
Techniques for Process Model Evolutionin EPOSMaria Letizia JaccheriDipartimento di Automatica e InformaticaPolitecnico di Torino10129 TorinoItaly Reidar ConradiDept. of Computer Systems and TelematicsNorwegian Institute of Technology (NTH),N-7034 Trondheim,Norway5 May 1993



AbstractThis paper categorizes some aspects of software process evolution and customization, and describes how theyare handled in the EPOS PM system. Comparisons are made with other PM systems.A process model in EPOS consists of a Schema of classes and meta-classes, and its model entities and rela-tionships.There is an underlying software engineering database, EPOSDB, o�ering uniform versioning of all model partsand a context of nested cooperating transactions.Then, there is a re
ective object-oriented process speci�cation language, on top of the EPOSDB. Policies formodel creation, composition, change, instantiation, re�nement and enaction are explicitly represented and areused by a set of PM automatic tools. The main tools are a Planner to instantiate tasks, an Execution Managerto enact such, and a PM Manager to de�ne, analyze, customize and evolve the Process Schema.



Contents1 Introduction 12 The Process Model Life cycle 22.1 The PM meta-process : : : : : : : : : : 22.2 Evolution : : : : : : : : : : : : : : : : : 33 EPOS 53.1 The Layered EPOS Architecture : : : : 53.2 The SPELL Language : : : : : : : : : : 63.3 The Process Tools : : : : : : : : : : : : 73.3.1 The Execution Manager : : : : : 73.3.2 The Planner : : : : : : : : : : : 83.3.3 EPOSDB: The Change Ori-ented Versioning Model : : : : : 83.3.4 EPOS Project Context : : : : : : 93.4 Methodologies of Change in EPOS : : : 93.5 An example: the ISPW7 ReferenceProblem : : : : : : : : : : : : : : : : : : 134 Comparisons and Related Work 145 Conclusions 16
1 Introduction������ 0� ~��Heraclitus of Ephesus1The Software Process and its support has attractedincreasing attention in the last 15 years. A SoftwareProcess is the total set of software engineering activi-ties needed to transform user requirements into oper-ative software and to evolve it. It is composed of twomain components: a software production process tocarry out software production activities, and a soft-ware meta-process to improve and evolve the wholesoftware process.A Process Model is a description of one or moresoftware processes, and it is composed by a produc-tion process model and a meta-process model (meta-model). A part of the model is called a model frag-ment. Software2 Process Modeling (PM) is the disci-pline of describing process models [1] [2]. [3] [4].In this paper, the term process model is used todenote the internal computer representation of an ex-ternal process. The term process model denotes botha process abstract description (as a schema) and amore concrete description of the external process ele-ments to be supported. The external process elementsconstitute the real world production environment thatcannot be totally represented in a computerized form,e.g. human behavior. However, several authors usethe term process model only about a process schema(templates, classes, rules).A process schema provides a template description ofa group of process elements, e.g. software productionactivities, products (artifacts), tools, human roles,projects, organizations etc. { with interconnections.The schema may consist of related sub-schemas, e.g.one for describing activities, etc.The Process Support Environment consists of a Pro-cess Modeling Language (PML), possibly a library ofschemas expressed in the PML, and various processtools to support de�nition, instantiation, evolution,and enactment of process models. It is similarly di-vided in production process support and meta-processsupport. If the underlying PML is re
ective, theschema de�nes both the production process model andthe meta-process model.Software processes are typically life-cycle activitiessuch as requirement analysis, design, coding, test-ing, installation, maintenance etc.. Few activities are1All things are in a state of 
ux.2The \software" pre�xmay often be omitted in the following.1



atomic; the majority being compositions of more con-crete activities. Activities may communicate, operateon input products to produce output products, andshare the same products. Two or more activities maybe carried out by the same human role or use the sametool.Software products consist of all the product artifacts(usually documents) produced during the software lifecycle, such as requirements and design speci�cations,source codes, released programs, libraries, test pack-ages, bug reports, and documentation. Each artifactmay exist in many versions.A tool is an executable software program, often con-sisting of a set of cooperating sub-tools in a tool set.Tools are invoked by activities and communicate witheach other. Typical production tools are those for re-quirements speci�cation, tracing, prototyping, reuse,modeling, program generation, compilation, mainte-nance support, and documentation generation.The user applies the production tools, assisted orenforced by the process support. Di�erent kinds ofusers are programmers, designers, quality engineers,project managers etc.. A project is the work contextwhere the software processes occur and encompassesusers, tools, and products, plus the process model thatis actually governing it.A Process Support Environment (PSE) is a human-oriented system [3], intended to serve interacting com-puterized tools and humans. Ideally it should serve asan intelligent and cooperative assistant in the dailychores of the project workers. However, users tend tomodify and improve the process they are carrying out.This is due to better understanding of, and creativitytowards, their objectives. It is also that they may �ndthe process faulty, ine�ective, or no longer valid withrespect to its requirements or its supporting technol-ogy.A process model must therefore be continuouslymaintained during its life time. Software ProcessModel Evolution is the act of changing existing mod-els in a controlled way [5] [6]. This includes Soft-ware Process Customization: reusing existing processmodel fragments and adapting them to di�erent con-texts.The paper is structured as follows: section 2 de�nesa process model life cycle, and elaborates the meta-process for process evolution and customization. Sec-tion 3 presents the EPOS support for process modelevolution. Section 4 discusses some related work andtries to compare EPOS features with those o�ered bysome existing systems. Conclusions are given in sec-tion 5, with indications of further work.

2 The Process Model Life cycleProcess models are themselves produced by an en-gineering process. Such engineering (creating, chang-ing etc.) consists of a set of phases, called PM meta-activities [3], and constitute the meta-process. Themeta-process of producing process models clearly re-sembles the software process of creating normal exe-cutable software products.
PM2

PM Analysis & 
Design

PM Customization

PM3

PM4

PM1

:

gives feedback
receives feedback

receives and gives feedback

Legenda

PM Enaction

gives input/output

Specific PM

PM Instantiation

template

template
Generic PM

Instantiated
Enacting  PM

PM5 PM6
PM Performance
     (external)

        PSE

Provide a 
    PSE

Figure 1: The general meta-process, with meta-activities.2.1 The PM meta-processFig. 1 shows six meta-activities, depicted by boxes,and their respective inputs and outputs, depicted byovals. Bold arrows denote input/output relationships;dashed arrows denote feedbacks from a meta-activityto the ones above it.The initial meta-activity (PM1) must provide aPSE. A PSE o�ers an enactable PML with precisesyntax and semantics, libraries of reusable processmodels, a PM methodology, and various process toolsfor process model creation, composition, re�nement/customization, instantiation, enaction, and evolution.2



