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hesion categories. According to Yourdon and Constantine,every element in a module exhibiting functional cohesion\is an integral part of, and is essential to, the performanceof a single function" [39, p. 127]. In their model, a moduleis either functionally cohesive or not. In contrast, we aredeveloping techniques that indicate the extent to which amodule approaches the ideal of functional cohesion.Note that one can also evaluate cohesion from the per-spective of data abstraction [23, pp. 169{171]. Fenton de-scribes this abstract or data cohesion as a di�erent notion ofcohesion with a di�erent set of measurement attributes [10,p. 200]. In this paper, we address functional cohesion; wedefer the treatment of abstract or data cohesion to futurework.Measurement techniques used in the physical sciencesguide us in our development of functional cohesion mea-sures. Aspects of functional cohesion are internal productattributes related to properties of programs [11]. Our ob-jectives include the development of (1) a good model offunctional cohesion, and (2) measures that use the modelto quantify functional cohesion.For cohesion measures to provide meaningful measure-ments, they must be rigorously de�ned, accurately reectwell understood software attributes, and be based on mod-els that capture these attributes [1]. The measures shouldbe speci�ed independently from the measurement tools,and such tools should be based on the models. For ex-ample, QUALMS [38] is based on the ow graph model,and the test coverage measurement tools of Bieman andSchultz [4], [5] are based on the standard representationmodel [2]. We use a slice abstraction of a program basedon data slices to model cohesion [26].A program slice is the portion of program text that af-fects a speci�ed program variable [35]. A variation on pro-gram slices can model and measure functional cohesion [28].Procedure cohesion measures must indicate the cohesionthat is expressed in the program text. We cannot mea-sure semantic relations between program components thatcannot be identi�ed from the program text alone. Notethat functional cohesion is actually an attribute of individ-ual procedures or functions, rather than an attribute of aseparately compilable program unit or module (dependingon the programming language, modules may include sev-eral procedures and declarations). We will use the term\procedure" to refer to both procedures and functions.We develop cohesion measures in terms of the slicemodel, and validate the measures by demonstrating thatthey are consistent with expected cohesion model orderingsand determining their scale properties. Thus, we appeal tothe representation condition of measurement theory [10,pp. 25{26],[11], which requires that our intuition about therelative quantity of functional cohesion is preserved by a



BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 645cohesion measure. To be measurable on an ordinal scale,an attribute of cohesion must impart an ordering on themodel. That is, the model of a procedure with \more" ofone cohesion attribute must be ranked (according to theattribute ordering) higher than the model of a procedurewith \less" of the attribute [24].A measure is speci�ed as a mapping from the model toa quantitative value. Such a measure must be consistentwith the cohesion ordering. One way to demonstrate thata measure is consistent with the ordering is to evaluatethe e�ect of code modi�cations to the model and the mea-sures. We focus on the direction of the changes to cohesionmeasurements resulting from relatively simple code modi�-cations. The direction of measurement changes provides aranking of relative levels of cohesion before and after a codechange. Our analysis also demonstrates the scale proper-ties and the arithmetic operations that can be applied tothe measurement values [41, ch. 4].The role of experimentation in software measurement re-search is to map structural measures back to process goalssuch as fewer defects, increased maintainability, etc. But,before we can conduct e�ective empirical research, we must�rst have sound measures [1]. Thus, our goal here is todevelop measures that accurately reect the concept of co-hesion.The paper has the following organization. In Section II,we de�ne the abstractions used to model functional cohe-sion. In Section III, we examine the cohesion attributes andmeasures, and Section IV evaluates the scale properties ofthe measures. In Section V, we provide some examplesof procedures, cohesion orderings, and cohesion measures.Section VI is a review of related work. Our conclusions aregiven in Section VII.II. Cohesion AbstractionsIn our analysis, functional cohesion is based on procedureoutputs. Each output \object" (output parameter, modi-�ed global variable, or �le), represents one component ofa procedure's functionality. We identify the componentsof a procedure that contribute to particular outputs. Al-though a procedure may perform computation that doesnot produce outputs, outputs of some kind are generallythe externally visible manifestation of functionality. Wedo not address the cases where activities that do not pro-duce outputs are the real functionality, for example mod-ules whose main functionality is to produce a time delay.In the case of procedures with multiple outputs, we seehow closely the program parts that contribute to di�erentoutputs are bound. Using this approach, procedures withonly one output exhibit maximum functional cohesion.A. Program SlicesSlicing is a method of program reduction introduced byWeiser [35], [36], [37]. A slice of a procedure at statement swith respect to variable v is the sequence of all statementsand predicates that might a�ect the value of v at s. Sliceswere proposed as potential debugging tools and programunderstanding aids. They have since been used in a broader

class of applications (e.g., debugging parallel programs [7],maintenance [13], [15], [25], and testing [17], [18], [22], [29]).Weiser's algorithm for computing slices is based on dataow analysis. It is suggested in [27] that a program depen-dence graph representation can be used to compute slicesmore e�ciently and precisely. An algorithm for computingslices using a program dependence graph representation ispresented by Horwitz, Reps, and Binkley [16], [31]. A sliceis obtained by walking backwards over the program depen-dence graph to obtain all nodes which have an e�ect on thevalue of the variable of interest. Similarly, a forward slice[16] can be obtained by walking forward over the programdependence graph to obtain all nodes which are a�ected bythe value of a variable. The algorithm based on the pro-gram dependence graph is more restricted than Weiser'sin the sense that it will only compute a slice for variablev at statement s if v is de�ned or used in statement s.Both intraprocedural slices and interprocedural slices canbe computed.We derive cohesion measures directly from slices ratherthan dependence graphs. Slices promote a more intuitiveanalysis since they are based on program text. Our mea-surement theory approach requires that a measure be con-sistent with intuition, and including program text in ourabstraction eases intuitive analysis.B. Data SlicesIn [37], Weiser de�ned several slice based measures.Longworth [21] �rst studied their use as indicators of cohe-sion. In [30] and [33], Thuss eliminates certain inconsisten-cies noted by Longworth through the use of metric slices.A metric slice takes into account both uses and used bydata relationships; that is, they are the union of Horwitzet.al.'s backward and forward slices.In order to analyze the e�ects of changes on slice mea-sures, we modify this concept of metric slices to use data to-kens (i.e., variable and constant de�nitions and references)rather than statements as the basic unit. We call theseslices data slices.Using data tokens as the basis of the slices ensures thatall changes of interest will cause a change in at least oneslice of a procedure. We consider a change of interest tobe any change which could have an e�ect on the cohesive-ness of a procedure. An example of a change that is not ofinterest is changing some operator to a di�erent operator.Examples of changes of interest include adding code, delet-ing code, or changing the variable used in a given context.Each of these changes would result in a change to at leastone data slice. (This is in contrast to a metric slice, whereif a statement is modi�ed, the actual statements in the slicemight not change.)Informally, we view a data slice for a data token, v, asthe sequence of all data tokens in the statements that com-prise the \backward" and \forward" slices of v. We useintraprocedural slicing since we are interested in examin-ing the cohesiveness of each procedure as a separate entity.We compute a data slice for each output of a procedure.An \output" is any single value explicitly output to a �le



