we may use the XArray u as the Map for constructing this iterator. Nodelterator ni
uses the owner-computes rule to create one loop iteration for each element of u. Each loop
iteration ni executes on node u.owner(ni) only, and in this case entails calling serialRelax,
a serial numerical kernel which performs the relaxation (line 6). Inside the loop, the program

runs in node-level control, with one stream per node.

5.2 Dual-tier code

We next modify our single-tier program to take advantage of the hierarchical organization
of a dual-tier machine. Fig. 7 shows dual-tier KeLLP code to implement the Relax subroutine
with two levels of parallelism. As before, Relax starts in collective control flow, updates
ghost cells by invoking the Mover (lines 2 and 3), and drops to node-level control via the
nodelterator, with one iteration per block of XArray u (line 3).

From the node-level loop, we now parallelize the relaxation on each block across the
processors on the node. Consider iteration ni of the loop, executing on node u.owner(ni),
which relaxes Grid u(ni), with Region u.region(ni). We parallelize the numerical compu-
tation across the p processors by partitioning u.region(ni) into p blocks and then assigning
each block to a single processor. As before, we rely on a partitioner utility (line 4) [23].

This partitioner maps each grid u(ni) with a private FloorPlan F, such that F.owner(i) =

18

Relax(XArray u, XArray rhs, Mover mov, integer rb)

begin
(1) mov.start()
(2) mov.wait()
(3) for nodelterator ni € u
(4) Floorplan F = IntranodeBlockPartition(u.region(ni))
(5) for proclterator pi € F
(6) serialRelax(u(ni), rhs(ni), F(pi), rb)
end for
end for

end

Figure 7: Dual-tier KeLLP code for redblack3D relaxation.

processor 1.

We now drop to processor-level control via the proclterator (line 5). Similar to the
nodelterator, the proclterator executes one iteration for each element of F', and executes
iteration 7 on processor F.owner(i). (Recall that FloorPlan is derived from Map). From the
processor-level control, each iteration invokes the serial kernel serialRelax independently
(line 6). The serialRelax routine accepts a region-valued argument F'(pi) specifying the
subset of Grid wu(ni) assigned to the iteration.

In looking at the above code we notice the similarity in how we build a FloorPlan at each
level of control flow, and the use of a single iterator construct to handle that control low. This
approach should be contrasted with one that employs threads and message passing explicitly.
In the latter case the programmer must manage processes and threads with separate sets of
primitives. Threads communicate via shared memory and use locks, barriers, and events to
synchronize. Processes communicate and typically synchronize by passing messages. They
may also use barriers. The mechanisms are not symmetric, and their interaction is extremely
difficult to manage.

There is one aspect of KeLP programming model, however, which is not symmetric.
In KeLLP’s memory model, a Grid G lives in a single address space corresponding to one

node. The program can access the data of G' from node-level control or from processor-level

19

control. Since these semantics introduce the potential for race conditions, the programmer is
responsible for avoiding them. This was a conscious decision on our part; a more restrictive
model that guaranteed safety would require compiler analysis or otherwise limit KelLP’s
ability to deliver high performance.

By default, KeLLP enforces a logical synchronization point at the end of each proclterator
loop, but not at the nodelterator loop. No action is required to enforce a logical nodelterator
barrier, since the Mover is assumed to carry out data motion correctly. In effect the Mover
implements an unsafe form of local barrier synchronization. This design decision was made
intentionally, reflecting the belief that the programmer should have the flexibility to avoid
costly global synchronization at the risk of introducing program errors. In the RedBlack3D
code, the proclterator barrier ensures that all relaxation will complete before any part of
the program proceeds to the next stage of the program. The programmer can relax the

node-level synchronization if desired, but is responsible for ensuring correctness.

5.3 Dual-tier code with communication overlap

Using the techniques described in §3.3 we restructure the dual-tier implementation of
the Relax() routine to introduce pre-fetching. The restructured code appears in Fig. 8.
In order to overlap communication and computation we will use the following strategy.
(1) asynchronously begin communication; (2) perform local computation on the interior of
each Grid (as shown in Fig. 3); (3) wait for communication to complete; (4) perform local
computation on the annulus of each Grid. As before, the collective level invokes the Mover to
asynchronously initiate communication. Unlike the previous examples, where the program
immediately blocked on the Mover, we defer the wait on communication, and begin local
computation immediately.

To manage this overlapped communication algorithm in KelLP, we generate partitioning
information at node-level control, storing the information in two FloorPlans, FloorPlans
F, and F; (lines 3 and 4), which are shown in Fig. 3. With the FloorPlans set up, two
proclterator loops carry out the computation as follows. The first proclterator loop (lines
5-6) sweeps over the interior points. Next, the Mover waits for communication to complete

(line 7). Once the ghost cells have arrived, the proclterator loop at lines 9-10 sweeps over

20

Relax(XArray u, XArray rhs, Mover mov, integer rb)
begin
1) mov.start()
2) for nodelterator ni € u
3) Floorplan F;, F,
4) IntranodeDepPartition(u.region(n), F;, F,)
5) for proclterator pi € F;
6) serialRelax(u(ni), rhs(ni), F;(pi), rb)
end for
end for
7) mov.wait()
8) for nodelterator ni € u
9) for proclterator pi € F,
10) serialRelax(u(ni),rhs(ni),Fy(pi),rb)
end for
end for

N N N /N /N /N

Figure 8: Dual-tier KeLP code with communication overlap for redblack3D relaxation.

the points in the annulus.