The second meta-activity (PM2) is the Analysisand Design phase of a generic, template process model(schema). Such a generic schema is an abstract pro-cess model, such as the waterfall or spiral model, foruse in many projects.The third meta-activity (PM3) or customizationstep reuses the generic schema to obtain a more spe-ci�c schema to accommodate project- or application-related information by adaptation and re�nement.The forth instantiation meta-activity (PM4) pro-duces an instantiated software process model, withconcrete descriptions of activities, connected to input/output products and with attached roles (actors) andtools.This model is gradually made enacting by the �fthenactment meta-activity (PM5), which also executesand monitors it.Finally comes the sixth meta-activity, being con-tinuous assessment of external process performance(PM6). This goes in parallel with PM5 on enactment.There is no assumption that the above meta-activities must be executed in a strict water-fall fash-ion for all components of the process model. Further,not every PSE allows the distinction or formalizationof all these meta-activities.2.2 EvolutionProcess models must be created so that they canbe customized to di�erent project contexts. Thismeans that process models contain a certain numberof parameters to facilitate reuse through customiza-tion. However, customization before instantiation isnot always su�cient. In fact, during and after enac-tion, the external software process is assessed for cor-rectness and performance. This evaluation producesfeedbacks to the earlier meta-activities. This may re-sult in changes either to the instantiated or templateprocess models (generic/speci�c), or even to the PSE.These changes are driven by feedbacks produced at theenaction level, and were not anticipated by the modeldesigner. They may thus be regarded as process modelmaintenance, performed by the overall meta-process.Solving the problem of process model evolution re-quires an answer to the following questions: whichprocess model fragments should be changed, how andwhen? And how to analyze and guide change?Fig. 2 answers the question \Which model frag-ments to change?". It depicts the di�erent categoriesof process fragments. At the lowest level, there are theinstantiated/enacting model fragments. Lines denotedata 
ows between product fragments (circles) andactivity model fragments (rectangles). The next level

shows the generic or speci�c schema. This consists ofSub-Schemas with relationships and constraints. Atthe top level, there is the meta-model (including theMeta-Schema), i.e. the encoded rules and proceduresfor process model de�nition and manipulation.
Software
Product

Tools

Human Roles

Activity

bla

Policies for Model creation
                   composition
                   refinement
                   customization
                   instantiation
                   enaction
                   evolution

Instantiated/Enacting
 Process Model

Meta−Model
Schema

Generic or Specific
Schema

Figure 2: Process model fragments: candidates forchange.Each model fragment in �g. 2 may prove to be in-adequate and need to be changed.Instantiated/Enacting process modelStarting from the bottom level of �g. 2, the prod-uct model fragments must always be changeable,since evolution of products is the main aim of theexternal software production environment.Additions or changes to activities are more di�-cult, as they may impact existing work. Changesto tools or human work allocation must also beconsidered.Such changes will result in either feedback andrespective changes to the process schemas, orin temporary changes (patches) to the instanti-ated/enacting model.Generic or speci�c schema Changesto the generic or speci�c process schemas consistin changes to descriptions of single items, or the3



constraints on their interactions. As items at thislevel describe items at the instantiated/enactingprocess model level, a change to one of thisitem may impact not only items at the samelevel but also items at the lower level (Instan-tiated/Enacting process model).Meta-model schema The meta-model may befound inadequate due to feedbacks from the lowerlevels. These changes are very delicate as they im-pact the way in which items are manipulated bothat the lower levels and at the meta-model level it-self, e.g. how to change a procedure regulatingmeta-model changes?Traditionally, Con�guration Management (CM)needs PM to control activities related to change con-trol, change propagation, consistency maintenance,auditing, re-building etc.. On the other hand, the en-tire process model constitutes a versioned and com-posite object, thus it should itself be under CM con-trol. However, there are some additional problems inevolving enacting process models.Fig. 3 gives a CM perspective of PM change. Here,the terms revision and variant (branch) are given theclassical CM semantics [7]. A process model maytherefore be modi�ed as sequential revisions, or as al-ternative/parallel variants that evolve independently.Revision and variant are commonly termed version.On the horizontal dimension, PM.1.1 is created as arevision of PM.1.0. On the vertical dimension, PM.2.0and PM.3.0 are obtained by alternative re�nements ofPM.1.0.The technology to facilitate change of model frag-ments varies between available PSEs, and also be-tween di�erent categories of fragments. The under-lying PML is decisive here.A re
ective PML and PSE architecture will gener-ally be advantageous to handle model changes. Allprocess-relevant information can then be explicitlyand uniformlymanipulable (as in Lisp), and the meta-model can be explicitly represented, reasoned upon,enacted and evolved in a controlled way. Proper ac-cess control is of course needed here, as for generaldatabase operations.We can de�ne the following skeleton meta-processfor process model changes: 1) submit a request formodel change; 2) assess (validate, simulate etc.) therequest; 3) reject or accept a possibly adjusted changerequest; 4) carry out the accepted change; 5) propa-gate it to a subset of the a�ected internal fragmentsand possibly to their external process elements; 6) re-establish internal and external consistency.
Policies for Model creation
                   composition
                   change
                   instantiation
                   refinement
                   enaction

Software
Product

Tools

Human Roles

Activity

blaInstantiated/Enacting
 Processes

Policies for Model creation
                   composition
                   change
                   instantiation
                   refinement
                   enaction

Software
Product

Human Roles

Activity

blaInstantiated/Enacting
 Processes

Tools

Human Roles

Activity

Instantiated/Enacting
 Processes

Policies for Model creation
                   composition
                   change
                   instantiation
                   refinement
                   enaction

Software
Product

Tools

Human Roles

Activity

blaInstantiated/Enacting
 Processes

Policies for Model creation
                   composition
                   change
                   instantiation
                   refinement
                   enaction

Software
Product

Tools

Human Roles

Activity

blaInstantiated/Enacting
 Processes

PM.1.0 PM.1.1

revisions

PM.2.0 PM.3.0
revisions

Variants 

Variants 

Meta−Model
Schema

Meta−Model
Schema

Meta−Model
Schema Meta−Model

Schema

Generic or Specific
Schema

Generic or Specific
Schema

Generic or Specific
Schema

Generic or Specific
Schema

Generic or Specific
Schema

Policies for Model creation
                   composition
                   change
                   instantiation
                   refinement
                   enaction

Meta−Model
SchemaFigure 3: Changing Process Models.

4



Such a meta-process should encode aspects of achange methodology to guide process model evolution.The overall methodology can be rather independent ofthe actual PML and its process tools.Change propagation may be eager (changes arepropagated immediately), opportunistic (changes arepropagated at some later convenient time), lazy (eachfragment is checked for consistency upon later access).To facilitate precise forward analysis and propagation,and similar backward traceability, we need to explic-itly represent external process elements and their de-pendencies in an internal process model.
3 EPOSEPOS3 [8] is a process support environment thato�ers a PML called SPELL (Software Process EvoLu-tionary Language) [9], an initial process schema, anda set of process tools.In EPOS, the internal process model is a network ofactivity descriptions (tasks), being linked to descrip-tions of other tasks, products, tools, and roles. Theactivities interact with each other and with tools andhumans.The process model schema is represented as a setof entity and relation classes that constitutes tem-plate fragments. The meta-model part of the processschema is represented as a set of meta-classes. Theinstantiated and enacting process models consist ofinstances representing external process elements. TheEPOS model fragments are meta-classes, classes, andinstances; both entity and relation.The main process tools operating on the abovemodels are: a PM Manager, an Execution Manager(Process Engine), an AI Planner, and EPOSDB, aversioned object-oriented database.3.1 The Layered EPOS ArchitecturePSEs that rely on an object-oriented database, e.g.PMDB [10] and ADELE [11], often have a PML as alayer around the underlying database. EPOS extendsthis by having three layers around the database. Thus,the EPOS layers are:A client-server EPOSDB with change orientedversioning [12] [13] in a context of long, nestedand cooperating transactions. EPOSDB o�ersa structurally object-oriented data model andits DDL to de�ne entity and (binary) relationclasses4. Entities (objects) have unique and im-mutable identity (an OID). There is a system-de�ned entity root class. Both entities and re-lationships can have scalar attributes with inher-itance. Entities can also have long�eld attributesto describe external �les. This data model is closeto the object-relation model suggested by [15]. Afree-standing Prolog based DML is o�ered.All entities, relationships, and their classes andmeta-classes (as class descriptor instances)are stored in the database and they are thus uni-formly versionable.3EPOS: Expert system for Program and (\Norwegian Og")System development.4In the EPOS literature they are called types, but here weadhere to the OMG [14] terminology.5



