
To appear, IEEE Trans. on Software Engineering.A Programming Methodology for Dual-tier Multicomputers
Scott B. BadenUniversity of California, San Diego,Department of Computer Science and Engineering9500 Gilman Drive, La Jolla, CA 92093-0114 USATel. +1 (858) 534-8861Fax. +1 (858) 534-7029email: baden@cs.ucsd.eduStephen J. FinkIBM Thomas J. Watson Research CenterP.O. Box 704Yorktown Heights, NY 10598 USATel. +1 (914)784-7776Fax. +1 (914)784-6201email:sj�nk@us.ibm.com

1

A Programming Methodology for Dual-tier MulticomputersAbstractHierarchically-organized ensembles of shared memory multiprocessors possess a richerand more complex model of locality than previous generation multicomputers with singleprocessor nodes. These dual-tier computers introduce many new factors into the program-mer's performance model. We present a methodology for implementing block-structurednumerical applications on dual-tier computers, and a run-time infrastructure, called KeLP2,that implements the methodology. KeLP2 supports two levels of locality and parallelism viahierarchical SPMD control ow, run-time geometric meta-data, and asynchronous collectivecommunication. KeLP applications can e�ectively overlap communication with computationunder conditions where non-blocking point-to-point message passing fails to do so. KeLP'sabstractions hide considerable detail without sacri�cing performance, and dual-tier applica-tions written in KeLP consistently outperform equivalent single-tier implementations writtenin MPI. We describe the KeLP2 model and show how it facilitates the implementation of�ve block-structured applications specially formulated to hide communication latency ondual-tiered architectures. We support our arguments with empirical data from running theapplications on various single- and dual-tier multicomputers. KeLP2 supports a migrationpath from single-tier to dual-tier platforms, and we illustrate this capability with a detailedprogramming example.Index words: dual-tier parallel computers, hierarchical parallelism, KeLP, block-structuredscienti�c applications, scienti�c application requirements, C++ framework, SMP clusters.

2

1 IntroductionMemory locality models on parallel computers are becoming increasingly complex, inorder to bridge the widening gap in processor and memory speeds. Another contributingfactor has been the emergence of the dual-tier multicomputer: a hierarchically-organizedparallel computer with two levels of locality and parallelism. Dual-tier clusters of SMPworkstations have taken a role for solving diverse computationally-intensive problems [1],and tighter coupled dual-tier parallel computers with faster interconnect have appeared aswell [2].Compared with single-tier multicomputers{which have a single compute processor ateach node{dual-tier computers have a multi-processor at each node, which is typically asymmetric multiprocessor (SMP). This is shown in Fig. 1. Communication in dual-tiermulticomputers exhibits a two-level cost function. Processors within a single node maycommunicate relatively quickly through shared memory, whereas processors on di�erentnodes communicate relatively slowly via the inter-node interconnect.Although dual-tier architectures can potentially deliver unprecedented performance forcomputationally intensive scienti�c calculations, realizing the hardware's potential remainsa formidable task. The principal di�culty is that increased node performance due to mul-tiprocessing ampli�es the cost of inter-node communication. Relative to the computationalrate, the available inter-node bandwidth on dual-tier systems tends to be lower than forsingle-tier systems with the same number of processors. Thus, the need to tolerate commu-nication latency is extremely important, as any failure of the message passing layer to meetthe needs of the application compounds the high cost of communication.At present, a general purpose programming methodology appropriate for implementingscienti�c applications on dual-tier computers remains elusive. The programmer must care-fully orchestrate parallelism and locality in the application, managing the interaction ofprocesses, threads, shared memory, message-passing, synchronization, scheduling, and loadbalancing [3, 4, 5]. Such software techniques are beyond the reach of many applicationprogrammers, and the lack of e�ective software tools hinder e�cient implementations ofscienti�c calculations on dual-tier architectures by the scienti�c community.3

This paper presents a domain-speci�c programming methodology for dual-tier multicom-puters running bulk-synchronous numerical algorithms, that carry out relatively long periodsof computation interspersed with coarse grain communication. We have implemented ourmethodology as a C++ framework called KeLP2 [4, 6, 7]. (From now on we will refer to thesystem simply as KeLP, dropping the 2.)KeLP supports hierarchical control ow and data decompositions, as well as a hierarchi-cal model of collective asynchronous communication. These mechanisms expose opportuni-ties for improving performance by expressing latency-tolerant, dual-tier parallel algorithms.While the KeLP programmer must consciously attend to high-level algorithmic decisions,KeLP provides intuitive, concise abstractions to help the programmer implement e�cientalgorithmic decisions. In a variety of applications, KeLP's dual-tier formulations consistentlyoutperform equivalent single-tier implementations hand-coded in MPI [8]. This observationis consistent with previous experience with a single-tier variant of KeLP, which has been inuse for the past three years [9, 10, 11, 12, 13, 14].This paper focuses on software engineering issues; detailed performance studies are re-ported elsewhere [4, 6, 7]. We describe how the KeLP dual-tier model meets the requirementsof �ve di�erent block structured applications: single-mesh and multi-level �nite di�erencemethods, the Fast Fourier Transform, and two blocked algorithms for dense numerical linearalgebra{matrix multiply and blocked LU decomposition with partial pivoting. We discussthe current limitations of KeLP and suggest future research directions.
M

P

M

P

M

P

M

P

Interconnection Network

C

P

C

P

C

P

C

P

M

C

P

C

P

C

P

C

P

M

C

P

C

P

C

P

C

P

M

C

P

C

P

C

P

C

P

M

Interconnection Network

Figure 1: Block diagram of a single-tier (left) and dual-tier (right) computer. In this �gure,P=processor, M=memory, C=external cache.
4

2 Assumptions2.1 System AssumptionsWe employ the following de�nition of a dual-tier parallel multicomputer as illustratedon the right side of Fig. 1. A dual-tier parallel multicomputer is hierarchical collectionof n compute nodes each comprising p processors. The nodes execute n separate systemimages, and the p processors on each node share the private address space managed by thenode. Parallelism exists at two levels: across the n nodes of the machine, and among the pprocessors within each node. Computations on a node are multi-threaded, and we assumethat the thread scheduler does a fair job of assigning threads to processors, or that we canachieve a good schedule by binding threads to processors. We consider dedicated hardwarerunning a single application at a time, without interference from other users.1We assume blocking and non-blocking forms of point-to-point communication are sup-ported, and that communication between nodes is costly relative to the collective oatingpoint performance delivered by each node. In practice, communication may be far morecostly than on a single-tier multi-computer, which is a special case of a dual-tier systemwith p = 1.Although some designs may include a communication co-processor at each node to as-sist in managing communication, we do not assume that the co-processor can completelyand e�ectively overlap non-blocking communication with computation as expressed by themessaging layer, e.g. MPI. This condition arises for a two principal reasons. First, theco-processor may be able to realize overlap only under limited operating conditions [15].Second, the messaging layer implementation may not take advantage of the co-processorhardware's overlapping capabilities. In the interest of conserving development costs, a de-veloper may choose to defer treatment of \advanced" capabilities in the messaging layer. Forexample, linearization of non-contiguous messages is particularly troublesome in MPI. Theprogrammer is often better o� packing their own data instead of relying on the MPI datatyping mechanism to handle the activity2. This behavior reduces the e�ectiveness of overlap,tying up the \compute" processor with activities that the programmer might assume were1Though operating system activities may occasionally interfere, their a�ect is assumed to be benign.2Rusty Lusk, private communications, 1998. 5

handled by the co-processor.2.2 Hardware PlatformsThe results reported here were obtained from three platforms: a cluster of DigitalAlphaServer 2100's with four Alpha 21064A processors per node interconnected by 155Mbit/sec ATM; a cluster of 50MHz quad-processor SparcStation 20's interconnected by10 Mbit/sec Ethernet; and a single-tier platform, the Cray T3E with 300MHz Alpha 21164processors. All platforms use MPI [8] for message passing. The Alpha and Sun Clusters ranMPICH 1.0.12 [?], while the Cray T3E ran with the manufacturer-supplied version of MPI.2.3 Application DomainKeLP implements a domain-speci�c programming model targeted to block-structuredapplications. These applications carry out highly repetitive computations on coupled collec-tions of uniform blocks of data, represented by multi-dimensional arrays. (Figs. 2 and 10.)Applications execute in bulk-synchronous SPMD fashion with long periods of computationinterspersed by shorter periods of communication. Nodes transmit regular sections of data,attaining near-peak communication delivery rates.3 Message lengths in KeLP applicationstend to be tens to hundreds of thousands of bytes or longer.Block-structured applications typically exhibit highly correlated patterns of collectivecommunication involving sets of atomic regular section moves of multidimensional slices ofdata [9, 17, 18]. These patterns may not be known at compile time. They can depend on theinput to the problem, to conditions evolving at run time, or both. We may describe theseblock-structured communication patterns using a table of meta-data, containing descriptionsof the regular sections to be moved, i.e. a communication schedule [19]. This model issu�ciently general to treat a wide range of applications, including uniform �nite di�erencemethods (Fig. 2), blocked numerical linear algebra (Fig. 10), and irregular adaptive andmultilevel methods [6].We have just seen how a collective model captures the communication patterns inherentin a variety of block structured problems. For various reasons, non-blocking point-to-point3Though the underlying blocks of data are structured, their sizes may be non-uniform, giving rise to anirregular communication structure. 6