646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994procedure SumAndProduct( N : integer;var SumN , ProdN : integer );varI : integer;beginSumN := 0 ;ProdN := 1;for I := 1 to N do beginSumN := SumN + I ;ProdN := ProdN * Iendend;Fig. 1. Data slice for SumN . Items included in the slice are containedwithin boxes.(or user output), an output parameter, or an assignmentto a global variable. An output tuple with multiple com-ponents is considered to be multiple outputs. Since we areinterested in the cohesion of the whole procedure, we use aconcept similar to that of end-slices [19]. The \backward"slices are computed from the end of the procedure1 andthe \forward" slices are computed from the \top"s of thebackward slices.Fig. 1 displays an example of a data slice embedded ina program. The slice for SumN in Fig. 1 is a sequence ofdata tokens:N1�SumN1�I1�SumN2�01�I2�12�N2�SumN3�SumN4�I3where each Ti indicates the i'th data token for T in theprocedure. Note that in the slice for SumN, the subscriptin \12" indicates that the token is the second occurrenceof data token \1" in the procedure. We can also computethe slice for ProdN:N1�ProdN1�I1�ProdN2�11�I2�12�N2�ProdN3�ProdN4�I4We can pro�le the data slices in a procedure to give asense of the relationships among data slices. Fig. 2 showsan example of a data slice pro�le. We indicate, in thecolumn for a slice variable, the number of data tokens inthat line that are included in the slice. This pro�le wasderived from an earlier method developed for visualizingslices [25], [28], [33].C. Slice AbstractionsOur analysis of functional cohesion is developed usingan abstract model of procedures based on data slices. TheSlice Abstraction models each procedure as a set of data1We use the FinalUse nodes of [16] as the end of a procedure.

SumN ProdN Statementprocedure SumAndProduct1 1 ( N : integer;1 1 var SumN, ProdN : integer );var1 1 I : integer;begin2 SumN := 0;2 ProdN := 1;3 3 for I := 1 to N do begin3 SumN := SumN + I;3 ProdN := ProdN * Iendend;Fig. 2. Data Slice pro�le for SumAndProduct. The number of datatokens included in the data slice for SumN and ProdN is indicatedin columns 1 and 2 respectively.slices, and a data slice as a sequence of data tokens. Es-sentially, we strip away all of the non-data tokens from aprocedure and include only the data tokens in the abstrac-tion.The slice abstraction for the SumAndProduct procedureof Fig. 1 and Fig. 2 is:SA(SumAndProduct) =fN1�SumN1�I1�SumN2�01�I2�12�N2�SumN3�SumN4�I3,N1�ProdN1�I1�ProdN2�11�I2�12�N2�ProdN3�ProdN4�I4 gFig. 3(a) provides another view of a slice abstraction of theSumAndProduct procedure. The names of the data tokensare listed in the �rst column of Fig. 3(a). A \j" in thesecond and third column indicates that the indicated datatoken is part of the data slice for the named output.We �nd an uncluttered view of slice abstractions withoutlabels useful for visualizing important attributes of func-tional cohesion in slice abstractions. Fig. 3(b) is an unla-beled view of the slice abstraction of the SumAndProductprocedure. When analyzing functional cohesion, it is im-portant to know when one token is in more than one dataslice, but the actual names of the tokens are not impor-tant. The slice abstractions from two completely di�erentprocedures can have the same cohesion properties, and lookidentical when viewed in the unlabeled form.D. Glue, Super-glue, and StickinessAs Fig. 3(a) and Fig. 3(b) show, several of the data to-kens are common to more than one data slice. Data tokensN1, I1, I2, 12, and N2 are in the data slice for SumN andthe data slice for ProdN. Such tokens, common to morethan one data slice in a slice abstraction, are the connec-tions between the slices. We say that these tokens are



BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 647Data Token SumN ProdNN1 j jSumN1 jProdN1 jI1 j jSumN2 j01 jProdN2 j11 jI2 j j12 j jN2 j jSumN3 jSumN4 jI3 jProdN3 jProdN4 jI4 j(a) SA(SumAndProduct)

j jj jj jjj jjj jj jj jjjj jjj(b) Unlabeled View

j jj jj jjj jjj jj jj jjjj jjj(c) Glue tokens highlighted.Fig. 3. Three Views of SA(SumAndProduct)the \glue" that binds the slices. Thus, we de�ne the gluein a slice abstraction of a procedure P , G(SA(P)), as theset of data tokens that lie on more than one data slice inSA(P). A glue token is a token that lies on more than onedata slice. We also consider all of the tokens in an ab-straction with only one slice to be glue tokens. Fig. 3(c)shows SA(SumAndProduct) with the glue tokens enclosedin boxes. Although there are two \j" symbols on each rowof glue tokens in Fig. 3(c), there is actually only one tokenfor each row.It is useful to identify the data tokens that are common toevery data slice in a procedure. These tokens are the super-glue tokens, and SG(SA(P)) denotes the set of data tokensthat lie on all data slices in SA(P). The notion of super-gluetokens is especially useful in slice abstractions with morethan two data slices. Note that SG(SA(P)) � G(SA(P))| all super-glue tokens are also glue tokens. If jSA(P)j � 2then SG(SA(P))=G(SA(P)). Note that all of the data to-kens in a procedure with only one slice are super-glue to-kens.Fig. 4 shows a 3-slice abstraction with glue and supergluetokens. This abstraction has two super-glue tokens and�ve glue tokens (super-glue is still glue). One of the tokensglues S1 to S2, one glues S2 to S3, and one glues S1 to S3.The super-glue tokens bind all three slices together. Sixof the tokens lie on only one data slice and are not gluetokens.The distribution of glue and super-glue tokens indicateshow tightly bound the individual slices are, since the e�ectof glue tokens is to bind slices. Individual glue tokens canhave a varying e�ect on cohesion based on the number ofslices that they bind. Thus, we can describe the relativestickiness or adhesiveness of a glue token. The notion of