A re
ective and object-oriented PMLSPELL uni�es and extends the underlying DDL/DML, and o�ers class-level attributes and in-stance/class-level procedures. Active procedures,or triggers, may also be de�ned. Meta-classes areused re
ectively as in Smalltalk [16] to store class-level information.This EPOS layer supports meta-activities Anal-ysis & Design (PM2) and Customization (PM3),and later Evolution through the PM Manager.A tasking framework for concurrent enaction ofprocess models. This is done by the Execu-tion Manager that interprets special class-levelattributes de�ned in a prede�ned task entityclass whose de�nition is shown in �g. 6. TheExecution Manager cooperates closely with thePlanner, that incrementally (re)instantiates tasknetworks, and with external tools.That is, this EPOS layer supports meta-activitiesPM5 (Enaction) and partially PM4 (Instantia-tion).Application-speci�cprocess models are domain-speci�c and include both schemas, e.g task tem-plates, and instances, e.g. production tools.Instances often constitute a network of tasks andproducts, connected to production tools and hu-man resources. Relationships to describe subtask-ing and data
ow between tasks and products arecommonly used.Fig. 4 shows how the six meta-activities from �g. 1are implemented by the EPOS process tools.3.2 The SPELL LanguageSPELL is a persistent object-oriented languagewith a re
ective architecture.Classes and Model StructuringFig. 5 displays some system-de�ned and prede�nedclasses, showing the same layering as in Section 3.1.SPELL supports several levels of abstraction andcomposition to model the external process elements.It supports de�nition of classes with both an instance-level and a class-level part, enabling speci�c and gen-eral information to be naturally represented. Classlevel relations can be explicitly modeled and theycan be used to model subclassing, or some inter-nal relations that encode the formals (data
ow)and task decomposition. E.g., relation class

Instances

EPOSDB
PM Manager
Planner
Execution Manager

Generic PM

Specific PM

Enactable PM

PM2
PM Analysis & 
Design

PM Customization
PM3

PM4

PM5

Provide a 
PM Environment

PM1

gives feedback
receives feedback

receives and gives feedback

Legenda

PM Instantiation

PM Enaction

gives input/output

PM Tools
SPELL

Generic
Classes

PM Manager

Specific
Classes

PM Manager

Planner

Execution 
Manager

        PSE

PM6
PM Performance
     (external)Figure 4: The actual meta-process in EPOS.

entity

class_descriptor

data_descriptortask_descriptor

task_entity data_entity

PM entity

develop

design

compile

source_code design_doc

relation Database types

OO extensions

Tasking framework

General/Project
classes 

formal_inputs

formal_outputs decomposition

formal_inputs

formal_outputs
decomposition

decomposition

projectFigure 5: The EPOS Classes.6



formal inputs is de�ned between task descriptorand data descriptor, and it may be instantiated be-tween task entity and data entity subclasses.Inheritance and ProtectionSingle inheritance is provided for all properties (at-tributes, procedures). A subclass may rede�ne class-level attributes and instance/class-level procedures.Three kinds of inheritance are available for class-levelproperties and for procedures: redefine, append, andconcatenate. redefine means overwriting (the de-fault), while append applies only to class-level at-tributes and means logic conjunction (used on thepredicates in �g. 6). concatenate is inspired by theSimula [17] inner mechanism. It means, that if thecode of a superclass is de�ned as step2, and the codeof a subclass is de�ned as (step1,inner,step3), theconcatenated subclass code is (step1,step2,step3).Rede�ned procedures in a subclass may be inheritedby either redefine or concatenate. Attributes andprocedures can be declared private or public.The SPELL Interpreter: Dynamic BindingThe access and binding of procedures, and attributes,both instance- and class-level, are dynamic as inSmalltalk. It is implemented by the SPELL Inter-preter that consists of one Prolog predicate5:call_proc(?Caller,+Called,+Procedure_Name,+Input_Parameters,-Output_Parameters).The prede�ned DML procedures read, write,read relation, and write relation, are used asprocedure parameters for accessing both instance- andclass-level attributes, e.g.:call_proc (?Caller, +Called, read,+Attribute_Name, -Attribute_Value).Related entities may be accessed by:call_proc (?Caller, -Called, read_relation,+Relation_Name, -Relation_Item).The task entity classA simpli�ed de�nition of this basic task class is pre-sented in �g. 6. Generally, a task has actual in-put/output parameters to facilitate data
ow chain-ing. The classes of these \product" parameters are5In the speci�cation of Prolog procedures, parameters pre-�xed by ? are optionals, by + are mandatory input parameters,and by � are output parameters.

constrained by the formals class-attribute. Likewise,a decomposition class-attribute describes the classesof possible subtasks. Static and dynamic pre/post-conditions and a code script are also de�ned. Themeaning of all these class-level attributes will be fur-ther explained in the next subsections.Task subclasses with empty decompositionmodellow-level activations of atomic tools. Such classesserve as tool envelopes. Task subclasses with non-empty decomposition model high-level activities,whose main work is delegated to their generated sub-tasks.class task_entity: entity{ instance_level_attributes:task_state:= created.instance_level_procedures:instance_delete(+SelfO);instance_convert(+SelfO, +New_Class);start(+SelfO);restart(+SelfO);stop(+SelfO).class_level_attributes:pre_static := true (inheritance=append);pre_dynamic := true (inheritance=append);code := inner (inheritance=concatenate);post_static := true (inheritance=append);post_dynamic := true (inheritance=append);formals := data_entity -> data_entity ;decomposition:= repertoire(task_entity);executor := nil;role := nil.class_level_procedures:instance_create(+SelfC, +Attribute_Values, -Instance_Id);class_create(+SelfC, +Defined_Properties, -Class_Id);class_delete(+SelfC);class_change(+SelfC, +Defined_Properties).} Figure 6: The task entity class.3.3 The Process ToolsIn the following, the Execution Manager, and thePlanner will be described. Then, the versioning modelof the EPOSDB will be introduced. Finally, the PMManager will be described.3.3.1 The Execution ManagerTasking is realized by the Execution Manager that uti-lizes three class-level attributes:7