communication may be inappropriate to express communication overlap in such applications.We have previously identi�ed some common technological causes in x2.1. In addition, thenon-blocking point-to-point communication model may also be inappropriate from softwareand algorithmic viewpoints. For example, multi-phase communication algorithms, such asdimension exchange or hypercube broadcast, impose a strict ordering on message transmis-sions. As a consequence, overlap strategies based on non-blocking communication must pollseveral times to ensure correct synchronization of the communication sequence. The inclusionof multiple synchronization points within application software tangles program structure, es-pecially in cases where the number of synchronization points depends on quantities whichcannot be known at compile time, such as the number of processors. Proigate synchroniza-tion can disrupt the execution of tightly optimized loop nests, lowering CPU performance.The techniques required to work around this di�culty, e.g. mixed mode programming, arebeyond the means of many programmers. The interaction between message passing andthreads is di�cult to understand [3, 4, 5].42.4 SummaryWe have now identi�ed a set of system and application requirements. In sum, we requirerun-time data decomposition and collective communication models that may be customizedto the needs of the application and even to the speci�c input. Communication is assumedto be expensive and we require a means of overlapping it with computation. However, dueto variations among di�erent computing systems, we must be able to express such overlapwithout knowing the details of how the system will support the activity.3 A Motivating Example3.1 A Finite Di�erence MethodConsider a typical iterative �nite di�erence application: solve Poisson's equation in threedimensions with a 7-point stencil using the Gauss-Seidel method with red-black ordering.We will refer to this application as RedBlack3D. We begin with a single-tier implementation4The emerging OpenMP standard can simplify shared memory parallelization in mixed mode program-ming, but doesn't eliminate the underlying performance interactions between message passing and threads.7

Ghost Cells

Partition

XArray X, MotionPlan Mfor each i 2 XRegion RX = X(i):region()Region RI = trim(RX)for each j 2 Xif (i 6= j) thenRegion R = RI \X(j)M:Copy(X; i;R;X; j;R)end ifend forend forFigure 2: A close up view of a block-partitioned two-dimensional grid, showing the ghostregion for a typical partition (left). The middle �gure shows some of the dependencies thatmust be satis�ed to refresh the ghost cells on one processor's local grid. The right �gureshows the KeLP code to express the communication, and will be described in a later section.written with explicit message passing, e.g. MPI. The customary approach to parallelizingthis iterative method is to split the subdomain into subregions using a regular blockeddecomposition, and then surround each subdomain with a bu�er called a ghost region, holdingo�-processor data used to update the boundary points of the subdomain. (Fig. 2.) Thecalculation consists of successive steps that compute and then communicate to �ll the ghostcells.3.2 Single-Tier ImplementationIf we run our program on the Digital SMP cluster described in the last section, with oneMPI process per processor, we treat the n�4 machine as a attened structure with 4�n nodes.This seems reasonable since MPI is portable. However, performance may not be portable.When we run a 1283 problem on 1 node, we observe that performance is 23 megaops. If werun on 8 nodes, scaling the number of unknowns in proportion to the number of nodes, we�nd that performance is only 65 megaops on a 2563 problem. Hardware utilization is low{about 35%. We may improve performance signi�cantly if we reorganize the mapping of datato processors. In our original code we let MPI decide how to assign the work. MPI con�guredthe 32 processors into an 8�4 array, with each node occupying a single 4-processor column ofthe array. A hierarchical decomposition can improve locality, by con�guring the nodes into8

a 4�2 array, and the processors on each node into a 2�2 array. This optimization increasesthe ratio of on-node to o�-node communication, improving performance to 114 megaops.3.3 Multi-Tier ImplementationThe MPI implementation we used on the Alpha Cluster incurs the full TCP/IP overheadeven when passing messages between processors on a single node, rather than using a multi-protocol messaging layer [5] to handle on-node messages via shared memory. We will tryan alternative dual-tier strategy. We run with one MPI process per node and parallelizenumerical computation on the node using shared memory techniques. We store ghosts callsonly for data coming from outside the node. This optimization increases performance to 134megaops, again on 32 CPUs.Still, there is room for improvement. The hardware sits idle 40% of the time waitingon communication. Our solution is to employ pre-fetching to mask the latency of commu-nication [4, 20]. To implement this optimization we separate the points laying adjacent tothe ghost region from the remaining interior points, which do not depend directly on thestate of the ghost cells. (The left of Fig. 3). This partitioning enables communication toexecute concurrently with the bulk of the computation. Once communication completes, wemay then update the remaining work that borders the ghost cell region. The pre-fetchingstrategy works well and improves performance on 32 CPUs by an additional 22%{to 163megaops.5We have improved the performance of the naive MPI implementation by a factor of 3.5and are content with a scaled speedup of 7. However, the programming e�ort requiredto implement the performance optimizations is substantial. The principal di�culty is thatthe implementation of MPICH that we used on the AlphaServer is incapable of overlap-ping communication via non-blocking point-to-point communication. (Another problem isthat we must we must manage irregular decompositions.) We must therefore resort tomulti-threading to provide the overlap we require. Thus, we must employ a hybrid program-ming model managing threads, processes, synchronization, messages, and shared memory.5We might be able to increase performance slightly by decreasing the granularity of our pre-fetch strategy,e.g. a wavefront method. This technique is admitted by KeLP, though we did not implement it.9

4

1

2

3

0
5 3

4

1

2

a) b)Figure 3: (a) Collective-level partitioning over 4 nodes showing the halo region, and (b) the node-level partitioning on dual-processor nodes, detailing the irregular partitioning used to implement apre-fetching strategy. The regions marked 0 and 1 correspond to the FloorPlan Fi in the code ofFig. 8, and the regions marked 2 through 5 to FloorPlan Fa. This decomposition is duplicated oneach node.Managing the interactions between these mechanisms adds considerable complexity to theprogramming e�ort, and is beyond the reach of many application programmers. This largeprogramming overhead motivates the design of higher level abstractions to hide the low-levelinteractions.3.4 Software Engineering IssuesA major requirement of our abstractions is to separate the expression of correct programsfrom optimizations that a�ect performance. This type of separation of concerns results ineasier-to-develop, more maintainable code [21], with three three bene�ts. First, we mayoptimize the single processor performance of the numerical inner loops independently ofhow we parallelize the application. This permits us to build upon existing serial numericalcode [11], which has often been carefully optimized. Second, we obtain a convenientmigrationpath: a systematic approach to converting a single-tier program to an equivalent dual-tierversion. Finally, we obtain backward compatibility: our dual-tier program may run e�cientlyon a single-tier computer, which is just a special case of a dual-tier computer with oneprocessor per node. In fact, our dual-tier application outperforms the MPI implementationrunning on two single-tier con�gurations of the AlphaServer: a single SMP, or the entiremachine running just one processor per node. On the Cray T3E, the dual-tier KeLP coderuns within 1.5% of the performance of the hand-coded MPI variant.10

Our simple programming example reveals a number of important requirements whichgeneralize to a diversity of block-structured applications. We next describe our programmingmodel more formally and then discuss its application to four other numerical problems.4 The KeLP Programming Model4.1 OverviewKeLP supplies mechanisms to help the programmer coordinate data decomposition, datamotion, and parallel control ow. While KeLP hides the low-level details of managingresources, e.g. message-passing, processes, threads, synchronization, and memory allocation,it does not analyze program source code to make high-level restructuring and algorithmicdesign decisions as in a compiled language like HPF [22]. Rather, the KeLP philosophyis to empower the user to make such decisions{possibly at run time{as necessary to meetthe requirements of the application [17]. Similarly, KeLP does not support automated datapartitioning. The user is presumed to know how best to accomplish this task. Instead, KeLPprovides a framework that facilitates the construction of partitioning libraries. Indeed, wehave developed a variety of such libraries, and all the applications described in this paperhave used at least one [6, 23].4.2 Hierarchical Control Flow and CommunicationMost existing SPMD parallel programming models reect the single-tier design of previ-ous generation multicomputers. They support two levels of control ow: collective level andnode level. This two-level approach is clearly articulated in the Phase Abstractions program-ming model [24], which is embodied in MPI [8]. A program performs collective operations,such as reductions, barriers and broadcasts, interspersed within a node level program. Thenode-level instructions form separate threads of control and execute independently. In mostcases, the node level will invoke highly tuned serial numeric kernels.In contrast to the two levels of single-tier SPMD programming, KeLP supports threelevels of control: a collective level, a node level, and a processor level, as shown in Fig.4.KeLP programs express parallelism at the node and processor levels and they express com-munication at collective and node levels. We note, however, that processors on di�erent11