S1 S2 S3Super-glue: j j jj j jSuper-glue: j j jjGlue: j jGlue: j jjGlue: j jjFig. 4. A 3-slice SA with glue and super-glue.token adhesiveness can characterize the adhesiveness prop-erty of an entire procedure or slice abstraction. We use theconcepts of glue, super-glue, and adhesiveness to developfunctional cohesion measures.III. Functional Cohesion Attributes andMeasuresA. De�nition of MeasuresWe de�ne functional cohesion attributes and measuresin terms of slice abstractions, data tokens, glue and super-glue. We also use the set of data tokens in a slice abstrac-tion a, denoted tokens(a), and the set of data tokens inprocedure p, denoted tokens(p). In general, tokens(p) =tokens(SA(p)). However, if a value is computed that doesnot contribute to any output (usually a program anomaly),then there may be data tokens that do not lie on any sliceand tokens(SA(p)) � tokens(p). Note that each appear-



648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994ance of a data token in a program is counted as a di�erenttoken, and each token can be in more than one data slice.Metrics based on the relative number of glue and super-glue tokens are intuitive and can easily be de�ned in termsof slice abstractions. According to Yourdon and Constan-tine [39, pp. 127{130], a procedure with functional cohesionis one in which all parts are cohesive. This view recog-nizes only the strongest functional cohesion and is consis-tent with the use of the super-glue tokens as the basis forde�ning cohesion attributes and measures. Thus, we de�nestrong functional cohesion (SFC) as the ratio of super-gluetokens to the total number of data tokens in a procedurep: SFC(p) = jSG(SA(p))jjtokens(p)j (1)The SFC is a measure of the minimal functional cohesionin a procedure. SFC is very similar to the Tightness mea-sure de�ned by Ott and Thuss [30]. However Tightness isde�ned in terms of statements shared by slices rather thandata tokens.We can also measure cohesion in terms of the glue tokensin a slice abstraction. Such a measure can be more sensitivethan a measure based on only the super-glue tokens | itcan indicate that adding something may \glue" togetherpreviously non-cohesive elements even if the token does not\glue" together all of the slices. Such functional cohesionindicates a \weaker" type of cohesion than indicated by thesuper-glue tokens. Thus we de�ne weak functional cohesion(WFC) as the ratio of glue tokens to the total number oftokens in a procedure. For procedure p:WFC(p) = jG(SA(p))jjtokens(p)j (2)Another way to measure cohesion is in terms of the adhe-siveness of glue tokens. The adhesiveness is related to therelative number of slices that each token \glues" together.Thus, a token that \glues" together four slices in a �ve sliceprocedure is more adhesive than a token that \glues" to-gether two or three slices. We can de�ne the adhesiveness,�, of token t in procedure p as follows:�(t; p) =( # slices in p containing tjSA(p)j if t 2 G(SA(p))0 otherwise (3)The overall adhesiveness, A, of an SA is the average adhe-siveness of the data tokens in a procedure:A(p) = Xt2tokens(p)�(t; p)jtokens(p)j (4)Equivalently, overall adhesiveness can be computed as aratio of the amount of adhesiveness to the total possibleadhesiveness. That is, for procedure p:A(p) = Xt2G(SA(p))# slices containing tjtokens(p)j � jSA(p)j (5)

In the examples in the following subsection, we compute Ausing equation (5), since equation (5) is easier to apply.Adhesiveness should indicate the relative strength of theglue in a procedure. Adhesiveness is most closely relatedto the coverage measure of Ott and Thuss [30]. It shouldbe particularly sensitive to the cohesion resulting from gluetokens that lie on more than two slices, but do not lie onall slices.All of these cohesion measures (strong functional cohe-sion, weak functional cohesion, and adhesiveness) range invalue from zero to one. They have a value of zero whena procedure has more than one output and exhibits noneof the cohesion attribute indicated by a particular mea-sure. A procedure with no super-glue tokens, no tokensthat are common to all data slices, has zero strong func-tional cohesion | there are no data tokens that contributeto all outputs. A procedure with no glue tokens, that isno tokens common to more than one data slice (in proce-dures with more than one data slice), exhibits zero weakfunctional cohesion and zero adhesiveness | there are nodata tokens that contribute to more than one output. Thestrong functional cohesion and adhesiveness are at a max-imum value of one for procedures in which all of the datatokens are super-glue tokens | all data tokens a�ect alloutputs. Weak functional cohesion of a procedure is oneif all data tokens are glue tokens | all data tokens a�ectmore than one output in procedures with more than oneslice.B. ExamplesThe cohesion measures can be applied to the SumAnd-Product procedure. SA(SumAndProduct) has two sliceswith 17 tokens and 5 glue tokens. Each glue token is asuper-glue token since SA(SumAndProduct) has only twodata slices. Thus,WFC(SA(SumAndProduct)) =SFC(SA(SumAndProduct)) = 517 = :294Adhesiveness is calculated as follows:A(SA(SumAndProduct)) = 5 � 217 � 2 = :294since there are �ve glue tokens and each glue token lieson two slices. The denominator is the total number oftokens times the number of slices. We see that in this twoslice example procedure all three cohesion measures givethe same value. This is not surprising since the WFC andA measures gain sensitivity on multi-slice procedures | allglue tokens are also super-glue tokens on a one or two sliceprocedure.The WFC and SFC of the 3-slice abstraction in Fig. 4will di�er since some of the glue tokens are not super-glue.Out of a total of 11 tokens, this abstraction has 5 gluetokens of which 2 are super-glue. ThusWFC(SA(Fig. 4)) = 5=11 = :455



BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 649and SFC(SA(Fig. 4)) = 2=11 = :182Since there are two tokens on three slices and three tokenson two slices, adhesiveness is calculated as follows:A(SA(Fig. 4)) = 2 � 3 + 3 � 211 � 3 = 1233 = :36Adhesiveness and the strong and weak cohesion measuresare based solely on the number of slices and data tokens ina procedure, and the number of glue and super-glue tokens.C. Relationships between the MeasuresBy examining the de�nitions, we can determine re-lationships among the three proposed measures. SinceSG(SA(P )) � G(SA(P )), it follows that jSG(SA(p))j �jG(SA(P ))j. Thus, using (1) and (2) we can see that for agiven procedure p:SFC(p) �WFC(p): (6)We see that: SFC(p) � A(p) (7)by noticing that �(t; p) = 1 using De�nition (3) for all t 2SG(SA(p)) and therefore, the numerator in (4) is at leastas large as the numerator in (1). Similarly, since �(t; p) � 1for all t 2 G(SA(P )), using (2) and (4), we see that:A(p) �WFC(p) (8)Thus, we have:SFC(p) � A(p) �WFC(p) (9)Finally, we see that A(p) is more \sensitive" than eitherWFC(p) or SFC(p) to di�erences in the amount of pro-gram cohesion. If we �x the size of programs considered,that is, jtokens(p)j, and we �x the number of slices consid-ered, that is, jSA(p)j, we see that WFC(p) and SFC(p)can assume at most jtokens(p)j values. A(p), on the otherhand, can assume jtokens(p)j � (jSA(p)j � 1) values.IV. Discussion of Scale PropertiesFenton de�nes the term \validation" as \the process ofensuring that the measure is a proper numerical character-ization of the claimed attribute" [10, p. 82]. This kind ofvalidation is very di�cult when the attribute to be mea-sured is loosely understood. We need to rely on humanintuition to determine the relative levels of our cohesionproperties, to see if they are consistent with the measure-ment values. Zuse shows how to determine what type ofscale software measures assume [41, ch. 4], [42], [6]. In thispaper, we combine the methods of Fenton and Zuse to val-idate the cohesion measures in terms of intuitive notions ofcohesion and to determine the scale properties of the mea-sures. First, we show that the measures assume an ordinalscale that matches our intuition concerning the cohesionattributes that are measured. Then, we evaluate the mea-sures in terms of the requirements of a ratio scale.

A. Cohesion Measures and the Ordinal ScaleFor a real-valued ordinal scale measure of cohesion at-tributes to exist, our intuition about these attributes, called\empirical relations" or \viewpoints", must satisfy threeaxioms: reexivity, transitivity, and completeness [40], [41,p. 47], [42], [6]. These are the requirements of a weak or-der. From [40], we de�ne a cohesion viewpoint as binaryrelations, ?>, ?�, and ?� on programs P where:P1?> P2 P1 is more \cohesive" than P2P1?� P2 P1 and P2 are equally \cohesive"P1?� P2 P1?> P2 or P1?� P2for P1; P2 2 P .It is not possible to give a general de�nition of cohe-sion viewpoints. Rather we can use a subset of the aboverelations called an elementary viewpoint. An elementaryviewpoint is de�ned in terms of a �nite set of transfor-mations on a program representation. A complete set ofelementary transformations can be used to generate everypossible instance of a program representation from a baserepresentation. To show that a measure is on an ordinalscale, we need to show that it is consistent with a completeset of elementary transformations, since the set representsthe cohesion viewpoint. Thus, we evaluate the \functionalcohesion orderings" of procedures in terms of intuitivelyobvious e�ects of program modi�cations on functional co-hesion. We model the changes in terms of an ordering ofslice abstractions. In this analysis, we assume that it isthe \shape" of slice abstractions that is critical, so twocompletely di�erent procedures can have the same func-tional cohesion attributes. We use unlabeled views of sliceabstractions as depicted in Fig. 3(b) to demonstrate thenecessary attributes and transformations.A.1 Slice Abstraction TransformationsFunctional cohesion orderings can be developed in termsof a set of elementary transformations of slice abstractions.We seek a set of transformations that can generate theset of all slice abstractions, and provide an ordering. Thetransformations are developed inductively.Base case: A one slice procedure:jj...jA one slice procedure is entirely cohesive, and shouldhave the highest possible SFC, WFC, and A. All threeof our measures satisfy intuition here. SFC, WFC,and A give their maximum value of 1 for a one sliceprocedure.Transformations:1. Add one slice. There are two ways to add a slice:(a) Add functionality by adding a new output to theprogram. This requires adding at least one new



650 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994output token.2jjj =) jjj j�j � �The new output is not on any of the previousslices. Thus at least one new non-glue token isadded.(b) Output existing functionality. This can be ac-complished by changing a non-output token intoan output token. The following change to C-likepseudo-code is an example of such a transforma-tion: y=x =) printf(y=x)A simple change to the parameters in a Pascalprogram can also cause existing functionality tobecome a new output:x:integer =) var x:integerWith such transformations, a new slice can becreated without adding any new tokens.2. Extend n slices by adding one token to them. Thisadded token may be a token that is either(a) not in any of the slices in the slice abstraction(i.e., a new token):jj jjj jj =) jj jjj jjj � �(b) a token already in one or more of the other slicesin the slice abstraction, but not in all of the otherslices: jj jjj jj =) jj jj j�j jj(c) or, a token already in all of the other slices:jj jjj jj =) jj j j�jj jjA token can be added to a slice without addingnew code by moving the token within a proce-dure to a location that puts it in the scope of theslice.2We use \�" to indicate a token added to a slice that is not new tothe procedure. We use \��" to indicate when an added token is newto the program; it is a token that is not on any other slice.