� pre dynamic, specifying the condition on whento enact an instance of the given task class. Thecondition is combined with local task informationabout task state and goal-directed vs. opportunis-tic execution.� code, being a sequential program to perform theintended job of the given task class. Thus, enac-tion of a task means interpretation of its code.For an atomic task class like compile, the codecontains all the relevant actions. For a compositeor high-level task class like develop, the middlepart of code is empty, causing the Planner to beinvoked to instantiate subtasks.� post dynamic, e.g. to treat errors.The Execution Manager also maintains the instance-level attribute task state (line 4 in �g. 6), whosevalue domain is: created during Planner instantia-tion, waiting on its pre dynamic condition, activeduring code enaction, waiting children denoting anexpanded (planned) composite task waiting for itschildren to terminate, forked denoting an atomic taskwaiting for its associated operating system task tostop, or terminated.The attribute executor refers to the logical name ofthe tool that should execute the task, while role refersto the role or responsibility description of a generichuman actor, e.g. a software developer.3.3.2 The PlannerThe AI Planner [18] is technically a procedure in meta-activity PM4. It is implicitly and incrementally in-voked by the Execution Manager to detail a compos-ite task at the time. That is, the Planner will au-tomatically generate a new subtask network for eachcomposite task. The EPOS Planner uses a domain-independent, non-linear AI planning algorithm, as inTWEAK [19] and IPEM [20]. Dynamic and incre-mental instantiation is achieved by this collaborationbetween Planner and Execution Manager.The Planner starts with a composite task and itsdesired output which is the goal. It applies backwardchaining and hierarchical decomposition, combinedwith domain-speci�c knowledge, to build a proper sub-task network (a plan in AI terms). The planning isbased on the process schema as a knowledge base, anda representation/model of the product structure as aworld state description.The Planner consists of two layers: the core layer isa domain independent planner, while the outer layeris domain-speci�c to PM. The Planner transforms

the class-level attributes pre/post static, formals,and decomposition of task class into AI pre/post-conditions of nodes, so the core layer can work. Thistransformation also considers the product structure.The Planner utilizes four class-level attributes:� pre static and post static express necessaryconditions that must hold, respectively, beforeand after enaction of a task.� formals speci�es the legal \product" classes ofactual parameter instances (Inputs/Outputs) ofthe given task class.� decomposition speci�es a pool of candidate taskclasses for subtasks of the given composite task.These class-level attributes together specify legalityconstraints on the structure of the task network.Clearly, changes to these schema attributes and tothe product structure imply replanning. An incremen-tal algorithm for replanning is presented in [21].3.3.3 EPOSDB: The Change Oriented Ver-sioning ModelIn the following, we �rst describe transactions andthen versioning.TransactionsEPOSDB o�ers long and nested transactions withchecked-out workspaces. Transactions may surviveseveral application sessions, and are represented byspecial transaction objects in the database, connectedto project tasks. The transactions may be started,committed or aborted interactively. All database op-erations must be performed in a given transaction con-text.Each transaction selects the current version, i.e. thevisible sub-database. It also speci�es the \scope" ofthe local changes. Local changes are made visible tothe parent transaction (and its children) upon commit,and possible con
icts must be resolved.Change Oriented VersioningEPOSDB implements Change Oriented Versioning orCOV. COV considers a set of physical changes to aset of (related) fragments as one logical (or functional)change. These changes may result from a sequence ofupdate jobs, using the above transaction mechanism.COV is largely independent of the data model and en-ables uniform versioning of entities and relationships,8



including Schema-level information. Thus, COV con-trols the version space at any granularity of data.COV can be used together with normal check-out/in towards workspaces in a long transaction con-text. Checked-out con�gurations are bound in theproduct space, according to the given product model(entities and relationships).A logical change is described by a boolean andglobal option. Logical changes can be freely combined,possibly constrained by stored version-rules (predi-cates).COV generalizes conditional compilation on theentire database. In traditional versioning models,changes (deltas) are computed as the di�erences be-tween versions, being atomic data objects. In COV,a version is not an explicit object, but can be evalu-ated as a combination of the selected changes (deltas).It applies to any granularity: atomic objects, subsys-tems, con�gurations, entire databases.Traditional versioning models use a version tree/graph for each versioned object, thus creating a ver-sion group of \similar" objects. However, making ver-sion selections that combine (merge) changes done atdi�erent \parts" (branches) in the version tree is notautomatic. In COV, the changes have no \history",and can in principle be freely combined. The ver-sion tree is 
at, and version history is (at a low level)recorded by version-rules that regulate valid versioncombinations (see below).In a version selection in COV, we must �rst specifyan option binding of true/false values for the relevantoptions. This binding is called a version-choice, andwill select the visible version of the entire database.Then a selection in the product space can be done.This is the inverse binding sequence of that in mostother CM systems, although ADELE has an inter-mixed product/version binding sequence.In a transaction, we must therefore give a version-choice (a �lter) for reading the database. We mustalso give a possibly partial option binding, called anambition, for writing back to the database. The ambi-tion speci�es the scope of changes done in a transac-tion. Many more \versions" may thus be a�ected bythe local changes, than the one given by the version-choice. Hence, changes is automatically propagated(merged) into many sub-databases. The ambition willalso \lock" a part of the version space for concurrentupdates.If ongoing transactions have overlapping ambitionsand sub-products, we should encourage such siblingtransactions to cooperate, to avoid merges afterwardsor even loss of information by over-write or rollback.

In spite of many similarities between COV and tra-ditional versioning, the main di�erence lies in: inten-tional and 
exible version selection based on logicalchanges, explicit representation of the version space(e.g. for locking), and versioning being orthogonal tothe stored data and its granularity.3.3.4 EPOS Project ContextThe overall infrastructure of the EPOS process sup-port tasks are as follows: a long EPOSDB transactionis associated to a project task.At start up, a transaction, that de�nes a databaseversion of the entire process model, and a local Projectgoverning this are started. This may require negoti-ation and delegation from a parent project, e.g. ac-cording to an incoming change-request. Under thelocal Project task, the Planner will generate the in-frastructure of subtasks.The PM Manager is used to re�ne and adapt theprocess schema that has been inherited from the par-ent project into a more speci�c one. This meta-activity results in appropriate class descriptions of lo-cal activities, products, production tools, and roles.Facilities for impact analysis of changes may be mod-eled by procedures in special task classes. Such schemaevolution can also be done incrementally later.Cooperation protocols, i.e. negotiation and prop-agation rules and patterns against possible overlap-ping neighbor projects/transactions may also be es-tablished. Thereafter relevant workspace �les arechecked out from the database.Then, subtasks can be gradually (re)planned and(re)enacted { respectively in meta-activities PM4 andPM5. This process depends on the actual productionactivities, e.g. product structure changes, and meta-activities (class changes).Finally, the local Project task will check-in themodi�ed workspace �les to the database, and closeitself after committing the database transaction. TheProject Manager of the parent project is noti�ed aboutall this.3.4 Methodologies of Change in EPOSA process model always stands in a local projectcontext. Thus, the meta-process of changing frag-ments of such model also occurs in such a context. Ifsome changes are found to be useful elsewhere, thesemay be propagated to other projects.We de�ne a process model to be inconsistent, ifthe meta-classes, the classes, and their instances maylead to an unpredictable behavior of the PM tools.9