Data Layout
Data Motion
Global Operations

Data Layout
Data Motion
Global Operations

Data Layout
Data Motion
Global Operations

Computation
Serial

Computation
Serial

Computation
Serial

Computation
Serial

Computation
Serial

Computation
Serial

Computation
Serial

Computation
Serial N,p

1

N

Figure 4: The KeLP 3-level control hierarchy.nodes must communicate via their respective nodes and may not communicate directly bypassing messages. Under KeLP, communication is always ascribed to the node rather thanto the individual processors. This three-level model is similar to that employed in PMH[25].The collective and node levels each manage their own data layouts and data motion. Theprocessor-level control stream executes a serial instruction stream on a single physical pro-cessor. KeLP abstractions help manage each level independently where desired, and alsohelp manage interactions between the levels where necessary.4.3 Programming AbstractionsThe KeLP abstractions fall into two categories: meta-data and instantiation. These ab-stractions are listed in Table 1. KeLP meta-data objects represent the abstract structureof some facet of the calculation, such as a decomposition or a communication pattern. In-stantiation objects carry out program behavior based on information contained in meta-dataobjects.Meta-data abstractions. There are four meta-data abstractions: the Region, Motion-Plan, Map, and FloorPlan. The Region represents a rectangular subset of Zn; i.e., a regularsection with stride one. KeLP provides the Region calculus, a set of high-level geometricoperations to help the programmer manipulate Regions. Typical operations include shift,intersection, pad, and trim.The Map class implements a function Map : f0; : : : ; k � 1g ! Z, for some integer k.That is, for 0 � i < k, Map(i) returns some integer. The Map forms the basis for node and12

Meta-Data AbstractionsName De�nition InterpretationPoint < int i0, int i1, ::: int iD�1 > A point in ZDMap f : f0; : : : k � 1g ! Z an integer mappingRegion < Point l, Point h> A rectangular subset of ZDFloorPlan < Array of Region, Map > A set of Regions,each with an integer ownerMotionPlan List of < Region Rs, int i, Block-structured communicationRegion Rd, int j > pattern between two FloorPlansInstantiatorsName DescriptionGrid A multidimensional array whose index space is a RegionXArray An array of Grids; structure represented by a FloorPlanMover Object that atomically performs the data motion patterndescribed by a MotionPlanTable 1: A brief synopsis of the KeLP data types.processor assignments in KeLP partitioning. The FloorPlan consists of a Map along with anarray of Regions, and it is a table of meta-data that represents a potentially irregular blockdata decomposition. Alternatively, a FloorPlan can represent distribution of work amongprocessors within a single node, as it is derived from Map.The MotionPlan implements a dependence descriptor, which is also known as a communi-cation schedule [19]. The programmer builds and manipulates MotionPlans using geometricRegion calculus operations, a process which will be described shortly.4.4 Storage ModelThe Point, Region, Map, FloorPlan, and MotionPlan meta-data may live at any of thethree levels of control ow. Meta-data can pass through the levels from the top down.For example, a FloorPlan written at the collective level may be read at the node level orprocessor level. However, meta-data cannot pass up the program levels; e.g. the contents ofa FloorPlan written at the processor level are unde�ned at the node and collective levels.KeLP meta-data objects describe only the structure of data and communication withina program. The KeLP Grid and XArray objects hold the actual data of an application. AGrid is an array of objects all of the same type, whose index space is a Region. For example,13

the Fortran 90 array real A(3:7) corresponds to a one-dimensional Grid A of real and hasa region A.region() == [3:7].The Grid storage class may live only at the node level. This built-in assumption wasmade in the interest of e�ciency. A KeLP program may access the Grid data from the node-level instruction stream at that node, or from processor-level instruction streams nested atthat node, but not from the collective level (or from other nodes). A collective Grid, ine�ect, would de�ne a shared-memory address space across all nodes. However, it cannotbe assumed that the hardware supports global shared memory, since code that made thisassumption could not o�er portability with performance. KeLP's minimalist philosophy isto avoid abstractions that cannot be known to deliver portable performance. KeLP providesconstructs such as the XArray and MotionPlan for building abstractions like grid partitioners.The performance of such libraries can be readily understood, since all data motion is explicit.An XArray is an array of Grids, whose structure is represented by a FloorPlan. It isderived from Map. All elements must have the same number of spatial dimensions, but theindex set of each Grid component (KeLP Region) can be di�erent. Grid components canhave overlapping Regions, but they do not share memory. The application is responsiblefor managing any such sharing explicitly. An XArray is a collective object, and must becreated from the collective program level. Owing to built-in assumptions concerning theGrid storage class, we also make the built-in assumption that an XArray lives only at thecollective level. An interesting variation would be to allow node level XArrays, and is thesubject of future research.For an XArray X, X(i) denotes the ith Grid component of X. Processor assignmentsare determined by the Map used to construct the XArray's FloorPlan. The indices of anXArray are virtual. The number of XArray elements may be greater than the number ofphysical nodes or processors, and the mapping of XArray elements to processors may bemany-to-one. This capability is useful in handling load balancing.KeLP supports a collective communication operation which performs block transfers ofregular array sections between two XArrays. We will discuss data motion in the next section.
14

5 Programming exampleTo illustrate KeLP's programming constructs, we describe the implementation of Red-Black3D, which was introduced in x3. We begin with a single-tier implementation for adistributed memory computer with uniprocessor nodes. Then, we migrate the code to adual-tier architecture, adding optimizations that improve performance by overlapping com-munication with computation. For illustrative purposes, our code examples use an abstractsyntax and in a few cases we substitute English descriptions for simple operations.5.1 Single-tier codeThe single-tier version of RedBlack3D manages a single level of parallelism and locality.As described in x3 we follow the usual SPMD implementation strategy that employs HPF-style BLOCK data decomposition [22] and carries additional ghost cells to bu�er o�-processordata. Each relaxation sweep consists of two steps: (1) communicate with nearest neighborsto exchange ghost cell values, and (2) independently relax on the local portion of the globalmesh. Fig. 5 shows the main routine for RedBlack3D. The program begins execution at thecollective program level, and there is a single logical thread of control. All nodes execute thesame statements in the main procedure.Data distribution. We distribute the N �N �N computational domain (at line 1, theRegion object called domain) with the help of a partitioning library written in KeLP.6 Wepad each node's local subdomain with a layer of ghost cells at line (3); the pad() operationadds space for ghost cells to each FloorPlan element T (i).With the FloorPlan T initialized, we instantiate storage by creating two XArrays: uand rhs (lines 4-5) holding, respectively, the computed solution and right-hand side for thePoisson equation. The XArray constructor creates an XArray with one Grid for each elementof T . The ith Grid of u, u(i), has the domain T (i):region() and exists on node T:owner(i).Data motion. We are now ready to handle data motion. As mentioned previously,KeLP supports a collective model of communication. Two KeLP classes are used to expresscommunication: theMotionPlan andMover. To understand the operation of the MotionPlan6For example, KeLP2 includes a library called DOCK that implements run-time BLOCK decomposi-tions [23]. 15