This set of transformations is complete | we can build allslice abstractions using the base case and repetitions of thetwo transformations. Removing and shortening slices areinverse operations to the add and extend operations.A.2 E�ect of Transformations on the MetricsIn this section, we summarize the e�ects of the transfor-mations introduced above on the cohesion measures thatwe have de�ned. See the appendix for the detailed argu-ments. For consistency with the appendix, we will referto the initial abstraction as a and the abstraction after atransformation as a0.Strong Functional Cohesion. When adding a new slice to a,SFC(a0) � SFC(a). This is consistent with our intuitionthat adding functionality tends to decrease the cohesive-ness of a procedure. When extending slices, we �nd thatSFC(a0) > SFC(a) only when the number of super-gluetokens has increased. Thus, the e�ects of the transforma-tions match our intuition that the strong functional cohe-sion components include only elements that contribute toall the functionality computed by the procedure.Weak Functional Cohesion. When we add functionality toa procedure by adding a new output, we increase cohe-sion only when the net e�ect is to \glue" previously non-cohesive parts creating a higher percentage of glue tokens.When we output existing functionality without adding newtokens, WFC(a0) � WFC(a). When extending a slice,WFC can remain unchanged, increase or decrease, depend-ing on whether the new token is already \glue", is new\glue" or is not \glue", respectively.Adhesiveness. When we add functionality to a procedureby adding a new output, A can increase or decrease. If weadd only non-glue tokens, then A will decrease. If we addat least some glue tokens, the e�ect on A depends upon theamount of \glue" added, the size of the procedure and thesize of the slice being added. When we extend a slice of amultiple slice procedure, A will increase if we add a super-glue token and will decrease if we add a non-glue token. Ifwe add a glue token (which is not also superglue), the e�ecton A depends upon the ratio of the number of slices thatthe new token lies on, and the total number of slices in theabstraction. If we extend a slice without adding any to-kens, then normally A will increase. A remains unchangedonly if we extend a slice by rearranging code to includetoken(s) that were not previously in any slice.A.3 Evaluation of Orderings and Cohesion MetricsTo validate that the three measures, SFC, WFC, and A,assume an ordinal scale we need to demonstrate that the or-derings imposed by the measures are consistent with the el-ementary viewpoints of the associated cohesion attributes.Such a conclusion relies heavily on intuition, since elemen-tary viewpoints are de�ned in terms of subjective views ofcohesion. Our main goal here is to demonstrate that themeasures are consistent with intuition. At the very least,we are convinced that the orderings imposed by the mea-sures are not counterintuitive. The measures are on an



BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 651ordinal scale to the extent that the orderings imposed bythe measures match the users (of the measures) intuitionconcerning the elementary viewpoints of cohesion.B. Cohesion Measures and the Ratio ScaleTo perform multiplication and division on measurementvalues, the measures must assume a ratio scale. Thus weevaluate our functional cohesion measures in terms of therequirements for ratio scale measurement.One way to demonstrate that a measure is on the ratioscale involves adding a program composition operator \�"to the relational system used in an ordinal scale evaluation.A composition operator takes two slice abstractions andcombines them to create a new slice abstraction. Adding� to the cohesion viewpoint of Section IV-A, gives us arelational system (P ; ?�; �). Zuse [41, p. 49{50] shows thata measure is on a ratio scale if the measure is a real valuedfunction m, is on an ordinal scale, and the following axiomshold: P1 ?� P2 , m(P1) � m(P2)m(P1 � P2) = m(P1) +m(P2)The �rst axiom requires that m be consistent with the in-tuitive ordering of the procedure imposed by the attributebeing measured. The second axiom requires that m beadditive.Meaningful composition operators are necessary to useZuse's method of verifying that a measure assumes a ratioscale. In the extended version of this paper [3], we de�netwo composition operators. One operator ties the outputof the slices in one abstraction to the inputs of anotherabstraction. The second operator assumes no interactionsbetween the two merged abstractions.The requirement that m(P1 � P2) = m(P1) + m(P2) isnot satis�ed using either of the two composition operators.This is because the size attribute jtokens(p)j, the numberof tokens in the procedure, is in the denominator of thecalculation for all three of the cohesion measures (SFC,WFC, and A). Under the two composition operators, themeasures are not additive, and, thus, do not assume a ratioscale.Gustafson, Tan, and Weaver argue that composition op-erators for the complex models (such as slice abstractions)used to de�ne structural measures do \not make sense"because programmers rarely merge programs [14]. As analternative to the analysis based on composition operators,we can use an intuitive argument that the functional cohe-sion measures do not assume a ratio scale. Multiplicationmakes sense for ratio scale measures. Thus, if the func-tional cohesion measures are on a ratio scale, we shouldbe able to argue that one procedure (or slice abstraction)is twice as cohesive as another. We can �nd slice abstrac-tions s1 and s2, where SFC(s1) = 2SFC(s2), WFC(s1) =2WFC(s2), or A(1) = 2A(2). However, we �nd no justi�-cation (other than the measures themselves) for claimingthat any s1 is twice as cohesive as s2. The notion of dou-bling cohesion is not intuitive, and multiplying cohesionvalues does not seem to be meaningful. Thus, we �nd no

evidence that the functional cohesion measures assume aratio scale. V. ExamplesIn this section, we examine a few small code segments toillustrate the di�erences among the three proposed cohe-sion measures. The �gures in this section use slice pro�les(as in Fig. 2) showing the entire procedure text rather thanslice abstractions showing only data tokens to make it eas-ier to visualize the connection between program text andslices. As described in Section II-B, the slices in the ex-amples are the union of the backward and forward slicesbased on the output variables.The �rst example uses a procedure that transforms avalue in one of two ways depending on the initial value. Aag that indicates which of the two transformations wasused is also returned. Fig. 5 contains a slice pro�le andcohesion measurements for this Decode procedure. In thiscase the three measures give equivalent values. The cohe-sion measurements are always equivalent for two slice pro-cedures since in such cases G(SA(p)) = SG(SA(p). The:53 measurement values indicate that approximately halfof the tokens lie on both slices.The three cohesion measurements are lowered when theprocedure is modi�ed by adding an output variable thatis not connected to the slices of the original outputs. Themodi�ed procedure, Decode2, is in Fig. 6. Decode2 wascreated by adding a variable count to the original proce-dure Decode. It is a global variable that may indicate thenumber of times that Decode2 is called. SFC(Decode2) iszero, and clearly indicates the existence of some noncohe-sive components in the procedure | the slice for outputvariable count does not include any tokens that lie on theslices for the other outputs. WFC(Decode2) has droppedto :42 and A(Decode2) has dropped further down to :28.Of WFC and A, A is more dramatically a�ected by addingthe noncohesive component.Figures 7, 8, and 9 demonstrate how the measures be-have when functionality is combined. Procedure LookUp inFig. 7 is a table lookup routine which returns a passwordand address associated with a key, and a boolean ag whichindicates a successful search. As can be seen in Fig. 7, thethree cohesion measures give relatively high values for thisprocedure, WFC(LookUp) = 1:0, A(LookUp) = :90, andSFC(LookUp) = :70. Most of the data tokens a�ect or area�ected by the three outputs.In Fig. 8, we combine procedure LookUp with proce-dure Decode from Fig. 5 to create procedure LookUp2.The procedures are combined such that Decode operateson the same data used by LookUp. The cohesion mea-surement values for this procedure are WFC(LookUp2) =:83, A(LookUp2) = :69, and SFC(LookUp2) = :43. Theoriginal procedure Decode is intuitively less cohesive thanprocedure LookUp. In this combined case, WFC and A fallbetween their values for the two original procedures, whileSFC has a value that is below the value of either of theoriginal procedures. SFC tends to drop dramatically, whennon-cohesive components are added.