5.4 Discussion

Beginning with a single-tier implementation we have incrementally constructed a opti-
mized dual-tier parallel code that overlaps communication and computation. Two mecha-
nisms in KeLP worked synergistically to improve performance: hierarchical collective com-
munication and hierarchical flow control. The KelLP Mover encapsulates composed commu-
nication patterns, executing communication on each node as a separate task in parallel with
computation. Thus, the implementation policies for managing parallelism within the com-
munication task may be handled separately from computation. Since the dual-tier systems
we used did not support communication overlap via a co-processor, we chose to implement
the Mover to run on a reserved SMP processor. The effect was to reduce the length of the
critical path of application, even though the numerical computation time actually increased.

This was accomplished without entangling the application program with the details. The

21

KeLP abstractions are sufficiently general to express optimized algorithms for a variety of
block-structured scientific calculations, which we will examine in the next section.

An important design goal of KelLP is to hide unnecessary detail from the user without
sacrificing performance. Another goal was to enable the re-use of existing numerical kernels
without entailing massive reprogramming. To understand how well KeLP meets these goals
we built a hand-coded MPI version of RedBlack3D and compared it against the Kel.P
code. We ignored the code shared in common by the two implementations, that handles
command line argument processing and the C++-to-Fortran interface. Excluding comments,
the relevant MPI code consists of 354 lines of C++, plus 54 lines of Fortran 77 to handle
the relaxation. The dual-tier KeLLP code comprises 236 lines of C++ and uses the identical
Fortran 77 module. The KeLP code provides overlap capabilities, and it runs efficiently
on both single-tier as well as dual-tier architectures as described in §3. The module which
handles the irregular decomposition accounts for 71 of those 236 lines, and indeed the single-
tier KeLLP code weighs in at just 157 lines, about half the size of the MPI code. But code
size doesn’t reveal the full picture. The most challenging part of the MPI code that handles
communication is about 180 lines long. The equivalent KeLP encoding is about only 15 lines

long. This striking reduction in code complexity comes without a performance penalty [17, 6].

6 Application Study

In this section, we evaluate the KeLP programming model against four additional applica-
tions that raise distinct programming issues. First, we examine a multilevel finite difference
method, the application class originally targeted by KeLP. We next consider Fast Fourier
Transform, blocked matrix multiplication, and blocked dense LU factorization with partial
pivoting—which is well outside of KeLLP’s intended problem domain due to the use of block
cyclic data decompositions. The matrix multiplication and LU algorithms implement new
pipelined overlap formulations due to Fink[6]. For each application, we describe how KeL.P
facilitated the design of the software and comment on the appropriateness of the KeLP model.

With a few noted exceptions, all five codes were run on the three platforms described in §2.2.

22

6.1 NAS Multigrid Benchmark

The NAS-MG multigrid benchmark [26] solves Poisson’s equation in 3D using a multigrid
V-cycle [27]. In this stencil-based computation, a series of meshes are organized into levels
and we parallelize each level with techniques similar to those for RedBlack3D.

The NPB 2.1 code specifies a three-stage dimensional exchange algorithm to satisfy
boundary conditions. The dimension exchange algorithm introduces an interesting software
design issue. Owing to a synchronization constraint that exists between phases of dimension
exchange, we cannot naively build three separate Movers and start all three at once. Instead,
we derive a new class from Mover, called MultiMover, which serially invokes a sequence of
Movers, as shown in Fig. 9. To the calling application, the three-stage execution sequence
of MultiMover appears to be an atomic operation.

This communication example highlights the expressive power of KeLLP. By representing
the multi-phase communication as an atomic object, the programmer can asynchronously
execute an arbitrary sequence of message-passing and synchronization operations. In con-
trast, non-blocking MPI calls asynchronously start only one message-passing operation at
a time. To overlap communication using a sequence of operations, an MPI program must
periodically poll for the completion of non-blocking message calls in order to start the next
sequence of calls in a timely manner. This polling activity is highly disruptive, since it may
interrupt highly-tuned numeric kernels, degrading performance. It also tangles the program
structure. The more powerful KelLP design lends itself to better structured and more efficient
code.

Computational results show that the dual-tier KeLP code outperforms the MPI code by
12% on eight AlphaServers and by 13% on four SparcStations. On the single-tier Cray T3E,
performance of the KeLLP version of the application is nearly indistinguishable from that of
MPI, coming within 3% on 64 processors. The KeLP code outperforms the MPI code on
a single node of the AlphaServer or the SparcStation cluster. Thus, KelLP’s higher level of
abstraction does not come at the expense of performance—and it actually boosts performance

on dual-tier computers.

23

6.2 NAS-FT Benchmark

The NAS FT benchmark solves a 3D diffusion equation using a Fourier method. The
bottleneck of this computation is a 3D transpose (total exchange), which is particularly
costly on an SMP cluster [5, 4]. To mask some of the latency of communication, we employ
Fink’s restructured variant[6] of Agarwal et al.’s [28] pipelined algorithm.