(1) Region domain = [1 : N; 1 : N; 1 : N](2) Floorplan T = blockPartition(domain)(3) for each i 2 T , T .setRegion(i,pad(T (i)))(4) XArray u(T)(5) XArray rhs(T)(6) MotionPlan M(7) BuildFillGhostPattern(u;M)(8) Mover mov(u; u;M)(9) InitialConditions(u; rhs;mov)(10) integer rb = 0(11) while (not converged) do(12) Relax(u; rhs;mvr; rb)(13) rb = (rb+ 1) mod 2end whileFigure 5: Main procedure for redblack3D example.and Mover, we use following notation. Let D and S be two XArrays, D(i) be element i ofD, and S(j) element j of S. Let Rs and Rd be two Regions. Then, the notation(D(i) on Rd)((S(i) on Rs) (1)denotes a block copy operation: copy the values from S(j) over all the indices in Rs intoD(i) over the indices in Rd. We assume that Rd and Rs contain the same number of points,though their shapes may be di�erent. The copy operation visits the points in Rd and Rs ina de�ned systematic order, i.e. column major.Now, we encode a communication pattern as records of a MotionPlan �, a list containingentries �(k). These entries are 4-tuples of the following form:hRegion Rs; int i; Region Rd; int ji: (2)The components of the 4-tuple describe communication in a manner consistent with thediscussion of the previous paragraph. We use the add() member function to add new Mo-tionPlan entries.We instantiate a Mover object � by binding a MotionPlan � to two XArrays: Mover � =Mover(�, S, D). The result is an object with two operations, start() and wait(). The Mover16

executes collective communication as an atomic operation, initiating the data transfers viathe start() member function. This call is asynchronous and a return does not indicate thatcommunication has completed. The wait() member function is used to detect completion.7When the Mover returns from wait(), all transfers will have completed. In particular, theMover will have executed the following communication operation for each �(k) : (D(�(k):i)on �(k):Rd) ((S(�(k):i) on �(k):Rs), where we designate the entries of the �(k) with theC-style struct quali�ers �(k):Rs, �(k):Rd, �(k):i, �(k):j. Since the speci�c order of transfersis not de�ned, correctness must not depend on that ordering.When the Mover is invoked from the collective level, each node will synchronize its ownprocessors. There is no collective synchronization across nodes, since such synchronizationis implicit in the execution of the Mover, which satis�es inter-node dependencies.Returning to our code of Fig. 5, we build a MotionPlan M (lines 6 and 7) to describethe ghost cell update pattern, and then instantiate a Mover object (line 8) which will carryout the communication. The algorithm to build the MotionPlan is simple and is shown inFig. 2.We build a Mover for each data motion pattern to be executed. Since rhs is a staticdata structure, we do not carry out any data motion on it, and so there is no need to builda Mover for it. We note that the constructor arguments to the Mover mov (line 8) specifythat the source and destination XArray are the same.The data motion is actually carried out in the Relax routine, which is shown in Fig. 6.This code is written in single-tier form and will run on at most one processor per node.Relax begins execution from collective control ow. At lines 1 and 2 the nodes invoke theMover to update the ghost cells.The Mover start member function begins moving the data asynchronously (line 1). Sincewe are not going to overlap communication and computation, we immediately call the Moverwait member function to block until the data motion completes (line 2). Once wait returns,the program performs the serial relaxation kernel on each node: it drops from the collective7Individual nodes or processors may block on wait(), while other nodes or processors continue execu-tion. Thus, the programmer may selectively block individual nodes or processors as dictated by the datadependencies of the application, providing a more localized and less costly form of synchronization than abarrier. 17

Relax(XArray u, XArray rhs, Mover mov, integer rb)begin(1) mov.start()(2) mov.wait()(3) for nodeIterator ni 2 u do(4) serialRelax(u(ni), rhs(ni), u.region(ni), rb)end doendFigure 6: Single-tier KeLP code for redblack3D relaxation.control level to node-level control using the KeLP nodeIterator loop (line 3).The nodeIterator constructor takes a Map, which speci�es the number of loop iterationsand the mapping of these iterations to nodes. Recall that XArray is derived from Map.Thus, we may use the XArray u as the Map for constructing this iterator. NodeIterator niuses the owner-computes rule to create one loop iteration for each element of u. Each loopiteration ni executes on node u.owner(ni) only, and in this case entails calling serialRelax,a serial numerical kernel which performs the relaxation (line 6). Inside the loop, the programruns in node-level control, with one stream per node.5.2 Dual-tier codeWe next modify our single-tier program to take advantage of the hierarchical organizationof a dual-tier machine. Fig. 7 shows dual-tier KeLP code to implement the Relax subroutinewith two levels of parallelism. As before, Relax starts in collective control ow, updatesghost cells by invoking the Mover (lines 2 and 3), and drops to node-level control via thenodeIterator, with one iteration per block of XArray u (line 3).From the node-level loop, we now parallelize the relaxation on each block across theprocessors on the node. Consider iteration ni of the loop, executing on node u:owner(ni),which relaxes Grid u(ni), with Region u:region(ni). We parallelize the numerical compu-tation across the p processors by partitioning u:region(ni) into p blocks and then assigningeach block to a single processor. As before, we rely on a partitioner utility (line 4) [23].This partitioner maps each grid u(ni) with a private FloorPlan F, such that F:owner(i) =18

Relax(XArray u, XArray rhs, Mover mov, integer rb)begin(1) mov.start()(2) mov.wait()(3) for nodeIterator ni 2 u(4) Floorplan F = IntranodeBlockPartition(u:region(ni))(5) for procIterator pi 2 F(6) serialRelax(u(ni), rhs(ni), F (pi), rb)end forend forend Figure 7: Dual-tier KeLP code for redblack3D relaxation.processor i.We now drop to processor-level control via the procIterator (line 5). Similar to thenodeIterator, the procIterator executes one iteration for each element of F , and executesiteration i on processor F:owner(i). (Recall that FloorPlan is derived from Map). From theprocessor-level control, each iteration invokes the serial kernel serialRelax independently(line 6). The serialRelax routine accepts a region-valued argument F (pi) specifying thesubset of Grid u(ni) assigned to the iteration.In looking at the above code we notice the similarity in how we build a FloorPlan at eachlevel of control ow, and the use of a single iterator construct to handle that control ow. Thisapproach should be contrasted with one that employs threads and message passing explicitly.In the latter case the programmer must manage processes and threads with separate sets ofprimitives. Threads communicate via shared memory and use locks, barriers, and events tosynchronize. Processes communicate and typically synchronize by passing messages. Theymay also use barriers. The mechanisms are not symmetric, and their interaction is extremelydi�cult to manage.There is one aspect of KeLP programming model, however, which is not symmetric.In KeLP's memory model, a Grid G lives in a single address space corresponding to onenode. The program can access the data of G from node-level control or from processor-level19

control. Since these semantics introduce the potential for race conditions, the programmer isresponsible for avoiding them. This was a conscious decision on our part; a more restrictivemodel that guaranteed safety would require compiler analysis or otherwise limit KeLP'sability to deliver high performance.By default, KeLP enforces a logical synchronization point at the end of each procIteratorloop, but not at the nodeIterator loop. No action is required to enforce a logical nodeIteratorbarrier, since the Mover is assumed to carry out data motion correctly. In e�ect the Moverimplements an unsafe form of local barrier synchronization. This design decision was madeintentionally, reecting the belief that the programmer should have the exibility to avoidcostly global synchronization at the risk of introducing program errors. In the RedBlack3Dcode, the procIterator barrier ensures that all relaxation will complete before any part ofthe program proceeds to the next stage of the program. The programmer can relax thenode-level synchronization if desired, but is responsible for ensuring correctness.5.3 Dual-tier code with communication overlapUsing the techniques described in x3.3 we restructure the dual-tier implementation ofthe Relax() routine to introduce pre-fetching. The restructured code appears in Fig. 8.In order to overlap communication and computation we will use the following strategy.(1) asynchronously begin communication; (2) perform local computation on the interior ofeach Grid (as shown in Fig. 3); (3) wait for communication to complete; (4) perform localcomputation on the annulus of each Grid. As before, the collective level invokes the Mover toasynchronously initiate communication. Unlike the previous examples, where the programimmediately blocked on the Mover, we defer the wait on communication, and begin localcomputation immediately.To manage this overlapped communication algorithm in KeLP, we generate partitioninginformation at node-level control, storing the information in two FloorPlans, FloorPlansFa and Fi (lines 3 and 4), which are shown in Fig. 3. With the FloorPlans set up, twoprocIterator loops carry out the computation as follows. The �rst procIterator loop (lines5-6) sweeps over the interior points. Next, the Mover waits for communication to complete(line 7). Once the ghost cells have arrived, the procIterator loop at lines 9-10 sweeps over20

Relax(XArray u, XArray rhs, Mover mov, integer rb)begin(1) mov.start()(2) for nodeIterator ni 2 u(3) Floorplan Fi, Fa(4) IntranodeDepPartition(u:region(n), Fi, Fa)(5) for procIterator pi 2 Fi(6) serialRelax(u(ni), rhs(ni), Fi(pi), rb)end forend for(7) mov.wait()(8) for nodeIterator ni 2 u(9) for procIterator pi 2 Fa(10) serialRelax(u(ni),rhs(ni),Fa(pi),rb)end forend forendFigure 8: Dual-tier KeLP code with communication overlap for redblack3D relaxation.the points in the annulus.5.4 DiscussionBeginning with a single-tier implementation we have incrementally constructed a opti-mized dual-tier parallel code that overlaps communication and computation. Two mecha-nisms in KeLP worked synergistically to improve performance: hierarchical collective com-munication and hierarchical ow control. The KeLP Mover encapsulates composed commu-nication patterns, executing communication on each node as a separate task in parallel withcomputation. Thus, the implementation policies for managing parallelism within the com-munication task may be handled separately from computation. Since the dual-tier systemswe used did not support communication overlap via a co-processor, we chose to implementthe Mover to run on a reserved SMP processor. The e�ect was to reduce the length of thecritical path of application, even though the numerical computation time actually increased.This was accomplished without entangling the application program with the details. The21