E.g. if a task class has no pre dynamic condition, theExecution Manager will never be able to enact thecorresponding tasks.Changing Instantiated/Enacting ModelsInstantiated/Enacting models consist of objects rep-resenting products, activities, tools, and human roles.EPOS relies on the CM facilities o�ered by EPOSDBto update product con�gurations. Tasks may also bemanipulated, i.e. they may be created, started, sus-pended, restarted, and killed. Tool descriptions mayas well be changed, e.g. new switches may be addedor the executable �les may be substituted.Hard and soft schema changes are distinguished.The hard changes imply changes in the structure ofeither the instance-level attributes or the subclasses.The soft schema changes are the process-speci�c ones,as they modify the behavioral part of a class. Hardchanges are prohibited by EPOSDB. Thus, we mayhave to create a new subclass of the actual class, andexplicitly convert a subset of the instances to the newsubclass de�nition.Changes to one instance may a�ect instances re-lated to it, and may therefore leave the system in an in-consistent state. E.g. if the relation instance connect-ing a task to its parent task is deleted, the child taskexecution may lead to unpredictable results. How-ever, such updates are not prohibited, but it is theresponsibility of the (privileged) user performing thechanges, to reinstate system consistency. The distinc-tion among di�erent kinds of users and relative accessright mechanisms is still under design.Changing Process SchemasA schema change request and an actual schema classchange are distinguished. Fig. 7 depicts the meta-process of evaluating the impact of a schema changerequest and optionally performing the change on aclass de�nition. The feasibility of a requested classchange has to be evaluated against its possible impacton the whole process model.A class change may a�ect the extent of the class,i.e. the instances of the modi�ed class, but also therelated classes of the modi�ed class and their extents.The related classes6 of a class are: its subclasses andthe entity classes related by class level relations, e.g.formals.Thus, when a schema change request is issued, thePM Manager checks, for each of the possibly a�ected6The related classes are connected to the given class by class-level relationships.

change_request on class C

impacts analysis
on C extent

do change on C

automatic subclasses
and instances conversion

create subclass SC

Is C a leaf class?

No

duplicate the
inheritance tree
under SC

Yes

selectevely
convert instances

none
some

user decides

start dialog

Figure 7: The meta-process of Process Schema change.
10



related classes and instances, the possible e�ects of therequested change.If a requested change does not have any impact, thePM Manager is free to perform the requested change.All the existing instances and subclasses are automat-ically converted to the new de�nition.If the requested change has some impact, i.e. someactions will be needed to reinstate consistency, thepossible consequences are then displayed to the user,and a dialog is started. The user may decide to cre-ate a new subclass by re�ning the class so that onlya subset of the extent of the old class will be a�ected.Then, some existing instances may be converted tothe new subclass de�nition, thereby possibly addingand initializing new attributes. If the modi�ed classis not a leaf node in the inheritance tree, i.e. if it al-ready has subclasses, the whole inheritance tree hasto be duplicated under the new created class. Thisis of course a disadvantage of re�ning by subclassingversus modifying. On the other hand, the advantageis that the old class is retained and the conversion ofthe existing instances to the new de�nition may occurin a selective and controlled way.If the user wants to modify the class despite thesuggested impact, again he interacts with the systemto selectively perform some of the suggested actions.The interactive dialog with the user is performedthrough a dialog window composed by two bottomsand one menu as displayed in �g. 11.The only changes that are not allowed are thosethat violate the following class invariants:� A class name must be unique over all projects.� A class must have one super class (single inheri-tance).� The class and all super classes of an instance mustbe visible in the actual project.� Likewise for the version visibility of the relatedentities of a relationship.� Likewise, the related classes mentioned in thedecomposition and formals must exist.For task classes we can further distinguish between thefollowing soft class changes:� Changed code: this assumes that no task instanceis currently enacting it, i.e. the a�ected tasks areall passive. This a�ects the Execution Manager.� Changed pre dynamic or post dynamic: this cantechnically be done as soon as no task instance isnot evaluating these. This also a�ects the Execu-tion Manager.

� Changed formals, decomposition, pre static,or post static: this forces the Planner to reex-amine the a�ected tasks in the task network tocheck the constraints, and possibly rebuild partsof the network (if feasible).� Changed procedure: this also assumes that notask is executing this.Changing the Meta-SchemaThe knowledge of how to create a subclass of a givenclass, to change the class, to create instances of it, andto convert instances to a new behavior is de�ned in itsmeta-class de�ned in the Meta-Schema. It happensthat the �rst time we create a class, we do not want tobother with how to reuse and maintain it. That is, wedo not rede�ne the class create, class change, andinstance convert, but let them be inherited from thesuperclass. Only when a class has been used and founduseful, class-level procedures telling how to change andreuse the class may be added.The PM Manager implementationThe PM Manager is in charge of de�ning, re�ning, andmodifying classes. The main procedures implementingthe PM manager are class create, class change,instance convert, and restart.Procedure class createProcedure class create, de�ned in the root entityclass and possibly rede�ned for its subclasses, im-plements meta-activity PM2{PM3 concerning theSchema. This corresponds to de�nition and compila-tion. The PM Manager invokes the class create ofthe given superclass with the following subclass dataas parameters:� name of new subclass;� de�nition of new instance-level attributes;� de�nition of new instance-level procedures or re-de�nition of existing ones;� rede�nition of values of pre-de�ned class-level at-tributes;� de�nition of new class-level procedures or rede�-nition of existing ones.The de�nition of a new subclass cannot, of course,a�ect the de�nitions of existing classes.11



Procedure class changeProcedure class change attempts to update proce-dures or class-level attributes of a class, and has thesame parameters as class create. All the instancesof the old class are implicitly converted to be instancesof the modi�ed class.Procedure class change can change a PM entitysubclass, and tries to preserve the consistency of thesystem state.A class change may a�ect: the related classes of themodi�ed class; and the instances of the modi�ed class,including the instances of related classes.Procedure class change operates a single changeon a PM entity subclass. Since the Planner andthe Execution Manager relies on class-level attributesto manage process model instantiation and enaction,such changes may lead to inconsistent situations.The procedure class change is in charge of evalu-ating the impact of the proposed change and to �ndthose actions that are necessary to put the system ina consistent state again.However, as the proposed actions may have a deepimpact, a dialog is started with the user who maychoose not to carry out all the proposed actions, oreven to cancel the change request.Fig. 8 shows the template model fragment of theprocedure class change that implements the modi-�cation of dynamic pre-conditions. Lines 2-3 specifythat for each instance of class SelfC7, the state is read.If the task state is waiting or created, the giveninstance is not a�ected. Otherwise, it means that thepre-condition was evaluated to true before, and thepre-condition should be re-evaluated (line 8). If thisevaluation leads to true, it means that the task is nota�ected; if not, the task has to be restarted.Procedure restartProcedures restart and stop are heavily used bythe PMManager for stopping, converting, and restart-ing instances of evolving classes.The instance-level procedure restart suspends thework done by a task instance and put its state toinitiated. This procedure must rollback the actionsthat have been done by the task itself and its subac-tivities, and by the tasks that operate on the data thatit has produced.Performing a possible rollback of the actions meansto reset the output data to the state they had beforethe task was started, to kill possible forked operating7SelfO and SelfC are used to denote the instance or class aprocedure is invoked on.