652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994value small1 1 procedure Decode(var value: integer;1 1 var small: boolean);begin2 2 if value < 5000 then begin4 value := value * 8 mod 10;2 2 small := trueendelse begin3 value:=value mod 10;2 2 small := falseend;end;WFC(Decode) = 815 = :53A(Decode) = 8 � 215 � 2 = :53SFC(Decode) = 815 = :53Fig. 5. A slice pro�le and cohesion measurements for a simple pro-cedurevalue small count1 1 procedure Decode2(var value: integer;1 1 var small: boolean;1 var count: integer);begin2 2 if value < 5000 then begin4 value := value * 8 mod 10;2 2 small := trueendelse begin3 value:=value mod 10;2 2 small := falseend;3 count := count +1;end;WFC(Decode2) = 819 = :42A(Decode2) = 8 � 219 � 3 = :25SFC(Decode2) = 019 = 0:0Fig. 6. A slice pro�le and cohesion measurements for a noncohesiveprocedure.Procedures LookUp and Decode are again combined inFig. 9 creating procedure LookUp3. This time we combinethe procedures such that Decode operates on data that isdistinct from the data used by LookUp. For this combinedprocedure, WFC(LookUp3) = :83, A(LookUp3) = :43, andSFC(LookUp3) = 0:0. SFC clearly indicates with a value ofzero that there are no data tokens that are common to allof the slices. WFC does not distinguish between LookUp2and LookUp3 | according to WFC the two procedures areequally cohesive. A does indicate that LookUp3 is less co-hesive than LookUp2, however, unlike SFC, A also indicatesthat there are some cohesive components.These two examples show that A rather thanWFC moreaccurately matches our intuition concerning the cohesive-ness of a procedure which contains several functional com-

ponents. This is true, in general. For a more detailedanalysis of the sensitivity of the cohesion measures, see theextended version of this paper [3].VI. Related WorkOur current e�orts are based on earlier work using slicebased measures as indicators of cohesion [21], [33], [28],[30]. Longworth [21] and Thuss [33], [28] examined the po-tential of measures proposed by Weiser [35] as indicators ofcohesion. Ott and Thuss �rst noted the visual relationshipthat existed between the slices of a module and its cohesionas depicted in a slice pro�le [28]. The insights gained fromthis earlier work were instrumental in developing the dataslice model of cohesion and cohesion measures presentedhere.Other researchers have also examined the problem ofmeasuring cohesion including Emerson [8], [9], Lakho-tia [20], Troy and Zweben [34], and Selby and Basili [32].A. Emerson's workEmerson bases his cohesion measure on a control owgraph representation of a module [8], [9]. The graph con-tains a node for each statement in the module that containsa variable. After construction of the graph, a reference setis constructed for each variable in the module which in-dicates the nodes in the control ow graph that referencethat variable. A ow subgraph, <R>, is computed foreach reference set, R, as the minimal subgraph of F whichcontains every complete path in F that passes through anelement of R. This is equivalent to generating the set ofvertices which are either reachable from an element of Ror from which an element of R is reachable. A cohesionvalue is computed for each reference set as the ratio of thecyclomatic complexity of <R> times the size of R to thecyclomatic complexity of F times the size of F . The co-hesion of a module is then computed as the mean of thecohesion values of the reference sets for each variable inthe module. The values for Emerson's complexity measurerange from 0 to 1. Discrimination levels are suggested tomap these values to three levels of cohesion: data cohesion,control cohesion, and super�cial cohesion.Emerson indicates that his ow graph and reference setconstructs are related to slicing [9]. Emerson computes owsubgraphs based on generating all vertices which are eitherreachable from an element of R or from which an elementof R is reachable. Thus, these ow graphs are more closelyrelated to metric slicing than Weiser's original de�nitionof slicing [35]. Weiser only used \backwards slices" whileEmerson's subowgraph is clearly related to both forwardsand backwards slicing.The measure de�ned by Emerson is somewhat analogousto the coverage measure de�ned in [28]. (coverage is the av-erage of the ratios of the lengths of each slice to the modulelength.) Emerson's measure is the average of the ratios ofthe size of each reference set (weighted by the cyclomaticcomplexity of the subgraph generated from the referenceset) to the size of the ow graph (weighted by the cyclo-matic complexity of the ow graph). Emerson computes



BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 653success passwd address3 3 3 procedure LookUp(A: Table; Size: integer; key: keytype;1 1 1 var success: boolean;1 1 var passwd: integer;1 1 var address: string);begin2 2 2 i := 1;2 2 2 success:= false;3 3 3 while not success and i <= Size do3 3 3 if A.name[i] = key thenbegin2 2 2 success := true;3 3 passwd := A.value[i];3 3 address := A.add[i];endelse3 3 3 i := i + 1;end;WFC(LookUp) = 2727 = 1:0A(LookUp) = 8 � 2 + 19 � 327 � 3 = :90SFC(LookUp) = 1927 = :70Fig. 7. A table lookup procedure.success passwd address3 3 3 procedure LookUp2(A: Table; Size: integer; key: keytype;1 1 1 var success: boolean;1 1 var passwd: integer;1 1 var address: string);begin2 2 2 i := 1;2 2 2 success:= false;3 3 3 while not success and i <= Size do3 3 3 if A.name[i] = key thenbegin3 3 passwd := A.value[i];2 2 success := true;3 3 address := A.add[i];end;else3 3 3 i := i + 1;2 2 if passwd < 5000 then begin4 passwd := passwd * 8 mod 10;2 2 success := true;endelse begin3 passwd := passwd mod 10;2 2 success := false;endend;WFC(LookUp2) = 3340 = :83A(LookUp2) = 16 � 2 + 17 � 340 � 3 = :69SFC(LookUp2) = 1740 = 0:43Fig. 8. A table lookup procedure combined with a decode procedure such that both use the same data.



