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Abstract

This paper categorizes some aspects of software process evolution and customization, and describes how they
are handled in the EPOS PM system. Comparisons are made with other PM systems.

A process model in EPOS consists of a Schema of classes and meta-classes, and its model entities and rela-
tionships.

There is an underlying software engineering database, EPOSDB, offering uniform versioning of all model parts
and a context of nested cooperating transactions.

Then, there is a reflective object-oriented process specification language, on top of the EPOSDB. Policies for
model creation, composition, change, instantiation, refinement and enaction are explicitly represented and are
used by a set of PM automatic tools. The main tools are a Planner to instantiate tasks, an Execution Manager
to enact such, and a PM Manager to define, analyze, customize and evolve the Process Schema.
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1 Introduction

i

TAvTa P EL
Heraclitus of Ephesus?

The Software Process and its support has attracted
increasing attention in the last 15 years. A Software
Process 1s the total set of software engineering activi-
ties needed to transform user requirements into oper-
ative software and to evolve 1t. It is composed of two
main components: a software production process to
carry out software production activities, and a sofi-
ware meta-process to improve and evolve the whole
software process.

A Process Model is a description of one or more
software processes, and it is composed by a produc-
tion process model and a meta-process model (meta-
model). A part of the model is called a model frag-
ment. Software? Process Modeling (PM) is the disci-
pline of describing process models [1] [2]. [3] [4].

In this paper, the term process model 1s used to
denote the internal computer representation of an ez-
ternal process. The term process model denotes both
a process abstract description (as a schema) and a
more concrete description of the external process ele-
ments to be supported. The external process elements
constitute the real world production environment that
cannot be totally represented in a computerized form,
e.g. human behavior. However, several authors use
the term process model only about a process schema
(templates, classes, rules).

A process schema provides a template description of
a group of process elements, e.g. software production
activities, products (artifacts), tools, human roles,
projects, organizations etc. — with interconnections.
The schema may consist of related sub-schemas, e.g.
one for describing activities, etc.

The Process Support Environment consists of a Pro-
cess Modeling Language (PML), possibly a library of
schemas expressed in the PML, and various process
tools to support definition, instantiation, evolution,
and enactment of process models. It is similarly di-
vided in production process support and meta-process
support. If the underlying PML is reflective, the
schema defines both the production process model and
the meta-process model.

Software processes are typically life-cycle activities
such as requirement analysis, design, coding, test-
ing, installation, maintenance etc.. Few activities are

TAll things are in a state of flux.
2The “software” prefix may often be omittedin the following.



atomic; the majority being compositions of more con-
crete activities. Activities may communicate, operate
on input products to produce output products, and
share the same products. Two or more activities may
be carried out by the same human role or use the same
tool.

Software products consist of all the product artifacts
(usually documents) produced during the software life
cycle, such as requirements and design specifications,
source codes, released programs, libraries, test pack-
ages, bug reports, and documentation. Each artifact
may exist in many versions.

A toolis an executable software program, often con-
sisting of a set of cooperating sub-tools in a tool set.
Tools are invoked by activities and communicate with
each other. Typical production tools are those for re-
quirements specification, tracing, prototyping, reuse,
modeling, program generation, compilation, mainte-
nance support, and documentation generation.

The user applies the production tools, assisted or
enforced by the process support. Different kinds of
users are programmers, designers, quality engineers,
project managers etc.. A project is the work context
where the software processes occur and encompasses
users, tools, and products, plus the process model that
is actually governing it.

A Process Support Environment (PSE) is a human-
oriented system [3], intended to serve interacting com-
puterized tools and humans. Ideally it should serve as
an intelligent and cooperative assistant in the daily
chores of the project workers. However, users tend to
modify and improve the process they are carrying out.
This is due to better understanding of, and creativity
towards, their objectives. It is also that they may find
the process faulty, ineffective, or no longer valid with
respect to its requirements or its supporting technol-
ogy.

A process model must therefore be continuously
maintained during its life time. Software Process
Model Ewvolution is the act of changing existing mod-
els in a controlled way [5] [6]. This includes Soft-
ware Process Customizalion: reusing existing process
model fragments and adapting them to different con-
texts.

The paper is structured as follows: section 2 defines
a process model life cycle, and elaborates the meta-
process for process evolution and customization. Sec-
tion 3 presents the EPOS support for process model
evolution. Section 4 discusses some related work and
tries to compare EPOS features with those offered by
some existing systems. Conclusions are given in sec-
tion b, with indications of further work.

2 The Process Model Life cycle

Process models are themselves produced by an en-
gineering process. Such engineering (creating, chang-
ing etc.) consists of a set of phases, called PM meta-
activities [3], and constitute the meta-process. The
meta-process of producing process models clearly re-
sembles the software process of creating normal exe-
cutable software products.
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2.1 The PM meta-process

Fig. 1 shows six meta-activities, depicted by boxes,
and their respective inputs and outputs, depicted by
ovals. Bold arrows denote input/output relationships;
dashed arrows denote feedbacks from a meta-activity
to the ones above it.