KeLP abstractions are su�ciently general to express optimized algorithms for a variety ofblock-structured scienti�c calculations, which we will examine in the next section.An important design goal of KeLP is to hide unnecessary detail from the user withoutsacri�cing performance. Another goal was to enable the re-use of existing numerical kernelswithout entailing massive reprogramming. To understand how well KeLP meets these goalswe built a hand-coded MPI version of RedBlack3D and compared it against the KeLPcode. We ignored the code shared in common by the two implementations, that handlescommand line argument processing and the C++-to-Fortran interface. Excluding comments,the relevant MPI code consists of 354 lines of C++, plus 54 lines of Fortran 77 to handlethe relaxation. The dual-tier KeLP code comprises 236 lines of C++ and uses the identicalFortran 77 module. The KeLP code provides overlap capabilities, and it runs e�cientlyon both single-tier as well as dual-tier architectures as described in x3. The module whichhandles the irregular decomposition accounts for 71 of those 236 lines, and indeed the single-tier KeLP code weighs in at just 157 lines, about half the size of the MPI code. But codesize doesn't reveal the full picture. The most challenging part of the MPI code{that handlescommunication{is about 180 lines long. The equivalent KeLP encoding is about only 15 lineslong. This striking reduction in code complexity comes without a performance penalty [17, 6].6 Application StudyIn this section, we evaluate the KeLP programming model against four additional applica-tions that raise distinct programming issues. First, we examine a multilevel �nite di�erencemethod, the application class originally targeted by KeLP. We next consider Fast FourierTransform, blocked matrix multiplication, and blocked dense LU factorization with partialpivoting{which is well outside of KeLP's intended problem domain due to the use of blockcyclic data decompositions. The matrix multiplication and LU algorithms implement newpipelined overlap formulations due to Fink[6]. For each application, we describe how KeLPfacilitated the design of the software and comment on the appropriateness of the KeLP model.With a few noted exceptions, all �ve codes were run on the three platforms described in x2.2.22

6.1 NAS Multigrid BenchmarkThe NAS-MG multigrid benchmark [26] solves Poisson's equation in 3D using a multigridV-cycle [27]. In this stencil-based computation, a series of meshes are organized into levelsand we parallelize each level with techniques similar to those for RedBlack3D.The NPB 2.1 code speci�es a three-stage dimensional exchange algorithm to satisfyboundary conditions. The dimension exchange algorithm introduces an interesting softwaredesign issue. Owing to a synchronization constraint that exists between phases of dimensionexchange, we cannot naively build three separate Movers and start all three at once. Instead,we derive a new class from Mover, called MultiMover, which serially invokes a sequence ofMovers, as shown in Fig. 9. To the calling application, the three-stage execution sequenceof MultiMover appears to be an atomic operation.This communication example highlights the expressive power of KeLP. By representingthe multi-phase communication as an atomic object, the programmer can asynchronouslyexecute an arbitrary sequence of message-passing and synchronization operations. In con-trast, non-blocking MPI calls asynchronously start only one message-passing operation ata time. To overlap communication using a sequence of operations, an MPI program mustperiodically poll for the completion of non-blocking message calls in order to start the nextsequence of calls in a timely manner. This polling activity is highly disruptive, since it mayinterrupt highly-tuned numeric kernels, degrading performance. It also tangles the programstructure. The more powerful KeLP design lends itself to better structured and more e�cientcode.Computational results show that the dual-tier KeLP code outperforms the MPI code by12% on eight AlphaServers and by 13% on four SparcStations. On the single-tier Cray T3E,performance of the KeLP version of the application is nearly indistinguishable from that ofMPI, coming within 3% on 64 processors. The KeLP code outperforms the MPI code ona single node of the AlphaServer or the SparcStation cluster. Thus, KeLP's higher level ofabstraction does not come at the expense of performance{and it actually boosts performanceon dual-tier computers.
23

6.2 NAS-FT BenchmarkThe NAS FT benchmark solves a 3D di�usion equation using a Fourier method. Thebottleneck of this computation is a 3D transpose (total exchange), which is particularlycostly on an SMP cluster [5, 4]. To mask some of the latency of communication, we employFink's restructured variant[6] of Agarwal et al.'s [28] pipelined algorithm.The publicly available NAS FT benchmark (NBP 2.1) is written in Fortran 77 and usesexplicit message passing with MPI. This code performs the total exchange using the MPIall to all call. The KeLP code encodes the matrix transpose using a MotionPlan andKeLP Mover. On the Cray T3E the KeLP code outperforms the MPI code slightly{by a fewpercent, on up to 64 processors. These results indicate, somewhat surprisingly, that KeLPimplements the global matrix transpose messages about as e�ciently as the MPI collectivecall [4, 9, 17]. On the Alpha cluster, we were able to improve performance by about 13% byintroducing software pipelining to overlap communication.6.3 SUMMA Matrix MultiplicationWe now turn our attention to a di�erent and important problem class: dense numericallinear algebra. Since KeLP provides facilities to manage distributed block structures we nextconsider how well the KeLP abstractions aid in e�cient implementations of blocked densematrix algorithms.Perhaps the best-known blocked dense matrix algorithm is dense matrix multiplication.We consider the SUMMA (Scalable Universal Matrix Multiply Algorithm), due to van deGeijn and Watts [29]. Using KeLP, we devised a new variant of SUMMA variant that usessoftware pipelining to overlap communication and computation [4, 6].SUMMA implements matrix multiplication as a series of blocked outer products overdistributed matrices. Assume A, B, and C have BLOCK data decompositions over the nodes.We distribute the work based on the decomposition of C; each node will compute the sub-section of C that it owns, as shown in Fig. 10. This pipelined algorithm carries out a seriesof broadcasts as shown in the Figure. The broadcasts transmit a panel of data rather thanthe entire block of data assigned to the processor, that is, a vertical or horizontal slice. Thisstrategy decreases the granularity of the pipeline, increasing the bene�ts of overlap.24

To implement SUMMA we used a domain speci�c library, call dGrid, which we built ontop of KeLP [6, 23]. The dGrid library handles the details of managing the progression ofpanel broadcasts across the global matrix. In particular, it implements a replicated grid ab-straction, a convenient way to express column and row broadcasts among processors mappedonto virtual grids.The dual-tier code with communication overlap outperforms the single-tier MPI code byas much as 33% on the Alpha Cluster. On the Cray T3E, the KeLP code runs slightly fasterthan MPI, though it is ultimately non-scalable due to the way we handled communicationin the Mover. In particular, we used a ring-broadcast algorithm, which has a linear runningtime, in lieu of a logarithmic time broadcast algorithm. On 64 T3E processors, the MPIimplementation overtakes KeLP, outperforming it by 18%. We are currently investigatinga solution to the non-scalable performance of our broadcast algorithm, as discussed in thenext section on LU decomposition.6.3.1 LU DecompositionFinally, we consider the blocked right-looking distributed LU factorization algorithm ofSCaLAPACK [30]. This application was selected because it is well outside the intendedproblem domain of KeLP. In particular, due to use of a BLOCK CYCLIC decomposition anda pivot selection step, synchronization requirements of the algorithm are �ner-grained thanthe other applications. A detailed description of the algorithm is described by Fink [6].As in SUMMA and FT, LU carries out a series of broadcast operations. However, LU isdistributed in 1-dimensional BLOCK CYCLIC fashion rather than in BLOCK fashion in order toload balance the computation. This complicates the implementation since KeLP does notsupport BLOCK CYCLIC decompositions primitively. Instead, we emulate them. As a result,each node will carry several (tens) of XArray elements.The decomposition is by column block and there are two broadcast operations acrosscolumns. The �rst transmits a vector of integers, which refer to the pivot selections. Thesecond transmits a vertical slice of data, a long and thin sub-column of the matrix. Insteadof using the MPI broadcast capability, we built a replicated array abstraction using KeLP.Class ReplicatedArray is an XArray whose FloorPlan is the replicated instance of a single25