1 class_change(Sender,SelfC,pre_dynamic-X):-2 call_proc(SelfC,SelfC,read_relation,instance_of,I),3 call_proc(SelfC,I,read,task_state,S),4 (member(S,[waiting,created])->5 call_proc(SelfC,Sender,notify,6 ["task",I,"in state",S,"not affected"]);7 member(S,[active,waiting_children,forked,terminated])->8 (eval(X)->9 call_proc(SelfC,Sender,notify,10 ["task",I,"in state",S,"not affected"]);11 call_proc(SelfC,I,restart,[],_),12 call_proc(SelfC,Sender,notify,13 ["task",I,"in state",S,"restarted"]))),14 fail;15 call_proc(SelfC,SelfC,write,pre_dynamic,X),16 call_proc(SelfC,Sender,notify,["work done"]).Figure 8: The class change procedure for dynamic pre-condition.1 restart(Sender,SelfO):-2 call_proc(SelfO,SelfO,read,task_state,S),3 (member(S,[created,waiting])->4 true;5 S=active->6 (call_proc(SelfO,SelfO,read_relation,actual_outputs,Out),7 call_proc(SelfO,Out,reset,[],_),8 fail;9 true);10 S=waiting_children->11 (call_proc(SelfO,SelfO,read_relation,sub_tasks,T),12 call_proc(SelfO,T,restart,[],_),13 fail;14 call_proc(SelfO,SelfO,read_relation,actual_outputs,Out),15 call_proc(SelfO,Out,reset,[],_),16 fail;17 true),18 S=forked->19 (call_proc(SelfO,SelfO,read,os_pid, Pid),20 kill_os(Pid),21 call_proc(SelfO,SelfO,read_relation,actual_outputs,Out),22 call_proc(SelfO,Out,reset,[],_),23 fail;24 true),25 S=terminated->26 (call_proc(SelfO,SelfO,read_relation,actual_outputs,Out),27 call_proc(SelfO,Out,reset,[],_),28 fail;29 true)),30 call_proc(SelfO,SelfO,write,task_state,waiting).Figure 9: Procedure restart.12



system jobs, and to eliminate all the side-e�ects as-sociated to code enaction. Otherwise, the conditionson which the Planner is based to perform automaticinstantiation would not hold.However, it is not possible to determine automat-ically the e�ects of code enaction. Thus we assumethat an instance-level procedure fail speci�es actionsto \undo" the results from the code part.The implementation of procedure restart is givenin �g. 9. Procedure restart reinitiates the task stateand possibly backtracks the actions performed by thetask. Procedure restart �rst inspects the state ofSelfO (line 2). If this state is created or initiatedno action is taken; otherwise the procedure fail isinvoked.The procedure fail may be alternatively imple-mented by an interaction with the user. For instance,it is not wise to cancel all the e�ects performed byvery long transaction tasks.3.5 An example: the ISPW7 ReferenceProblemWe here give the EPOS solution to the referenceproblem of software process model change, as pro-posed for by 7th International Software Process Work-shop (ISPW7) [22].Let us suppose we have a process schema that in-cludes a coding task class, stating that it is possible tobegin coding before the design is approved. Supposethat it is later decided to tighten the schema require-ments detailing when coding can begin, so that thedesign must be approved before coding begins. Fur-thermore, assume that this schema change a�ects onlyone currently instantiated or enacting process modelfragment (task object).This example does not explore all the possibilitiesdiscussed before, because there is only one instance isa�ected, there is only one project, class coding doesnot have any subclasses. In EPOS, this means thatthe dynamic pre-condition of the coding class mustbe modi�ed. The requested change does not violateany consistency constraints, thus the class codingmaybe changed by modi�cation. However, we show howthe problem can be solved in EPOS by using eitherclass change (overwrite) or class create (subclass-ing). In �g. 10, we depict a scenario where two parallelsubprojects, PMB and PMC, co-exist under a superpro-ject PMA. The class coding has originally been de�nedin the context of the project PMA. The set of classescreated in project PMA, is available to both subprojectsPMB and PMC. In subproject PMB the Process Schema

change is performed by subclassing (class create),while in subproject PMC by overwrite (class change).
entity

data_entity

coding

coding

des_doc
codingcoding

Instances

Classes

PMA

PMCPMB

Instances

task_entity

entity

task_entity data_entity

coding

Classes

sub_coding

entity

task_entity data_entity

des_doc

des_doc

des_doc

des_doc

refinement
variant

new subclass changed class

coding des_doc
codingFigure 10: A scenario based on subclassing and ver-sioning.In subproject PMB, the knowledge (process model,database) of its superproject PMA is customized by cre-ating a subclass sub coding, but still retaining theclasses as de�ned in the superproject. In subprojectPMC the class de�nition is changed.Lastly, when subclass sub coding is created fromclass coding in subproject PMB, the existing instance isimplicitly converted to an instance of the new subclass.On the other hand, when class coding is updated insubproject PMC, the existing instance is automaticallyconverted to an instance of the modi�ed class. In bothcases, the task may have to be restarted.Fig. 11 shows the change dialog window that isdisplayed, in case the dynamic pre-condition of classcoding is requested to be changed, and there is onecoding instance with two existing subtasks, one ofclass edit and one of class compile. As displayedin �g. 11, the suggested actions are: (1) updating ofthe static pre-conditions of class coding, (2) restart ofthe edit, compile, and testing instance, (3) reset ofboth the edit and compile output. The user may ormay not choose the suggested actions. Concerning re-13



setting of products, we have chosen not to delete their�le attributes, if these are not produced by automatictools, only to reset the state of the objects. This isbecause the work done has not to be automaticallydestroyed, but the responsible user has to be noti�edthat some inconsistencies may have been introduced.
input/output
subtask

done cancel

124: write(static_pre)

126: restart()

127: restart()

121

develop

122

123

124 125

126 127

design coding testing

review

edit compile

133 135

138

125: restart()

135: reset()

138: reset()

Figure 11: The EPOS task network and change dialogwindow.

4 Comparisons and Related WorkMany PSEs have been prototyped and documentedover the last 5 years and some experiments in realisticexternal production environments, have been reported(Process Weaver [23], IPSE 2.5 [24]). In addition,some large examples have been run by the develop-ment teams, and several PSEs can assist in maintain-ing themselves (ADELE [11], MARVEL [25]).In the following, the main characteristics of theEPOS system are compared against those o�ered bysome other systems. During this comparison processwe take as parameters both the general process evo-lution issues and the speci�c EPOS solutions. Amongthe general issues, 1) re
ection and meta-process, 2)change assessment simulation and validation, 3) whenprocess evolution may happen, 4) items of change, aretaken into consideration. Among the speci�c EPOSchoices, 1) Object Orientation, 2) Database supportand versioning, 3) Automatic and incremental instan-tiation by planning, are considered.Re
ection and meta-process The EPOS meta-process is explicitly represented by meta-classes.This is strongly in
uenced by the meta-classmechanism in Smalltalk [16]. CLOS [26] also of-fers re
ective features and pre-de�nes proceduresto change class de�nitions, and to convert the af-fected instances. Similarly, SELF [27] providesrules to control evolution.Further, IPSE 2.5 o�ers re
ection, while MAR-VEL has a �xed meta-process expressed in an-other (non-re
ective) language. SPADE [28] of-fers only task-level re
ection. Laws to controlevolution of both product and of the rules them-selves may be de�ned DARWIN [29].The use of re
ection to manage process modelevolution is not new, but EPOS exploits an inte-grated, object-oriented architecture for managingclass changes.Change assessment, simulation, and validationIn most PSEs, relationships can be used to con-trol and propagate the impacts of change. At themoment, EPOS does not provide facilities for sim-ulation of changes, and weak mechanisms for for-mal veri�cation of changes. MARVEL [25], Mer-lin [30] and IPSE 2.5 [24] can o�er some formalveri�cation support, and MELMAC [31] can per-form simulations.When process evolution may happen14