654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994success passwd address value small3 3 3 procedure LookUp3(A: Table; Size: integer; key: keytype;1 1 1 var success: boolean;1 1 var passwd: integer;1 1 var address: string;1 1 var value: integer;1 1 var small: boolean);begin2 2 2 i := 1;2 2 2 success:= false;3 3 3 while not success and i <= Size do3 3 3 if A.name[i] = key thenbegin3 3 passwd := A.value[i];2 2 success := true;3 3 3 address := A.add[i];end;else3 3 3 i := i + 1;2 2 if value < 5000 then begin4 value := value * 8 mod 10;2 2 small := true; endelse3 value := value mod 10;2 2 small := false; endend;WFC(LookUp3) = 3542 = :83A(LookUp3) = 15 � 2 + 20 � 342 � 5 = :43SFC(LookUp3) = 042 = 0:0Fig. 9. A table lookup procedure combined with a decode procedure such that both use distinct data.reference sets and subgraphs for each variable while cover-age is based only on slices for output variables. Althoughthere is an apparent relation between these two measures,the precise meaning of Emerson's measure is unclear. Inparticular, the e�ect of multiplying the reference set bythe cyclomatic complexity is to mask the view of cohesion.Cyclomatic complexity is a control ow measure, and com-bining the measures of di�erent attributes weakens the dis-criminating power of a measure [24]. In contrast, our slicebased cohesion measures are based on intuitively sound ab-stractions that are designed to isolate functional cohesionattributes from other factors.B. Lakhotia's workLakhotia developed a method for computing cohesionbased on an analysis of the variable dependence graphs ofa module [20]. Pairs of outputs are examined to identifyany data or control dependences that exist between the twooutputs. Rules are provided for determining the cohesionof the pairs. For example, \two variables have sequentialcohesion if one has data dependence on the other." Thecohesion of a module is then de�ned to be \functional ifit has only one output variable; it is unde�ned if it hasno output variables; else it is the lowest cohesion of allpairs of the output variables of the module." Through ex-amples Lakhotia argues that this method closely matches

the original classi�cations (coincidental, logical, temporal,procedural, communicational, sequential, and functional) ofcohesion [39, pp. 108]. Rather than develop an algorith-mic mechanism to determine the original levels of cohesion,our objective is to quantify the amount of functional cohe-sion. Thus, in certain situations we will obtain di�eringresults. For example, our measures will indicate that a sig-ni�cant part of a module is highly cohesive. In contrast,Lakhotia's method will indicate the lowest type of cohesiondemonstrated by the module. Only a module with a singleoutput exhibits functional cohesion in Lakhotia's model.This is equivalent to identifying functional cohesion onlyin the cases when SFG(P) = 1. We are able to generaterelative levels of functional cohesion using our measures.C. Other work related to cohesionTwo other studies examine cohesion indicators ratherthan attempting to measure cohesion directly. Troy andZweben examined the quality of structured designs using,in part, some design cohesion indicators [34]. They used� The number of e�ects listed in the design document;� The number of e�ects other than I/O errors;� The maximum fan-in to any one box in the structurechart, that is, the number of lines emanating upwardfrom that box;� The average fan-in in the structure chart; and



BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 655� The number of possible return valuesas indicators of cohesion. They did not �nd evidence of aclear relationship between these measures and the \qual-ity" of the software. Quality is measured here by the num-ber of source code modi�cations. These negative resultsmay mean that cohesion is not related to number of sourcecode modi�cations or that these measures are not indica-tive of cohesion. Troy and Zweben did not attempt to showa relationship between these measures and cohesion.Selby and Basili examined a measure based on data inter-actions, called data bindings, as a basis for computing thecohesion and coupling of the components of a system [32].Routines are placed into clusters based on the data bind-ings and the coupling of a cluster with other clusters isdetermined. A ratio of the cluster coupling factor to theinternal strength of a cluster is computed. An experimentindicated that clusters with a high ratio had the most errorsand the highest error correction e�orts. Selby and Basilialso did not attempt to show a relationship between theirmeasure and cohesion.VII. ConclusionsUsing principles from measurement theory, we derive aset of three functional cohesion measures. First, we de-velop an abstraction of procedures to isolate intuitive at-tributes of functional cohesion. This abstraction is basedon data slices of procedures. Using the data slice abstrac-tion, we de�ne the concept of glue and super-glue data to-kens. We also introduce the concept of data token adhe-siveness. Using the slice abstraction and the concept ofglue, super-glue and adhesiveness, we derive the measures.Strong functional cohesion (SFC) is based on the relativenumber of super-glue tokens in a procedure. SFC is themeasure most closely related to the original de�nition offunctional cohesion of Yourdon and Constantine [39, ch. 7].Weak functional cohesion (WFC) is based on the relativenumber of glue tokens in a procedure and includes somenotion of Yourdon and Constantine's weaker categories ofcohesion. Adhesiveness is based on the relative \stickiness"of the glue tokens in a procedure, and is the measure thatis most sensitive to minor program modi�cations.We show that the measures satisfy the requirements of anordinal scale to the extent that the orderings imposed by aset of simple transformations match our intuition concern-ing functional cohesion. We are not able to demonstratethat the measures are on a ratio scale. The measures arenot additive under two possible composition operations,and the multiplication of cohesion values is not intuitive.As a result, one can use ordinal scale computations whenanalyzing measurement values, but ratio scale computa-tions are not justi�ed. Thus, analyses requiring a medianvalue are meaningful, but a statistical analysis that requiresa mean may not be valid.We show analytically that, for a given procedure p,SFC(p) � A(p) � WFC(p). We also show, through aseries of examples, that Adhesiveness appears to be themost sensitive and potentially most useful of the proposedmeasures.