KeLP Region. Thus, if we copy data from source to all overlapping elements of a replicatedarray, we achieve the e�ect of a broadcast. This abstraction is appealing because it reectsthe logical structure of the algorithm: we are broadcasting to block cyclic distributed blockcolumns of data, not to processors.The LU application is interesting for other reasons. First, although we used pipelining toexpress parallelism across nodes, we employed task parallelism within each node to expressthe various computational steps in the LU algorithm [6]. In fact, we used two Movers, oneeach at the collective and node program levels. The collective Mover handled data motionarising in the pipelining strategy, while the node-level Mover handled data motion withinshared memory.On the Cray T3E, the single-tier implementation ran within 1.5% of the speed of theMPI (SCaLAPACK) code. The dual-tier KeLP implementation of LU factorization ranslightly faster (up to about 10%) than the MPI implementation on up to 4 nodes of theAlphaServer.8 However, the KeLP implementation does not scale beyond 4 nodes, and isovertaken by the SCaLAPACK code on 8 nodes. This is true because we used a naive ringbroadcast algorithm in the implementation of the ReplicatedArray class. This algorithmhas a running time that is linear in the number of nodes. We believe that performancecould be improved signi�cantly with a logarithmic time hypercube broadcast algorithm.Like the dimension exchange algorithm used in the multigrid application, this is a multi-phase algorithm. However, a more signi�cant challenge is that the KeLP implementation ofBLOCK CYCLIC decomposition doesn't scale to larger numbers of nodes.7 DiscussionOur experiences have shown that KeLP is e�ective in improving performance by explic-itly managing hierarchical locality and by masking communication costs through overlap.KeLP's programming model provides an appropriate level of abstraction for a variety ofblock-structured scienti�c calculations, subordinating incidental detail without sacri�cingperformance. The model is also robust, as KeLP applications achieve portable performance8We did not have access to tuned BLAS on the SparcStation cluster, so we did not run on that machine.26

across dual-tier and single-tier architectures.KeLP introduces a new three-level control ow model, which supports structured par-allelism through iterators. As in CC++ structured parallel loops [31], the KeLP iteratorssimplify the expression of parallelism, but restrict the forms of parallel control ow avail-able to the programmer. However, by disallowing unstructured parallel control ow, we areable to rely on the structured loops to implicitly handle inter-processor synchronization orto permit the programmer to relax synchronization requirements in a controlled way. Thisapproach simpli�es the programming model.The KeLP communication model enables the programmer to express and compose elab-orate data motion patterns as collective operations. The ability to encapsulate complexcollective communication patterns in turn enables the KeLP programmer to express suchcommunication as a concurrent task, which may then be overlapped using traditional mech-anisms, e.g. threads. Thus, on platforms that do not support communication overlap viaa co-processor{such as the ones used to produce the results in this paper{KeLP may re-alize overlap using a spare processor on each node. Even in cases where the co-processordoes support overlap, the ability to express communication as a concurrent task may stillrealize bene�ts. For example, linearization of non-contiguous data structures may not besupported by a local MPI implementation. Therefore, this activity would not be overlappedin a non-blocking message passing call. Due to the high cost of packing non-contiguous dataon some architectures [17], the KeLP Mover could overlap a signi�cant amount of overheadthat would otherwise remain in the critical path of the application.One way to reduce communication costs in a dual-tier multicomputer is to provide amulti-protocol message passing layer that intercepts on-node messages through fast sharedmemory avoiding the overhead of communication protocols such as TCP/IP [5]. While thisimplementation strategy would likely improve the KeLP Mover's performance on the dual-tier platforms used in this study9, it does not deal with the problem of how to convenientlyoverlap multi-phase communication. The issue here is not related to the implementationof non-blocking point-to-point communication, but the inappropriateness of the mechanism.9The AlphaServer port of MPI-CH did not support multi-protocol communication, and the Sun port wasnot robust. 27

Thus, a major contribution of this paper is to advocate a framework for writing block-structured asynchronous collective communication algorithms. This framework would serveas middleware sitting atop communication APIs like MPI, but could use other APIs aswell [32].The Data Mover resembles an MPI persistent communication object. However, KeLPprovides inspector-executor analysis, which is particularly useful in irregular problems, and italso provides �rst-class support for multidimensional arrays, via user-de�ned metadata anda geometric region calculus. KeLP avoids MPI's awkward data type mechanism to handlestrides of non-contiguous faces that would entail registering a separate data type for eachstride appearing in the data. More generally, the KeLP meta-data abstractions, e.g. theRegion calculus, provide a more intuitive and concise notation for expressing and managingcustomized communication domains.In designing the KeLP model, we made some built in assumptions to meet demandingperformance requirements. These assumptions related to the parallel iterator and Gridimplementations. We chose to limit parallel iterator loop nesting to two levels of controlow due to implementation concerns. Recall that KeLP's nodeIterator and procIteratorclasses directly map loop iterations to physical nodes and processors. If we were to divorcethe hardware structure from the programming model, we would raise many open questionsregarding how to map the control ow onto the hardware. Answering these questions remainsan open research issue.Our results suggest future directions for numerical library design. Typically, a pro-grammer will rely on a library such as SCaLAPACK [33] to implement a core of commonnumerical algorithms. In order to explicitly overlap communication and computation, wepropose that standard libraries provide asynchronous entry points for numerical routines.For example, an FFT library should provide startFFT() and �nishFFT() calls, which theprogrammer can use to structure the calling application as needed. While SCaLAPACK doesnot provide asynchronous operations, the NetSolve interface provides asynchronous accessto numerical library routines for distributed systems [34]. Our results reinforce the bene�tsof asynchronous entry points to numerical libraries.28

The current KeLP model does not explicitly support block-cyclic data layouts. The LUapplication simulated a block-cyclic layout as a multi-block layout, assigning many blocks pernode. We conclude that KeLP would much better support dense linear algebra with built-ine�cient support for block-cyclic layouts. Consequences of this extension to the overall KeLPmodel remains a subject for future research.8 Related WorkSeveral workers have incorporated hierarchical abstractions into programming languages.The Cedar Fortran language [35] included storage classes and looping constructs to expressmultiple levels of parallelism and locality for the Cedar machine. The pSather languageis based on a cluster machine model for specifying locality [36], and implements a two-level shared address space in the framework of a concurrent object-oriented model. Baderand J�aJ�a have developed SIMPLE [37], a set of collective communication operations forSMP clusters. SIMPLE provides more general, lower-level primitives than KeLP, such asreductions and gather/scatter. But, it does not help with data decomposition nor doesit overlap communication with computation. Merlin et al. have successfully incorporatedKeLP with SHPF, a data-parallel HPF-like Fortran dialect [38].The NESL language [39] implements nested data-parallelism, a model which supports hi-erarchical parallelism and data structures through vectors of vectors. NESL is an applicativelanguage, and provides no constructs to control data decomposition or granularity of paral-lelism. Several task-oriented parallel languages [40, 41, 42, 43] support fork-join parallelismsuitable for divide-and-conquer.Crandall et. al [44] report experiences with dual-level parallel programs on an SMP clus-ter and motivate further research into dual-tier programming models and environments. Pro-teus [45] is a custom-built hierarchical SMP cluster designed for image processing. The Pro-teus programming API presents a uniform message-passing model, which hides the two-levelnon-uniform memory hierarchy but implements intra-node messaging e�ciently in sharedmemory. Lumetta et al. have implemented low overhead message passing on an SMP clus-ter, that intercepts on-node communication e�ciently through shared memory [5].29

Erlichson et al. consider implementation tradeo�s for SoftFLASH, a software-based dis-tributed virtual shared memory system implemented on a cluster of SGI Challenge multi-processors [46]. The study concludes that dedicated co-processors improve performance, butnot in proportion to the processing resources consumed.9 ConclusionsWe have presented a programming model to facilitate high-performance implementationof block-structured scienti�c calculations on dual-tier computers. The KeLP programmingmodel introduces new mechanisms to manage two levels of locality and parallel control owthat cleanly separate meta-data descriptions of application structure from objects that im-plement the structural decisions. In e�ect, this philosophy separates correctness and perfor-mance issues in a parallel code. KeLP provides a new collective communication model thatencapsulates complex collective data motion patterns as an atomic operation, and supportstheir overlap with computation.Most importantly, the programming abstractions contribute a novel division betweenmechanism and policy for parallel applications. The system provides high-level intuitivegeometric mechanisms that expose two levels of parallelism and locality for dual-tier archi-tectures. With these mechanisms, the programmer can implement a variety of algorithmicpolicies, without drowning in low-level implementation details.KeLP implements a domain speci�c programming model and does not admit highlyirregular problems such as general sparse matrix methods, tree-based data structures, orunstructured meshes, which exhibit �ne-grained communication. These application classesdemand new implementation techniques and programming abstractions. However, the notionof a KeLP-style collective Mover is relevant to unstructured problems that manage haloregions, provided they are amenable to bulk-synchronous execution.The design of dual-tier KeLP has evolved from a single-tier variant in use for threeyears at the time of this writing [9], and inherits the Point, Region, Grid, and XArrayabstractions from the LPARX programming system [47]. A variety of applications [48, 10, 11]and computer science projects [12, 49, 13, 14, 50] have used or are using the single-tier KeLP30