The publicly available NAS FT benchmark (NBP 2.1) is written in Fortran 77 and uses
explicit message passing with MPI. This code performs the total exchange using the MPI
all to_all call. The KeLP code encodes the matrix transpose using a MotionPlan and
KeLLP Mover. On the Cray T3E the KeLLP code outperforms the MPI code slightly-by a few
percent, on up to 64 processors. These results indicate, somewhat surprisingly, that KelLP
implements the global matrix transpose messages about as efficiently as the MPI collective
call [4, 9, 17]. On the Alpha cluster, we were able to improve performance by about 13% by

introducing software pipelining to overlap communication.

6.3 SUMMA Matrix Multiplication

We now turn our attention to a different and important problem class: dense numerical
linear algebra. Since KeLP provides facilities to manage distributed block structures we next
consider how well the KeLLP abstractions aid in efficient implementations of blocked dense
matrix algorithms.

Perhaps the best-known blocked dense matrix algorithm is dense matrix multiplication.
We consider the SUMMA (Scalable Universal Matrix Multiply Algorithm), due to van de
Geijn and Watts [29]. Using KeLP, we devised a new variant of SUMMA variant that uses
software pipelining to overlap communication and computation [4, 6].

SUMMA implements matrix multiplication as a series of blocked outer products over
distributed matrices. Assume A, B, and C have BLOCK data decompositions over the nodes.
We distribute the work based on the decomposition of C; each node will compute the sub-
section of C that it owns, as shown in Fig. 10. This pipelined algorithm carries out a series
of broadcasts as shown in the Figure. The broadcasts transmit a panel of data rather than
the entire block of data assigned to the processor, that is, a vertical or horizontal slice. This

strategy decreases the granularity of the pipeline, increasing the benefits of overlap.

24

To implement SUMMA we used a domain specific library, call dGrid, which we built on
top of KeLLP [6, 23]. The dGrid library handles the details of managing the progression of
panel broadcasts across the global matrix. In particular, it implements a replicated grid ab-
straction, a convenient way to express column and row broadcasts among processors mapped
onto virtual grids.

The dual-tier code with communication overlap outperforms the single-tier MPI code by
as much as 33% on the Alpha Cluster. On the Cray T3E, the KeLP code runs slightly faster
than MPI, though it is ultimately non-scalable due to the way we handled communication
in the Mover. In particular, we used a ring-broadcast algorithm, which has a linear running
time, in lieu of a logarithmic time broadcast algorithm. On 64 T3E processors, the MPI
implementation overtakes KeLP, outperforming it by 18%. We are currently investigating
a solution to the non-scalable performance of our broadcast algorithm, as discussed in the

next section on LU decomposition.

6.3.1 LU Decomposition

Finally, we consider the blocked right-looking distributed LU factorization algorithm of
SCaLAPACK [30]. This application was selected because it is well outside the intended
problem domain of KeLP. In particular, due to use of a BLOCK_CYCLIC decomposition and
a pivot selection step, synchronization requirements of the algorithm are finer-grained than
the other applications. A detailed description of the algorithm is described by Fink [6].

As in SUMMA and FT, LU carries out a series of broadcast operations. However, LU is
distributed in 1-dimensional BLOCK_CYCLIC fashion rather than in BLOCK fashion in order to
load balance the computation. This complicates the implementation since KelLP does not
support BLOCK_CYCLIC decompositions primitively. Instead, we emulate them. As a result,
each node will carry several (tens) of XArray elements.

The decomposition is by column block and there are two broadcast operations across
columns. The first transmits a vector of integers, which refer to the pivot selections. The
second transmits a vertical slice of data, a long and thin sub-column of the matrix. Instead
of using the MPI broadcast capability, we built a replicated array abstraction using KeL.P.

Class ReplicatedArray is an XArray whose FloorPlan is the replicated instance of a single

25

KeLP Region. Thus, if we copy data from source to all overlapping elements of a replicated
array, we achieve the effect of a broadcast. This abstraction is appealing because it reflects
the logical structure of the algorithm: we are broadcasting to block cyclic distributed block
columns of data, not to processors.

The LU application is interesting for other reasons. First, although we used pipelining to
express parallelism across nodes, we employed task parallelism within each node to express
the various computational steps in the LU algorithm [6]. In fact, we used two Movers, one
each at the collective and node program levels. The collective Mover handled data motion
arising in the pipelining strategy, while the node-level Mover handled data motion within
shared memory.

On the Cray T3E, the single-tier implementation ran within 1.5% of the speed of the
MPI (SCaLAPACK) code. The dual-tier KeLP implementation of LU factorization ran
slightly faster (up to about 10%) than the MPI implementation on up to 4 nodes of the

8 However, the KeLP implementation does not scale beyond 4 nodes, and is

AlphaServer.
overtaken by the SCaLAPACK code on 8 nodes. This is true because we used a naive ring
broadcast algorithm in the implementation of the ReplicatedArray class. This algorithm
has a running time that is linear in the number of nodes. We believe that performance
could be improved significantly with a logarithmic time hypercube broadcast algorithm.
Like the dimension exchange algorithm used in the multigrid application, this is a multi-

phase algorithm. However, a more significant challenge is that the KeLLP implementation of

BLOCK_CYCLIC decomposition doesn’t scale to larger numbers of nodes.