We do not show that our functional cohesion measurescan predict software process attributes such as reliability ormaintainability. Rather, we have derived ordinal measuresof an important attribute of programs | functional cohe-sion. A well-de�ned measure is a prerequisite to empiricalstudies that relate one attribute to another.Tools to automate the measurement of functional cohe-sion are more di�cult to develop than tools to measurecontrol ow structure. However, such automated measure-ment tools are feasible | they can make use of the kind ofdata ow analysis often performed by compilers. We arenow developing functional cohesion measurement tools forempirical studies. One empirical study that we plan to con-duct involves relating the traditional cohesion classes: co-incidental, logical, temporal, procedural, communicational,sequential, and functional cohesion to our functional co-hesion measures. In a sense, these cohesion classes aredi�erent levels of functional cohesion. We would expecta module with only coincidental cohesion to measure nearzero for our three proposed measures. However, we do notknow how our measures will evaluate modules that fall intothe other cohesion classes. Such a study could help demon-strate whether or not the traditional cohesion classes areactually on an ordinal scale.AppendixApplication of TransformationsWe follow the transformations described in Section IV-A.1 to evaluate the orderings implied by the three func-tional cohesion measures. In the following discussion, weassume that slice abstraction a is modi�ed to create a0,Strong Functional Cohesion (SFC) Orderings1. Add a slice to a creating a0.(a) Adding a new output to a. (This requires adding atleast one token to the procedure.) With this trans-formation, SFC(a0) < SFC(a). Adding an outputalways reduces SFC because a new functionality isadded. Adding a slice can never increase the super-glue tokens, but it is likely to increase the non-super-glue if a new token is added. Our intuition aboutSFC is that fewer functionalities, in terms of outputdata, is always more cohesive.(b) Output existing functionality without adding anytokens. In this case, SFC(a0) � SFC(a). Adding aslice still cannot increase the number of super-gluetokens, while the number of non-super-glue tokensmight not change.2. Extend one or more slices in a creating a0. We havetwo cases here:Case 1: jaj = 1SFC(a0) = SFC(a) since a0 is still a one slice ab-straction.Case 2: jaj > 1Case 2(a): Extend a slice by adding a new datatoken.i: SFC(a0) < SFC(a) if the added token is



656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994new and is added to only one slice. No newsuper-glue tokens are created but the totalnumber of tokens (non-super-glue tokens) hasincreased.ii: SFC(a0) > SFC(a) if the added token isnew and is added to all of the slices. Onenew super-glue token is created.Case 2(b): SFC(a0) = SFC(a) if the added tokenis not new but is not in all of the other slicesin a then no new super-glue or non-super-glue iscreated.Case 2(c): SFC(a0) > SFC(a) if the added tokenis not new and is in all of the other slices ina. This transformation turns a non-super-gluetoken into super-glue.To summarize, when an incremental change in-creases the number of super-glue tokens in a proce-dure with more than one slice, SFC(a0) > SFC(a).Weak Functional Cohesion (WFC) Orderings1. Add a slice to a creating a0.(a) Add functionality by adding a new output to theprogram. Here, WFC(a0) > WFC(a) if and only ifthe net e�ect is to \glue" previously non-cohesiveparts creating a higher percentage of glue tokens.If g = G(a0) � G(a), the set of new glue to-kens created by the added functionality, and t =tokens(a0)� tokens(a), the set of added tokens, thenWFC(a0) > WFC(a) if and only if jgjjtj > WFC(a).The potential for increasing weak functional cohe-sion depends on the amount of glue in the originalslice abstraction, a. If there is a signi�cant numberof non-glue tokens in a, then there is a lot of poten-tial to increase the weak functional cohesion in a byadding a slice.(b) Output existing functionality without adding newdata tokens, then WFC(a0) � WFC(a). We are cre-ating a new slice, and some tokens that lie on oneslice in a may lie on the new slice in a0 as well.New glue tokens can be created in this manner,but the total number of tokens does not change.It is possible that all of the tokens on the newslice do not lie on any other slices. In this case,WFC(a0) = WFC(a). This can only happen if thereare values produced that are never referenced by anyof the slices for all of the output tokens in a.2. Extend one or more slices in a creating a0. Again, wehave two cases here:Case 1: jaj = 1WFC(a0) = WFC(a) since a0 is still a one slice ab-straction.Case 2: jaj > 1Case 2(a): Add a new token. If it extends onlyone slice, then there is no new glue added andWFC(a0) < WFC(a). If new glue is added, thenWFC(a0) > WFC(a).Case 2(b): WFC(a0) � WFC(a) when the addedtoken is not new but is not in all of the other

slices in a. New glue is created if the token addedto the slice is in just one of the other slices andWFC(a0) > WFC(a). If the added token is al-ready a glue token, then no new glue is createdand WFC(a0) = WFC(a).Case 2(c): WFC(a0) = WFC(a) when the addedtoken is not new and is in all of the other slices.The added token is already a glue token and thusthe WFC value does not change.Adhesiveness (A) Orderings1. Add a slice to a creating a0.(a) Add functionality by adding a new output. If weadd only non-glue tokens, then A(a0) < A(a). Wehave increased jtokens(a)j � jaj without adding anyglue tokens.If we add both glue and non-glue tokens, then we candetermine the increase or decrease of adhesivenessin terms of the number of new glue tokens, g, cre-ated by the added functionality, the number of newtokens added, n, the number of tokens, jtokens(a)j,and number of slices, jaj, in the original slice ab-straction, a. Using algebraic transformations, we�nd that if g=(jtokens(a)j+n+n � jaj) > A(a), thenA(a0) > A(a), if g=(jtokens(a)j+n+n � jaj) = A(a),then A(a0) = A(a), if g=(jtokens(a)j+ n+ n � jaj) <A(a), then A(a0) < A(a).(b) Add more glue, but no tokens to the procedure.Then, clearly A(a0) > A(a) since we increase thenumerator but the denominator is unchanged.2. Extend a slice:Case 1: jaj = 1There is no change, A(a) = A(a0), since Adhesive-ness = 1 for any one-slice abstraction.Case 2: jaj > 1Case 2(a): Extend a slice by adding a token:i. Add a superglue token: A(a0) > A(a)ii. Add a glue (but not super-glue) token: Therelationship between A(a0) and A(a) dependson the ratio of the number of slices, s, thatthe new token lies on and the total number ofslices in the abstraction, jaj. If A(a) > s=jajthen A(a) > A(a0), otherwise A(a) � A(a0).iii. Add a non-glue token: A(a0) < A(a)Case 2(b) and 2(c): Extend a slice without addinga token to the abstraction; the token(s) used toextend the slice are already in the procedure:A(a0) � A(a). In the normal case the data to-ken(s) added to a slice already lie on at leastone additional slice, thus when they are addedto the extended slice, the adhesiveness of a0 in-creases, and A(a0) > A(a). It is only possible forA(a0) = A(a) when a slice is extended by rear-ranging code to include token(s) that were notpreviously in any slice.
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