system. We are currently studying KeLP2 and its applications on the Department of Energy'sASCI Blue-Paci�c TR machine.The KeLP programming model presented here manages locality and parallelism for aspeci�c hardware model. However, the KeLP model o�ers promise for adaptation to moregeneral architectural structures including: clusters of clusters, separate computers intercon-nected over a local or wide area network, and parallel input/output. Extending KeLP tothese scenarios appears to be a promising direction, raising many open issues regarding theevolution of the programming model, implementation techniques, and algorithms. We arecurrently investigating a general n-level parameterized model, which relaxes architecturalassumptions built into KeLP.AcknowledgmentsThis paper written in part while the �rst author was on sabbatical leave at the Universityof Karlskrona/Ronneby, Department of Computer Science and Business Administration, SoftCenter, S-372 25 Ronneby, Sweden. The authors would like to thank Paul Kelly and theanonymous referees for helpful suggestions on how to improve this paper. The �rst authordedicates his portion of the work performed on this paper to the memory of Thorsten Becker(1968-1998).This work was supported in part by NSF contract ASC-9520372 and in part by NSFcontract ACI-9619020, \National Partnership for Advanced Computational Infrastructure."Stephen J. Fink was supported by the DOE Computational Science Graduate FellowshipProgram. Computer time on the Cray T3E was provided by a UCSD Jacobs School ofEngineering Block Grant and the San Diego Supercomputer Center. Computer time onthe Maryland Digital AlphaServer was provided by NSF CISE Institutional InfrastructureAward CDA9401151 and a grant from Digital Equipment Corp.References[1] P.R. Woodward, \Perspectives on Supercomputing: Three Decades of Change," IEEE Com-puter, Vol. 29, Oct. 1996, pp. 99{111. 31

[2] \Accelerated Strategic Computing Initiative (ASCI)," Tech. Report UCRL-MI-125923,Lawrence Livermore Nat'l. Laboratory, 1998.[3] W.W. Gropp and E.L. Lusk, \A Taxonomy of Programming Models for Symmetric Multi-processors and SMP Clusters," Programming Models for Massively Parallel Computers, W.K.Giloi, S.Jahnichen, and B.D. Shriver, eds, IEEE Computer Society Press, 1995, pp. 2{7.[4] S.J. Fink and S.B. Baden, \Runtime Support for Multi-Tier Programming of Block-StructuredApplications on SMP Clusters," Scienti�c Computing in Object-Oriented Parallel Environ-ments, Y. Ishikawa, R. Oldehoeft, J.V.W. Reynders, and M. Tholburn, eds., Lecture Notes inComputer Science, Vol. 1343, Springer-Verlag, Berlin Heidelberg New York, 1997, pp. 1{8.[5] S.S. Lumetta, A.M. Mainwaring, and D.E. Culler, \Multi-Protocol Active Messages ona Cluster of SMPs," Proc. SC97, IEEE Computer Soc. Press, 1997, also available athttp://www.sc98.org/sc97/proceedings/TECH/LUMETTA/INDEX.HTM (Sept. 1999).[6] S.J. Fink, Hierarchical Programming for Block{Structured Scienti�c Calculations, doctoraldissertation, Univ. of California, San Diego, Dept. Computer Science and Eng., 1998.[7] S.B. Baden and S.J. Fink, \Communication Overlap in Multi-Tier Parallel algorithms," Proc.SC '98, IEEE Computer Soc. Press, 1998, also availableat http://www.supercomp.org/sc98/TechPapers/sc98 FullAbstracts/Baden708/INDEX.HTM(Sept. 1999).[8] Message Passing Interface Forum, \MPI: A Message-Passing Interface Standard," http://www-unix.mcs.anl.gov/mpi/ (available Sept 1999), Jun. 1995.[9] S.J. Fink, S.B. Baden, and S.R. Kohn, \Flexible Communication Mechanisms for DynamicStructured Applications," Parallel Algorithms for Irregularly Structured Problems, Third Intl.Workshop, Irregular '96, A.Ferreira, J.Rolim, Y.Saad, T.Yang, eds., Lecture Notes in Com-puter Science, Vol. 1117, Springer-Verlag, Berlin, Heidelberg New York, 1996, pp. 203{215.[10] S.R. Kohn, J.H. Weare, E.M.G. Ong, and S.B. Baden, \Software Abstractions and Computa-tional Issues in Parallel Structured Adaptive Mesh Methods for Electronic Structure Calcu-lations," Structured Adaptive Mesh Re�nement Grid Methods, S.B. Baden, N.Chrisochoides,M.Norman, and D.Gannon, eds., Lecture Notes in Mathematics, Springer-Verlag, Berlin Hei-delberg New York, 1999. (In press.).[11] J.Howe, S.B. Baden, T.Grimmett, and K.Nomura, \Modernization of Legacy Application Soft-ware," Applied Parallel Computing: Large Scale Scienti�c and Industrial Problem: 4th Inter-national Workshop, B. K�agstr�om, J. Dongarra, E. Elmroth, and J. Wasniewski, eds., LectureNotes in Computer Science, Vol. 1541, Springer-Verlag, Berlin, Heidelberg New York, 1997,pp. 255{262.[12] S.Figueira, Modeling the E�ects of Contention on Application Performance in Multi-UserEnvironments, doctoral dissertation, Univ. of California, San Diego, Dept. Computer Scienceand Eng., 1997.[13] F.Berman, R.Wolski,S.Figueira, J.Schopf, and G.Shao, \Application-Level Scheduling on Distributed Heteroge-neous Networks," Proc. Supercomputing '96, IEEE Computer Soc. Press, 1996, also available32

at http://www.supercomp.org/sc96/proceedings/SC96PROC/BERMAN/INDEX.HTM (Sept1999).[14] R.Wolski, G.Shao, and F.Berman, \Predicting the Cost of Redistribution in Scheduling,"Proc. Eighth SIAM Conf. Parallel Processing Sci. Computing, SIAM, 1997. (Proceedings onCD ROM.)[15] A.Sohn and R.Biswas, \Communication Studies of DMP and SMP Machines," Tech. ReportNAS-97-004, NASA Ames Res. Ctr., Mar. 1997.[16] W.Gropp, E.Lusk, N.Doss, and A.Skjellum, \A High-Performance, Portable Implementationof the MPI Message Passing Interface Standard," Parallel Computing, Vol. 22, No. 6, Sept.1996, pp. 789{828.[17] S.J. Fink, S.B. Baden, and S.R. Kohn, \E�cient Run-time Support for Irregular Block-Structured Applications," J. Parallel Distrib. Comput., Vol. 50, Apr.-May 1998, pp. 61{62.[18] S.J. Fink and S.B. Baden, \Run-time Data Distribution for Block-Structured Applicationson Distributed Memory Computers," Proc. Seventh SIAM Conf. on Parallel Processing forScienti�c Computing, SIAM, Feb. 1995, pp. 762{767.[19] G.Agrawal, A.Sussman, and J.Saltz, \An Integrated Runtime and Compile-Time Approach forParallelizing Structured and Block Structured Applications," IEEE Transactions on Paralleland Distributed Systems, Vol. 6, No. 7, Jul. 1995, pp. 747{754.[20] A.C. Sawdey, M.T. O'Keefe, and W.B. Jones, \A General Programming Model for DevelopingScalable Ocean Circulation Applications," Proc. ECMWF Workshop on the Use of ParallelProcessors in Meteorology, Jan. 1997.[21] G.Kiczales, J.Lamping, A.Mendhekar, C.Maeda, C.Lopes, J.-M. Longtier, and J.Irwin, Aspect-Oriented Programming, Tech. Report SPL97-008 P9710042, Xerox PARC, Palo Alto, CA, Feb.1997.[22] High Performance Fortran Forum, High Performance Fortran Language Speci�cation, Ver-sion 2.0, Jan. 1997, http://dacnet.rice.edu/Depts/CRPC/HPFF/versions/index.cfm (avail-able September 1999).[23] S.J. Fink, KeLP Reference Manual v2.0, Dept. Computer Science and Eng., Univ. of California,San Diego, Jun. 1998.[24] L.Snyder, \Foundations of Practical Parallel Programming Languages," Portability and Per-formance of Parallel Processing, T.Hey and J.Ferrante, eds., John Wiley and Sons, 1993.[25] B.Alpern, L.Carter, and J.Ferrante, \Modeling Parallel Computers as Memory Hierarchies,"Programming Models for Massively Parallel Computers, W.K. Giloi, S.Jahnichen, and B.D.Shriver, eds., IEEE Computer Soc. Press, Sept. 1993, pp. 116{123.[26] D.Bailey, E.Barszcz, J.Barton, D.Browning, R.Carter, L.Dagum, R.Fatoohi, S.Fineberg,P.Frederickson, T.Lasinski, R.Schreiber, H.Simon, V.Venkatakrishnan, and S.Weeratunga, TheNAS Parallel Benchmarks, Tech. Report RNR-94-007, NASA Ames Res. Ctr., Mar. 1994.[27] W.L. Briggs, A Multigrid Tutorial. SIAM, 1987.33