7 Discussion

Our experiences have shown that KeLP is effective in improving performance by explic-
itly managing hierarchical locality and by masking communication costs through overlap.
KelLP’s programming model provides an appropriate level of abstraction for a variety of
block-structured scientific calculations, subordinating incidental detail without sacrificing

performance. The model is also robust, as KeLP applications achieve portable performance

8We did not have access to tuned BLAS on the SparcStation cluster, so we did not run on that machine.

26

across dual-tier and single-tier architectures.

KeLP introduces a new three-level control flow model, which supports structured par-
allelism through iterators. As in CC++ structured parallel loops [31], the KeLLP iterators
simplify the expression of parallelism, but restrict the forms of parallel control flow avail-
able to the programmer. However, by disallowing unstructured parallel control flow, we are
able to rely on the structured loops to implicitly handle inter-processor synchronization or
to permit the programmer to relax synchronization requirements in a controlled way. This
approach simplifies the programming model.

The KeLP communication model enables the programmer to express and compose elab-
orate data motion patterns as collective operations. The ability to encapsulate complex
collective communication patterns in turn enables the KeLP programmer to express such
communication as a concurrent task, which may then be overlapped using traditional mech-
anisms, e.g. threads. Thus, on platforms that do not support communication overlap via
a co-processor-such as the ones used to produce the results in this paper-KeLP may re-
alize overlap using a spare processor on each node. Even in cases where the co-processor
does support overlap, the ability to express communication as a concurrent task may still
realize benefits. For example, linearization of non-contiguous data structures may not be
supported by a local MPI implementation. Therefore, this activity would not be overlapped
in a non-blocking message passing call. Due to the high cost of packing non-contiguous data
on some architectures [17], the KeLP Mover could overlap a significant amount of overhead
that would otherwise remain in the critical path of the application.

One way to reduce communication costs in a dual-tier multicomputer is to provide a
multi-protocol message passing layer that intercepts on-node messages through fast shared
memory avoiding the overhead of communication protocols such as TCP/IP [5]. While this
implementation strategy would likely improve the KeLP Mover’s performance on the dual-
tier platforms used in this study®, it does not deal with the problem of how to conveniently
overlap multi-phase communication. The issue here is not related to the implementation

of non-blocking point-to-point communication, but the inappropriateness of the mechanism.

9The AlphaServer port of MPI-CH did not support multi-protocol communication, and the Sun port was
not robust.

27

Thus, a major contribution of this paper is to advocate a framework for writing block-
structured asynchronous collective communication algorithms. This framework would serve
as middleware sitting atop communication APIs like MPI, but could use other APIs as
well [32].

The Data Mover resembles an MPI persistent communication object. However, KeLP
provides inspector-executor analysis, which is particularly useful in irregular problems, and it
also provides first-class support for multidimensional arrays, via user-defined metadata and
a geometric region calculus. KeLP avoids MPI's awkward data type mechanism to handle
strides of non-contiguous faces that would entail registering a separate data type for each
stride appearing in the data. More generally, the KeLP meta-data abstractions, e.g. the
Region calculus, provide a more intuitive and concise notation for expressing and managing
customized communication domains.

In designing the KeLP model, we made some built in assumptions to meet demanding
performance requirements. These assumptions related to the parallel iterator and Grid
implementations. We chose to limit parallel iterator loop nesting to two levels of control
flow due to implementation concerns. Recall that KelLP’s nodelterator and proclterator
classes directly map loop iterations to physical nodes and processors. If we were to divorce
the hardware structure from the programming model, we would raise many open questions
regarding how to map the control flow onto the hardware. Answering these questions remains
an open research issue.

Our results suggest future directions for numerical library design. Typically, a pro-
grammer will rely on a library such as SCalLAPACK [33] to implement a core of common
numerical algorithms. In order to explicitly overlap communication and computation, we
propose that standard libraries provide asynchronous entry points for numerical routines.
For example, an FFT library should provide startFFT() and finishFFT() calls, which the
programmer can use to structure the calling application as needed. While SCaLAPACK does
not provide asynchronous operations, the NetSolve interface provides asynchronous access
to numerical library routines for distributed systems [34]. Our results reinforce the benefits

of asynchronous entry points to numerical libraries.

28

The current KeLP model does not explicitly support block-cyclic data layouts. The LU
application simulated a block-cyclic layout as a multi-block layout, assigning many blocks per
node. We conclude that Kel.P would much better support dense linear algebra with built-in
efficient support for block-cyclic layouts. Consequences of this extension to the overall KeLP

model remains a subject for future research.

8 Related Work

Several workers have incorporated hierarchical abstractions into programming languages.
The Cedar Fortran language [35] included storage classes and looping constructs to express
multiple levels of parallelism and locality for the Cedar machine. The pSather language
is based on a cluster machine model for specifying locality [36], and implements a two-
level shared address space in the framework of a concurrent object-oriented model. Bader
and JaJa have developed SIMPLE [37], a set of collective communication operations for
SMP clusters. SIMPLE provides more general, lower-level primitives than KelLP, such as
reductions and gather/scatter. But, it does not help with data decomposition nor does
it overlap communication with computation. Merlin et al. have successfully incorporated
KeLLP with SHPF, a data-parallel HPF-like Fortran dialect [38].