Process model changes fall into two main cate-gories: re�nement/customization before enaction,as in Process Weaver, and MELMAC [31]; or cor-rection after enaction, as in MARVEL, IPSE 2.5,SPADE, and EPOS. To implement correction af-ter enaction either late/dynamic binding or re-build mechanisms are needed. Generally the sec-ond category includes the �rst.Items of Change HFSP [32] enables to de�ne meta-rules for changing the enaction state. This canbe done also in EPOS. ARCADIA [33] can addtriggers and turn on/o� predicates at runtimewhereas EPOS does not o�er the possibility ofimposing global constraints, such as predicates.Adding new (production) tools is easy in mostsystems and it corresponds to the tool installationand subsequent addition of a tool envelope. Atool envelope corresponds to a task class in EPOS.To change a tool interface or to remove it, is muchharder and may lead to loss of functionality.Among PSEs that have an explicit representa-tion of team structure, Merlin [30] allows this tochange. Other PSEs integrate with an externalproject management tool to perform such actions,as for Process Weaver. EPOS can o�er only someinitial functionalities and it is not integrated witha project management tool.Process model schema fragments are items ofchange in EPOS, as in SPADE, IPSE 2.5, andPRISM whereas HFSP [32] enables to change en-acting models, but not schemas.PRISM [6] o�ers a Dependency Structure for de-scribing change items and a Change Structure fordescribing change related data. The structure ofEPOS instances, classes, and meta-classes con-nected by relations resembles the PRISM Depen-dency Structure whereas EPOS does not managechange related data, i.e. maintenance reports orhistory of changes. As PRISM, EPOS providesa way for incrementally de�ning or re�ning classlevel procedures to implement changes.Object-Orientation Among the PSEs exploitingobject-orientation, the closest to EPOS is IPSE2.5 using PS-Algol, and partly MARVEL.ADELE has a hybrid object-oriented model, withrun-time binding (delegation [34]) towards prod-uct and/or project contexts for customization.EPOS has derived dynamic binding and class-properties from Smalltalk [16] to gain 
exibility.

Database Support and versioning Many of thePSEs have their own and partially propri-etary Object Management Systems (OMSes), e.g.MARVEL, ARCADIA (CHIRON). Others use ex-isting OMSes, e.g. PS-Algol used in IPSE 2.5,PCTE in ALF [35], O2 in SPADE, and LDL inOIKOS [36].ADELE and EPOS are the only systems that relyon a fully versioned OMS, thus integrating CMand PM. Both exploit triggers and nested trans-actions. However, ADELE does not apply thesame versioning on the schema as on product de-scriptions: the Adele schema is bound to substi-tutable project contexts, and classes are not �rstorder objects.Planning The EPOS Planner usesdomain-independent, non-linear planning to in-crementally (re)construct task networks. As men-tioned, this is inspired by TWEAK [19], and alsoby IPEM [20]. Other PSEs using goal-oriented AItechniques are GRAPPLE [37], and for a similarpurpose as EPOS. SPADE uses re
ection to incre-mentally construct its task network (a PetriNet).However, neither of them have facilities for incre-mentally rebuilding (\replanning") the networkafter product or class changes.

15



5 ConclusionsAn EPOS template process model consists of a pro-cess schema of classes and meta-classes and its in-stances, describing the external process entities andtheir relationships. An instantiated and enacting pro-cess model is represented by task instances, linked toproduct, tool, and role instances.The originality of the EPOS approach to processmodel evolution lies in three parts: 1) a uniformly ver-sioned database to store the entire process model ando�ering nested cooperative transactions under PMcontrol; 2) a re
ective and fully object-oriented datamodel accessible through SPELL to 
exibly de�ne andevolve a Process Schema and its instances; 3) a Plan-ner to incrementally and dynamically (re)generatetask networks.The EPOSDB is based on C-ISAM, with client-server protocols using Sun RPC. The server is imple-mented by 22,000 C lines and the client by 6,000 Clines. EPOSDB o�ers a Prolog based interface. ThePM tools including the Planner are implemented by7000 SWI-Prolog lines. The User Interface uses thePCE Prolog-based graphical package.EPOS has been demonstrated on a set of exam-ples, covering software systems with some dozens ofmodules, including parts of the ISPW7 example. Weare now starting to apply EPOS on itself, and on pro-totyping external applications in several domains to-gether with three Norwegian software companies. Fa-cilities for process model evolution is judged crucialfor these test examples.The EPOS system has not yet been demonstratedto be \open-ended" versus other platforms and appli-cation domains, i.e. it lacks distribution and federa-tion aspects. Also, COV is promising, but unproventechnology. However, EPOS PM should be portableon top of other object-oriented DBMSes with a di�er-ent versioning model.Of the speci�c drawbacks of the EPOS processmodel evolution support, we can mention: poor sup-port for assessment, simulation and validation ofchanges. In addition, the exploitation of CM tech-niques for process evolution should be improved.Our future work will try to rectify the above draw-backs with particular emphasis on change assessment,simulation, and validation. Further, a more high-levelPML supported by a small CASE tool for PM is underdesign as an extension of the PM Manager. Finally,the relation between processes and meta-processes hasto be better elaborated, both on the conceptual andon the technical level.

References[1] M. Dowson, B. Nejmeh, and W. Riddle, \Fun-damental Software Process Concepts," in [38],pp. 15{37, 1991.[2] N. H. Madhavji, \The process cycle," SoftwareEngineering Journal, vol. 6, pp. 234{242, Sept.1991.[3] R. Conradi, C. Fernstr�om, A. Fuggetta, andR. Snowdon, \Towards a Reference Frameworkfor Process Concepts," in J.-C. Derniame (ed.):Proc. from EWSPT'92, Sept. 7{8, Trondheim,Norway, Springer Verlag LNCS 635, pp. 3{17,Sept. 1992.[4] P. H. Feiler and W. Humphrey, \Software ProcessDevelopment and Enactment: Concepts and Def-initions," Jan. 1992. 12 pages (Second version).[5] M. M. Lehman and L. A. Belady, Program Evolu-tion | Processes of Software Change. AcademicPress, 538 p., 1985.[6] N. H. Madhavji, \Environment evolution: Theprism model of changes," IEEE Trans. on Soft-ware Engineering, vol. SE-18, pp. 380{392, May1992.[7] P. H. Feiler, \Con�guration management mod-els in commercial environments," tech. rep.,Carnegie-Mellon University, Software Engineer-ing Institute, Pittsburgh, Pennsylvania, Mar.1991. 53 pp.[8] R. Conradi, E. Osjord, P. H. Westby, and C. Liu,\Initial Software Process Management in EPOS,"Software Engineering Journal (Special Issue onSoftware process and its support), vol. 6, pp. 275{284, Sept. 1991.[9] R. Conradi, M. L. Jaccheri, C. Mazzi, A. Aarsten,and M. N. Nguyen, \Design, use, and implemen-tation of SPELL, a language for software pro-cess modeling and evolution," in J.-C. Derni-ame (ed.): Proc. from EWSPT'92, Sept. 7{8,Trondheim, Norway, Springer Verlag LNCS 635,pp. 167{177, Sept. 1992.[10] M. H. Penedo and C. Shu, \Acquiring Experi-ences with the modelling and implementation ofthe project life-cycle process: the PMDB work,"Software Engineering Journal (Special Issue onSoftware process and its support), vol. 6, pp. 259{274, Sept. 1991.16