[28] R.C. Agarwal, F.G. Gustavson, and M.Zubair, \An E�cient Parallel Algorithm for the 3-DFFT NAS Parallel Benchmark," Proc. SHPCC `94, IEEE Computer Soc., May 1994, pp. 129{133.[29] R.van de Geign and J.Watts, \SUMMA: Scalable Universal Matrix Multiplication Algorithm,"Concurrency: Practice and Experience, Vol. 9, Apr. 1997, pp. 255{274.[30] J.Choi, J.J. Dongarra, L.S. Ostrouchov, A.P. Petitet, D.W. Walker, and R.C. Whaley, \De-sign and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines,"Scienti�c Programming, Vol.5, Fall 1996, pp. 173{184.[31] K.M.Chandy and C. Kesselman. \Compositional C++: Compositional Parallel Program-ming," Languages and Compilers for Parallel Computing, Fifth Intl. Workshop Proc.,U.Banerjee, D.Gelernter, A.Nicolau, and D.Padua eds., Lecture Notes in Computer Science,Vol. 757, Springer-Verlag, Berlin Heidelberg New York, 1992, pp. 124{144.[32] S.Pakin, V.Karamcheti, and A.A. Chien, \Fast Messages: E�cient Portable Communicationfor Workstation Clusters and MPPs," IEEE Concurrency, Vol. 5, No. 2, 1997, pp. 60{72.[33] J.Choi, A.Cleary , J.Demmel, I.Dhillon , J.Dongarra, S.Hammarling, G.Henry, S.Ostrouchov,A.Petitet, K.Stanley, D. Walker, and R.C. Whaley, \ScaLAPACK: A Portable Lin-ear Algebra Library for Distributed Memory Computers - Design Issues and Perfor-mance." Proc. Supercomputing '96, IEEE Computer Soc. Press, 1996, also availableat http://www.sc98.org/sc96/proceedings/SC96PROC/DONGARRA/INDEX.HTM (Sept.1999.)[34] H.Casanova and J.Dongarra, \NetSolve: a Network Enabled Server for Solving Computa-tional Science Problems," Int. Journal of Supercomputer Applications and High PerformanceComputing, Vol. 11, Fall 1997, pp. 212{223.[35] R.Eigenmann, J.Hoeinger, G.Jaxson, and D.Padua, \Cedar Fortran and its Compiler," CON-PAR 90-VAPP IV, Joint Int. Conf. on Vector and Parallel Processing, 1990, pp. 288{299.[36] S.Murer, J.Feldman, C.-C. Lim, and M.-M. Seidel, pSather: Layered Extensions to an Object-Oriented Language for E�cient Parallel Computation, Tech. Report TR-93-028, ComputerScience Division, U.C. Berkeley, Dec. 1993.[37] D.A. Bader and J.J�aJ�a, SIMPLE: A Methodology for Programming High Performance Algo-rithms on Clusters of Symmetric Multiprocessors, Tech. Report CS-TR-3798, UMIACS-TR-97-48, Inst. for Adv. Computer Studies, Univ. of Md., College Park, 1997.[38] J.H. Merlin, S.B. Baden, S.J. Fink, and B.M. Chapman, \Multiple data parallelism with HPFand KeLP," Proc. HPCN '98, Apr. 1998.[39] G.E. Blelloch, S.Chatterjee, J.C. Hardwick, J.Sipelstein, and M.Zagha, \Implementation of aPortable Nested Data-Parallel Language," Fourth ACM SIGPLAN Symp. on Principles andPractice of Parallel Programming, ACM, Jul. 1993, pp. 102{111.[40] A.S. Grimshaw, J.B. Weissman, and T.Strayer, Portable Run-Time Support for DynamicObject-Oriented Parallel Processing, Tech. Report CS-93-40, Univ. Virginia, Dept. ComputerScience, Jul. 1993. 34

[41] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y.Zhou, \Cilk:An E�cient Multithreaded Runtime System," Proc. Fifth ACM SIGPLAN Symp. on Princi-ples and Practice of Parallel Programming, ACM SIGPLAN, Jul. 1995, pp. 207{216.[42] I.T. Foster and K.M. Chandy, \Fortran M: A Language for Modular Parallel Programming."J. Parallel and Dist. Computing, Vol. 5, No. 1, 1995.[43] D.Grunwald and S.Vajracharya, The DUDE Runtime System: An Object-Oriented Macro-Dataow Approach to Integrated Task and Object Parallelism, Tech. Report CU-CS-779-95,Dept. Computer Science, Univ. of Colorado, 1994.[44] P.E. Crandall, E.V. Sumithasri, J.Leichtl, and M.A. Clement, A Taxonomy for Dual-LevelParallelism in Cluster Computing, Technical Report, Univ. Connecticut, Mans�eld, Dept.Computer Science and Engineering, 1998.[45] A.K. Somani and A.M. Sansano, Minimizing Overhead in Parallel Algorithms through Over-lapping Communication/Computation, Tech. Report 97-8, NASA ICASE, Langley, VA., Feb.1997.[46] A.Erlichson, N.Nuckolls, G.Chasson, and J.Hennessy, \SoftFLASH: Analyzing the perfor-mance of Clustered Distributed Virtual Shared Memory," Proc. Seventh Int. Conf. Architec-tural Support for Programming Languages and Operating Systems, ACM, 1996, pp. 210{220.[47] S.R. Kohn, A Parallel Software Infrastructure for Dynamic Block-Irregular Scienti�c Calcu-lations, doctoral dissertation, Dept. Computer Science and Eng., Univ. of California at SanDiego, La Jolla, CA, 1995.[48] S.Kohn, J.Weare, M.E. Ong, and S.B. Baden, \Parallel Adaptive Mesh Re�nement for Elec-tronic Structure Calculations", Proc. SIAM Conf. Parallel Processing for Scienti�c Computing,SIAM, Mar. 1997. (Proceedings on CD ROM).[49] F.Berman and R.Wolski, \Scheduling from the Perspective of the Application," Proc. FifthIEEE Int. Symp. on High Performance Distributed Computing, IEEE Computer Soc., Aug.1996, pp. 100{111.[50] J.Saltz, A.Sussman, S.Graham, J.Demmel, S.Baden, and J.Dongarra, \Programming Toolsand Environments," Comm. ACM, Vol. 41, Nov. 1998, pp. 64{73.

35

A�liation of AuthorsScott B. Baden is an Associate Professor in the Department of Computer Science andEngineering, University of California, San Diego, in La Jolla, California. Stephen J. Fink iscurrently a Research Sta� Member at the IBM T. J. Watson Research Center in Hawthorne,New York.

36

Biographies of AuthorsScott B. Baden is an Associate Professor of Computer Science and Engineering at theUniversity of California, San Diego and is also a Senior Fellow at the San Diego Supercom-puter Center. He received the B.S. degree (magna cum laude) in electrical engineering fromDuke University in 1978, and the M.S. and Ph.D. degrees in computer science from theUniversity of California, Berkeley, in 1982 and 1987, respectively. He was a post-doc in theMathematics Group at the University of California's Lawrence Berkeley Laboratory between1987 and 1990, taking time o� to travel. Dr. Baden's current research interests are in theareas of parallel and scienti�c computation: programming methodology, irregular problems,load balancing, and performance.Stephen J. Fink is currently a Research Sta� Member at the IBM T. J. Watson ResearchCenter in Hawthorne, NY. He received the B.S. degree in Computer Science from DukeUniversity in 1992 with an additional major in Mathematics, and the M.S and Ph.D. de-gree in Computer Science from the University of California, San Diego in 1994 and 1998.His research interests include dynamic compilation and programming language design andimplementation for high performance and scienti�c computation.

37

class MultiMover : public Mover{ void add(...) { .. }void start() { ... }void wait() { ... }}FloorPlan F = SetUpFloorPlan(...) ;XArray2 U(F);MotionPlan3 dirX, dirY, dirZ;SetUpMPlans(dirX, dirY, dirZ);Mover Ex1(U,U,dirX);Mover Ex2(U,U,dirY);Mover Ex3(U,U,dirZ);M = new MultiMover;// Add the three MoversM->add(Ex1); // Ex1 completes beforeM->add(Ex2); // Ex2 which completesM->add(Ex3); // before Ex3M->start(); // Initiate communication// overlapped computation// Wait for communication to completeM->wait();Figure 9: A MultiMover that implements the asynchronous dimension exchange communi-cation algorithm.
38

Multicast A Multicast B Local DGemmFigure 10: Graphical depiction of one stage of the blocked SUMMA algorithm.

39