The NESL language [39] implements nested data-parallelism, a model which supports hi-
erarchical parallelism and data structures through vectors of vectors. NESL is an applicative
language, and provides no constructs to control data decomposition or granularity of paral-
lelism. Several task-oriented parallel languages [40, 41, 42, 43| support fork-join parallelism
suitable for divide-and-conquer.

Crandall et. al [44] report experiences with dual-level parallel programs on an SMP clus-
ter and motivate further research into dual-tier programming models and environments. Pro-
teus [45] is a custom-built hierarchical SMP cluster designed for image processing. The Pro-
teus programming API presents a uniform message-passing model, which hides the two-level
non-uniform memory hierarchy but implements intra-node messaging efficiently in shared
memory. Lumetta et al. have implemented low overhead message passing on an SMP clus-

ter, that intercepts on-node communication efficiently through shared memory [5].

29

Erlichson et al. consider implementation tradeoffs for Soft FLASH, a software-based dis-
tributed virtual shared memory system implemented on a cluster of SGI Challenge multi-
processors [46]. The study concludes that dedicated co-processors improve performance, but

not in proportion to the processing resources consumed.

9 Conclusions

We have presented a programming model to facilitate high-performance implementation
of block-structured scientific calculations on dual-tier computers. The KelLP programming
model introduces new mechanisms to manage two levels of locality and parallel control flow
that cleanly separate meta-data descriptions of application structure from objects that im-
plement the structural decisions. In effect, this philosophy separates correctness and perfor-
mance issues in a parallel code. KeLP provides a new collective communication model that
encapsulates complex collective data motion patterns as an atomic operation, and supports
their overlap with computation.

Most, importantly, the programming abstractions contribute a novel division between
mechanism and policy for parallel applications. The system provides high-level intuitive
geometric mechanisms that expose two levels of parallelism and locality for dual-tier archi-
tectures. With these mechanisms, the programmer can implement a variety of algorithmic
policies, without drowning in low-level implementation details.

KeLLP implements a domain specific programming model and does not admit highly
irregular problems such as general sparse matrix methods, tree-based data structures, or
unstructured meshes, which exhibit fine-grained communication. These application classes
demand new implementation techniques and programming abstractions. However, the notion
of a KeLP-style collective Mover is relevant to unstructured problems that manage halo
regions, provided they are amenable to bulk-synchronous execution.

The design of dual-tier KeLLP has evolved from a single-tier variant in use for three
years at the time of this writing [9], and inherits the Point, Region, Grid, and XArray
abstractions from the LPARX programming system [47]. A variety of applications [48, 10, 11]

and computer science projects [12, 49, 13, 14, 50] have used or are using the single-tier KeL.P

30

system. We are currently studying KeLP2 and its applications on the Department of Energy’s
ASCI Blue-Pacific TR machine.

The KelLP programming model presented here manages locality and parallelism for a
specific hardware model. However, the KeLP model offers promise for adaptation to more
general architectural structures including: clusters of clusters, separate computers intercon-
nected over a local or wide area network, and parallel input/output. Extending KeLP to
these scenarios appears to be a promising direction, raising many open issues regarding the
evolution of the programming model, implementation techniques, and algorithms. We are
currently investigating a general n-level parameterized model, which relaxes architectural

assumptions built into Kel.P.

Acknowledgments

This paper written in part while the first author was on sabbatical leave at the University
of Karlskrona/Ronneby, Department of Computer Science and Business Administration, Soft
Center, S-372 25 Ronneby, Sweden. The authors would like to thank Paul Kelly and the
anonymous referees for helpful suggestions on how to improve this paper. The first author
dedicates his portion of the work performed on this paper to the memory of Thorsten Becker
(1968-1998).

This work was supported in part by NSF contract ASC-9520372 and in part by NSF
contract ACI-9619020, “National Partnership for Advanced Computational Infrastructure.”
Stephen J. Fink was supported by the DOE Computational Science Graduate Fellowship
Program. Computer time on the Cray T3E was provided by a UCSD Jacobs School of
Engineering Block Grant and the San Diego Supercomputer Center. Computer time on
the Maryland Digital AlphaServer was provided by NSF CISE Institutional Infrastructure
Award CDA9401151 and a grant from Digital Equipment Corp.

References

[1] P.R. Woodward, “Perspectives on Supercomputing: Three Decades of Change,” IEEE Com-
puter, Vol. 29, Oct. 1996, pp. 99 111.

31

2]

3]

[10]

[11]

“Accelerated Strategic Computing Initiative (ASCI),” Tech. Report UCRL-MI-125923,
Lawrence Livermore Nat’l. Laboratory, 1998.

W.W. Gropp and E.L. Lusk, “A Taxonomy of Programming Models for Symmetric Multi-
processors and SMP Clusters,” Programming Models for Massively Parallel Computers, W.K.
Giloi, S.Jahnichen, and B.D. Shriver, eds, IEEE Computer Society Press, 1995, pp. 2 7.