[11] N. Belkhatir, J. Estublier, and W. Melo, \Soft-ware Process Model and Work Space Controlin the Adele System," in Leon Osterweil (ed.):Proc. from 2nd Int'l Conference on Software Pro-cess (ICSP'2), March 1993, Berlin. IEEE Press,pp. 2{11, 1993.[12] A. Lie, R. Conradi, T. M. Didriksen, E.-A. Karls-son, S. O. Hallsteinsen, and P. Holager, \ChangeOriented Versioning in a Software EngineeringDatabase," inWalter F. Tichy (Ed.): Proc. of the2nd International Workshop on Software Con-�guration Management, Princeton, USA, 25-27Oct. 1989, 178 p. In ACM SIGSOFT SoftwareEngineering Notes, 14 (7), pp. 56{65, Nov. 1989.[13] B. Gulla, E.-A. Karlsson, and D. Yeh, \Change-Oriented Version Descriptions in EPOS," Soft-ware Engineering Journal, vol. 6, pp. 378{386,Nov. 1991.[14] Object Management Group, ObjectServices/Data Model - Request for Information,Sept. 1990.[15] J. Rumbaugh, \Relations as semantics constructsin an object-oriented language," in Proc. of theACM SIGPLAN Conference on Object-OrientedProgramming Systems, Languages and Appli-cations (OOPSLA'87), (Kissimmee, Florida),pp. 466{481, Oct. 1987. In ACM SIGPLAN No-tices 22(12), Dec. 1987.[16] A. Goldberg and D. Robson, Smalltalk-80: TheLanguage and its Implementation. Addison Wes-ley, 1983.[17] O.-J. Dahl, B. Myhrhaug, and K. Nygaard, \SIM-ULA Information | Common Base Language,"Tech. Rep. 145 p., S-22, Norwegian ComputingCenter, Oslo, 1970.[18] C. Liu, \Software Process Planning and Exe-cution: Coupling vs. Integration," in Proc. ofCAiSE'91, the 3rd International Conference onAdvanced Information Systems, Trondheim, Nor-way, 13{15 May 1991 (R. Andersen, J. A. B. jr.,and A. S. lvberg, eds.), pp. 356{374, LNCS 498,Springer Verlag, 578 p., 1991.[19] D. Chapman, \Planning for conjunctive goals,"Arti�cial Intelligence, vol. 32, pp. 333{377, 1987.[20] J. A. Ambros-Ingerson and S. Steel, \Integratingplanning, execution and monitoring," in Proc. ofAAAI'88, pp. 83{88, 1988.

[21] C. Liu and R. Conradi, \Automatic Replanningof Task Networks for Process Model Evolutionin EPOS," in Ian Sommerville (Ed.): \Proc.from the 4th European Software Engineering Con-ference (ESEC'93)", Garmisch-Partenkirchen,FRG. Forthcoming as a Springer LNCS. 17 p,Sept. 1993.[22] M. I. Kellner, P. H. Feiler, A. Finkelstein,T. Katayama, L. Osterweil, M. Penedo, and H. D.Rombach, \Software Process Modeling Problem(for ISPW6)," Aug. 1990.[23] C. Fernstr�om, \Process WEAVER: Adding Pro-cess Support to UNIX," in Leon Osterweil (ed.):Proc. from 2nd Int'l Conference on Software Pro-cess (ICSP'2), Berlin. IEEE-CS Press, pp. 12{26, Mar. 1993.[24] R. Snowdon, \An example of process change,"in J.-C. Derniame (ed.): Proc. from EWSPT'92,Sept. 7{8, Trondheim, Norway, Springer VerlagLNCS 635, pp. 178{195, Sept. 1992.[25] N. S. Barghouti and G. E. Kaiser, \Scalingup rule-based development environments," Inter-national Journal on Software Engineering andKnowledge Engineering, World Scienti�c, vol. 2,pp. 59{78, Mar. 1992.[26] S. E. Keene, Object-Oriented Programming inCommon Lisp. Addison Wesley, 1989. 266 p.[27] D. Ungar and R. B. Smith, \Self: ThePower of Simplicity," in Proc. of the ACMSIGPLAN Conference on Object-Oriented Pro-gramming Systems, Languages and Applications(OOPSLA'87), (Kissimmee, Florida), pp. 227{242, Oct. 1987. In ACM SIGPLAN Notices22(12), Dec. 1987.[28] S. Bandinelli and A. Fuggetta, \ComputationalRe
ection in Software Process Modeling: theSLANG Approach," in Proc. ICSE'15, Balti-more, USA, IEEE-CS Press (forthcoming), May1993.[29] N. Minsky, \Law-Governed Systems," SoftwareEngineering Journal, vol. 6, pp. 285{302, Sept.1991.[30] W. Emmerich, G. Junkermann, B. Peuschel,W. Sch�afer, and S. Wolf, \MERLIN: Knowledge-based Process Modeling," in [38], pp. 181{187,1991.17



[31] V. Gruhn, \The Software Process ManagementEnvironment MELMAC," in [38], pp. 191{201,1991.[32] T. Katayama, \A Hierarchical and FunctionalSoftware Process Description and its Enaction,"in Proc. of the 11th Int'l ACM-SIGSOFT/IEEE-CS Conference on Software Engineering, Pitts-burgh, PA, pp. 343{352, 1989.[33] S. M. S. Jr., D. Heimbigner, and L. Osterweil,\Language Constructs for Managing Change inProcess-Centered Environments," in Proc. of the4th ACM SIGSOFT Symposium on Software De-velopment Environments, Irvine, California. InACM SIGPLAN Notices, Dec. 1990, pp. 206{217,Dec. 1990.[34] L. A. Stein, \Delegation is inheritance," inProc. of the ACM SIGPLAN Conference onObject-Oriented Programming Systems, Lan-guages and Applications (OOPSLA'87), (Kissim-mee, Florida), pp. 138{146, Oct. 1987. In ACMSIGPLAN Notices 22(12), Dec. 1987.[35] F. Oquendo et al., \A Meta-CASE Environ-ment for Software Process-centred CASE En-vironments," in Proc. Int'l Conf. on Advancedinformation Systems Engineering (CAiSE'92),Manchester, UK. Springer Verlag LNCS 593,pp. 568{588, May 1992.[36] V. Ambriola, P. Ciancarini, and C. Montangero,\Software Process Enactment in Oikos," in Pro-ceedings of the 4th ACM SIGSOFT Symposiumon Software Development Environments, Irvine,California, pp. 183{192, 1990.[37] K. E. Hu� and V. R. Lesser, \A plan-based intel-ligent assistant that supports the software devel-opment process," in Proc. of the 3rd ACM Sym-posium on Software Development Environments,(Boston, Massachusetts), pp. 97{106, Nov. 1988.[38] A. Fuggetta, R. Conradi, and V. Ambriola, eds.,Proceedings of the First European Workshop onProcess Modeling (EWPM'91), (CEFRIEL, Mi-lano, Italy, 30{31 May 1991), Italian Society ofComputer Science (AICA) Press, 1991.epos/papers/evolpm-tse93/main.tex May 26, 1993 18