S.J. Fink and S.B. Baden, “Runtime Support for Multi-Tier Programming of Block-Structured
Applications on SMP Clusters,” Scientific Computing in Object-Oriented Parallel Environ-
ments, Y. Ishikawa, R. Oldehoeft, J.V.W. Reynders, and M. Tholburn, eds., Lecture Notes in
Computer Science, Vol. 1343, Springer-Verlag, Berlin Heidelberg New York, 1997, pp. 1 8.

S.S. Lumetta, A.M. Mainwaring, and D.E. Culler, “Multi-Protocol Active Messages on
a Cluster of SMPs,” Proc. SC97, IEEE Computer Soc. Press, 1997, also available at
http://www.sc98.org/sc97/proceedings/ TECH/LUMETTA /INDEX.HTM (Sept. 1999).

S.J. Fink, Hierarchical Programming for Block—Structured Scientific Calculations, doctoral
dissertation, Univ. of California, San Diego, Dept. Computer Science and Eng., 1998.

S.B. Baden and S.J. Fink, “Communication Overlap in Multi-Tier Parallel algorithms,” Proc.
SC ’98, IEEE Computer Soc. Press, 1998, also available
at http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Baden708 /INDEX.HTM
(Sept. 1999).

Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard,” http://www-
unix.mcs.anl.gov/mpi/ (available Sept 1999), Jun. 1995.

S.J. Fink, S.B. Baden, and S.R. Kohn, “Flexible Communication Mechanisms for Dynamic
Structured Applications,” Parallel Algorithms for Irreqularly Structured Problems, Third Intl.
Workshop, Irreqular 96, A.Ferreira, J.Rolim, Y.Saad, T.Yang, eds., Lecture Notes in Com-
puter Science, Vol. 1117, Springer-Verlag, Berlin, Heidelberg New York, 1996, pp. 203 215.

S.R. Kohn, J.H. Weare, E.M.G. Ong, and S.B. Baden, “Software Abstractions and Computa-
tional Issues in Parallel Structured Adaptive Mesh Methods for Electronic Structure Calcu-
lations,” Structured Adaptive Mesh Refinement Grid Methods, S.B. Baden, N.Chrisochoides,
M.Norman, and D.Gannon, eds., Lecture Notes in Mathematics, Springer-Verlag, Berlin Hei-
delberg New York, 1999. (In press.).

J.Howe, S.B. Baden, T.Grimmett, and K.Nomura, “Modernization of Legacy Application Soft-
ware,” Applied Parallel Computing: Large Scale Scientific and Industrial Problem: jth Inter-
national Workshop, B. Kagstrom, J. Dongarra, E. Elmroth, and J. Wasniewski, eds., Lecture
Notes in Computer Science, Vol. 1541, Springer-Verlag, Berlin, Heidelberg New York, 1997,
pp- 255 262.

S.Figueira, Modeling the Effects of Contention on Application Performance in Multi-User
Environments, doctoral dissertation, Univ. of California, San Diego, Dept. Computer Science
and Eng., 1997.

F.Berman, R.Wolski,
S.Figueira, J.Schopf, and G.Shao, “Application-Level Scheduling on Distributed Heteroge-
neous Networks,” Proc. Supercomputing ’96, IEEE Computer Soc. Press, 1996, also available

32

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

at http://www.supercomp.org/sc96 /proceedings/SCI6PROC/BERMAN/INDEX.HTM (Sept
1999).

R.Wolski, G.Shao, and F.Berman, “Predicting the Cost of Redistribution in Scheduling,”
Proc. Eighth SIAM Conf. Parallel Processing Sci. Computing, STAM, 1997. (Proceedings on
CD ROM.)

A.Sohn and R.Biswas, “Communication Studies of DMP and SMP Machines,” Tech. Report
NAS-97-004, NASA Ames Res. Ctr., Mar. 1997.

W.Gropp, E.Lusk, N.Doss, and A.Skjellum, “A High-Performance, Portable Implementation
of the MPI Message Passing Interface Standard,” Parallel Computing, Vol. 22, No. 6, Sept.
1996, pp. 789 828.

S.J. Fink, S.B. Baden, and S.R. Kohn, “Efficient Run-time Support for Irregular Block-
Structured Applications,” J. Parallel Distrib. Comput., Vol. 50, Apr.-May 1998, pp. 61-62.

S.J. Fink and S.B. Baden, “Run-time Data Distribution for Block-Structured Applications
on Distributed Memory Computers,” Proc. Seventh SIAM Conf. on Parallel Processing for
Scientific Computing, STAM, Feb. 1995, pp. 762 767.

G.Agrawal, A.Sussman, and J.Saltz, “An Integrated Runtime and Compile-Time Approach for
Parallelizing Structured and Block Structured Applications,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 6, No. 7, Jul. 1995, pp. 747-754.

A.C. Sawdey, M.T. O’Keefe, and W.B. Jones, “A General Programming Model for Developing
Scalable Ocean Circulation Applications,” Proc. ECMWEF Workshop on the Use of Parallel
Processors in Meteorology, Jan. 1997.

G.Kiczales, J.Lamping, A.Mendhekar, C.Maeda, C.Lopes, J.-M. Longtier, and J.Irwin, Aspect-
Oriented Programming, Tech. Report SPL.97-008 P9710042, Xerox PARC, Palo Alto, CA, Feb.
1997.

High Performance Fortran Forum, High Performance Fortran Language Specification, Ver-
sion 2.0, Jan. 1997, http://dacnet.rice.edu/Depts/CRPC/HPFF /versions/index.cfm (avail-
able September 1999).

S.J. Fink, KeLP Reference Manual v2.0, Dept. Computer Science and Eng., Univ. of California,
San Diego, Jun. 1998.

L.Snyder, “Foundations of Practical Parallel Programming Languages,” Portability and Per-
formance of Parallel Processing, T.Hey and J.Ferrante, eds., John Wiley and Sons, 1993.

B.Alpern, L.Carter, and J.Ferrante, “Modeling Parallel Computers as Memory Hierarchies,”
Programming Models for Massively Parallel Computers, W.K. Giloi, S.Jahnichen, and B.D.
Shriver, eds., IEEE Computer Soc. Press, Sept. 1993, pp. 116 123.

D.Bailey, E.Barszcz, J.Barton, D.Browning, R.Carter, L.Dagum, R.Fatoohi, S.Fineberg,
P.Frederickson, T.Lasinski, R.Schreiber, H.Simon, V.Venkatakrishnan, and S.Weeratunga, The
NAS Parallel Benchmarks, Tech. Report RNR-94-007, NASA Ames Res. Ctr., Mar. 1994.

W.L. Briggs, A Multigrid Tutorial. STAM, 1987.

33

28]

32]

[33]

R.C. Agarwal, F.G. Gustavson, and M.Zubair, “An Efficient Parallel Algorithm for the 3-D
FFT NAS Parallel Benchmark,” Proc. SHPCC ‘94, IEEE Computer Soc., May 1994, pp. 129—
133.

R.van de Geign and J.Watts, “SUMMA: Scalable Universal Matrix Multiplication Algorithm,”
Concurrency: Practice and Ezperience, Vol. 9, Apr. 1997, pp. 255 274.

J.Choi, J.J. Dongarra, L.S. Ostrouchov, A.P. Petitet, D.W. Walker, and R.C. Whaley, “De-
sign and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines,”
Scientific Programming, Vol.5, Fall 1996, pp. 173-184.

K.M.Chandy and C. Kesselman. “Compositional C++: Compositional Parallel Program-
ming,” Languages and Compilers for Parallel Computing, Fifth Intl. Workshop Proc.,
U.Banerjee, D.Gelernter, A.Nicolau, and D.Padua eds., Lecture Notes in Computer Science,
Vol. 757, Springer-Verlag, Berlin Heidelberg New York, 1992, pp. 124 144.

S.Pakin, V.Karamcheti, and A.A. Chien, “Fast Messages: Efficient Portable Communication
for Workstation Clusters and MPPs,” IEEE Concurrency, Vol. 5, No. 2, 1997, pp. 60 72.

J.Choi, A.Cleary , J.Demmel, [.Dhillon , J.Dongarra, S.Hammarling, G.Henry, S.Ostrouchov,
A Petitet, K.Stanley, D. Walker, and R.C. Whaley, “ScaLAPACK: A Portable Lin-
ear Algebra Library for Distributed Memory Computers - Design Issues and Perfor-
mance.” Proc. Supercomputing 96, IEEE Computer Soc. Press, 1996, also available
at http://www.sc98.org/sc96 /proceedings/SCI6PROC/DONGARRA/INDEX.HTM (Sept.

1999.)

H.Casanova and J.Dongarra, “NetSolve: a Network Enabled Server for Solving Computa-
tional Science Problems,” Int. Journal of Supercomputer Applications and High Performance
Computing, Vol. 11, Fall 1997, pp. 212 223.

R.Eigenmann, J.Hoeflinger, G.Jaxson, and D.Padua, “Cedar Fortran and its Compiler,” CON-
PAR 90-VAPP 1V, Joint Int. Conf. on Vector and Parallel Processing, 1990, pp. 288—299.

S.Murer, J.Feldman, C.-C. Lim, and M.-M. Seidel, pSather: Layered Extensions to an Object-
Oriented Language for Efficient Parallel Computation, Tech. Report TR-93-028, Computer
Science Division, U.C. Berkeley, Dec. 1993.

D.A. Bader and J.JaJa, SIMPLE: A Methodology for Programming High Performance Algo-
rithms on Clusters of Symmetric Multiprocessors, Tech. Report CS-TR-3798, UMIACS-TR-
97-48, Inst. for Adv. Computer Studies, Univ. of Md., College Park, 1997.

J.H. Merlin, S.B. Baden, S.J. Fink, and B.M. Chapman, “Multiple data parallelism with HPF
and KeLLP,” Proc. HPCN 98, Apr. 1998.

G.E. Blelloch, S.Chatterjee, J.C. Hardwick, J.Sipelstein, and M.Zagha, “Implementation of a
Portable Nested Data-Parallel Language,” Fourth ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, ACM, Jul. 1993, pp. 102-111.

A.S. Grimshaw, J.B. Weissman, and T.Strayer, Portable Run-Time Support for Dynamic
Object-Oriented Parallel Processing, Tech. Report CS-93-40, Univ. Virginia, Dept. Computer
Science, Jul. 1993.

34

[41]

[42]

[43]

[44]

[45]

[46]

[47]

R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y.Zhou, “Cilk:
An Efficient Multithreaded Runtime System,” Proc. Fifth ACM SIGPLAN Symp. on Princi-
ples and Practice of Parallel Programming, ACM SIGPLAN, Jul. 1995, pp. 207-216.

I.T. Foster and K.M. Chandy, “Fortran M: A Language for Modular Parallel Programming.”
J. Parallel and Dist. Computing, Vol. 5, No. 1, 1995.

D.Grunwald and S.Vajracharya, The DUDE Runtime System: An Object-Oriented Macro-
Dataflow Approach to Integrated Task and Object Parallelism, Tech. Report CU-CS-779-95,
Dept. Computer Science, Univ. of Colorado, 1994.

P.E. Crandall, E.V. Sumithasri, J.Leichtl, and M.A. Clement, A Tazonomy for Dual-Level
Parallelism in Cluster Computing, Technical Report, Univ. Connecticut, Mansfield, Dept.
Computer Science and Engineering, 1998.

A K. Somani and A.M. Sansano, Minimizing Overhead in Parallel Algorithms through Owver-
lapping Communication/Computation, Tech. Report 97-8, NASA ICASE, Langley, VA., Feb.
1997.

A FErlichson, N.Nuckolls, G.Chasson, and J.Hennessy, “SoftFLASH: Analyzing the perfor-
mance of Clustered Distributed Virtual Shared Memory,” Proc. Seventh Int. Conf. Architec-
tural Support for Programming Languages and Operating Systems, ACM, 1996, pp. 210 220.

S.R. Kohn, A Parallel Software Infrastructure for Dynamic Block-Irregular Scientific Calcu-
lations, doctoral dissertation, Dept. Computer Science and Eng., Univ. of California at San
Diego, La Jolla, CA, 1995.

S.Kohn, J.Weare, M.E. Ong, and S.B. Baden, “Parallel Adaptive Mesh Refinement for Elec-
tronic Structure Calculations”, Proc. SIAM Conf. Parallel Processing for Scientific Computing,
STAM, Mar. 1997. (Proceedings on CD ROM).

F.Berman and R.Wolski, “Scheduling from the Perspective of the Application,” Proc. Fifth
IEEE Int. Symp. on High Performance Distributed Computing, IEEE Computer Soc., Aug.
1996, pp. 100 111.

J.Saltz, A.Sussman, S.Graham, J.Demmel, S.Baden, and J.Dongarra, “Programming Tools
and Environments,” Comm. ACM, Vol. 41, Nov. 1998, pp. 64-73.

35

Affiliation of Authors

Scott B. Baden is an Associate Professor in the Department of Computer Science and
Engineering, University of California, San Diego, in La Jolla, California. Stephen J. Fink is
currently a Research Staff Member at the IBM T. J. Watson Research Center in Hawthorne,
New York.

36

Biographies of Authors

Scott B. Baden is an Associate Professor of Computer Science and Engineering at the
University of California, San Diego and is also a Senior Fellow at the San Diego Supercom-
puter Center. He received the B.S. degree (magna cum laude) in electrical engineering from
Duke University in 1978, and the M.S. and Ph.D. degrees in computer science from the
University of California, Berkeley, in 1982 and 1987, respectively. He was a post-doc in the
Mathematics Group at the University of California’s Lawrence Berkeley Laboratory between
1987 and 1990, taking time off to travel. Dr. Baden’s current research interests are in the
areas of parallel and scientific computation: programming methodology, irregular problems,

load balancing, and performance.

Stephen J. Fink is currently a Research Staff Member at the IBM T. J. Watson Research
Center in Hawthorne, NY. He received the B.S. degree in Computer Science from Duke
University in 1992 with an additional major in Mathematics, and the M.S and Ph.D. de-
gree in Computer Science from the University of California, San Diego in 1994 and 1998.
His research interests include dynamic compilation and programming language design and

implementation for high performance and scientific computation.

37

class MultiMover : public Mover

{
void add(...) { .. }
void start() { ... }
void wait() { ... }

}

FloorPlan F = SetUpFloorPlan(...) ;
XArray2 U(F);

MotionPlan3 dirX, dirY, dirZ;
SetUpMPlans(dirX, dirY, dirZ);

Mover Ex1(U,U,dirX);
Mover Ex2(U,U,dirY);
Mover Ex3(U,U,dirZ);

M = new MultiMover;

// Add the three Movers

M->add (Ex1) ; // Ex1 completes before
M->add (Ex2) ; // Ex2 which completes
M->add (Ex3) ; // before Ex3

M->start(); // Initiate communication

// overlapped computation

// Wait for communication to complete
M->wait () ;

Figure 9: A MultiMover that implements the asynchronous dimension exchange communi-
cation algorithm.

38

=

Multicast A Multicast B Local DGemm

Figure 10: Graphical depiction of one stage of the blocked SUMMA algorithm.

39