The initial meta-activity (PM1) must provide a
PSE. A PSE offers an enactable PML with precise
syntax and semantics, libraries of reusable process
models, a PM methodology, and various process tools
for process model creation, composition, refinement/
customization, instantiation, enaction, and evolution.



The second meta-activity (PM2) is the Analysis
and Design phase of a generic, template process model
(schema). Such a generic schema is an abstract pro-
cess model, such as the waterfall or spiral model, for
use In many projects.

The third meta-activity (PM3) or customization
step reuses the generic schema to obtain a more spe-
cific schema to accommodate project- or application-
related information by adaptation and refinement.

The forth instantiation meta-activity (PM4) pro-
duces an instantiated software process model, with
concrete descriptions of activities, connected to input/
output products and with attached roles (actors) and
tools.

This model 1s gradually made enacting by the fifth
enactment meta-activity (PM5), which also executes
and monitors it.

Finally comes the sixth meta-activity, being con-
tinuous assessment of external process performance
(PM6). This goes in parallel with PM5 on enactment.

There i1s no assumption that the above meta-
activities must be executed in a strict water-fall fash-
ion for all components of the process model. Further,
not every PSE allows the distinction or formalization
of all these meta-activities.

2.2 Evolution

Process models must be created so that they can
be customized to different project contexts. This
means that process models contain a certain number
of parameters to facilitate reuse through customiza-
tion. However, customization before instantiation is
not always sufficient. In fact, during and after enac-
tion, the external software process 1s assessed for cor-
rectness and performance. This evaluation produces
feedbacks to the earlier meta-activities. This may re-
sult in changes either to the instantiated or template
process models (generic/specific), or even to the PSE.
These changes are driven by feedbacks produced at the
enaction level, and were not anticipated by the model
designer. They may thus be regarded as process model
maintenance, performed by the overall meta-process.

Solving the problem of process model evolution re-
quires an answer to the following questions: which
process model fragments should be changed, how and
when? And how to analyze and guide change?

Fig. 2 answers the question “Which model frag-
ments to change?”. It depicts the different categories
of process fragments. At the lowest level, there are the
instantiated /enacting model fragments. Lines denote
data flows between product fragments (circles) and
activity model fragments (rectangles). The next level

shows the generic or specific schema. This consists of
Sub-Schemas with relationships and constraints. At
the top level, there is the meta-model (including the
Meta-Schema), i.e. the encoded rules and procedures
for process model definition and manipulation.
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Figure 2: Process model fragments: candidates for
change.

Each model fragment in fig. 2 may prove to be in-
adequate and need to be changed.

Instantiated/Enacting process model
Starting from the bottom level of fig. 2, the prod-
uct model fragments must always be changeable,
since evolution of products is the main aim of the
external software production environment.

Additions or changes to activities are more diffi-
cult, as they may impact existing work. Changes
to tools or human work allocation must also be
considered.

Such changes will result in either feedback and
respective changes to the process schemas, or
in temporary changes (patches) to the instanti-
ated/enacting model.

Generic or specific schema Changes
to the generic or specific process schemas consist
in changes to descriptions of single items, or the



constraints on their interactions. As items at this
level describe items at the instantiated/enacting
process model level, a change to one of this
item may impact not only items at the same
level but also items at the lower level (Instan-
tiated /Enacting process model).

Meta-model schema The meta-model may be
found inadequate due to feedbacks from the lower
levels. These changes are very delicate as they im-
pact the way in which items are manipulated both
at the lower levels and at the meta-model level it-
self, e.g. how to change a procedure regulating

meta-model changes?

Traditionally, Configuration Management (CM)
needs PM to control activities related to change con-
trol, change propagation, consistency maintenance,
auditing, re-building etc.. On the other hand, the en-
tire process model constitutes a versioned and com-
posite object, thus i1t should itself be under CM con-
trol. However, there are some additional problems in
evolving enacting process models.

Fig. 3 gives a CM perspective of PM change. Here,
the terms revision and variant (branch) are given the
classical CM semantics [7]. A process model may
therefore be modified as sequential revisions, or as al-
ternative/parallel variants that evolve independently.
Revision and variant are commonly termed version.

On the horizontal dimension, PM.1.1 is created as a
revision of PM.1.0. On the vertical dimension, PM.2.0
and PM.3.0 are obtained by alternative refinements of
PM.1.0.

The technology to facilitate change of model frag-
ments varies between available PSEs, and also be-
tween different categories of fragments. The under-
lying PML is decisive here.

A reflective PML and PSE architecture will gener-
ally be advantageous to handle model changes. All
process-relevant information can then be explicitly
and uniformly manipulable (as in Lisp), and the meta-
model can be explicitly represented, reasoned upon,
enacted and evolved in a controlled way. Proper ac-
cess control is of course needed here, as for general
database operations.

We can define the following skeleton meta-process
for process model changes: 1) submit a request for
model change; 2) assess (validate, simulate etc.) the
request; 3) reject or accept a possibly adjusted change
request; 4) carry out the accepted change; b) propa-
gate it to a subset of the affected internal fragments
and possibly to their external process elements; 6) re-
establish internal and external consistency.
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Such a meta-process should encode aspects of a
change methodology to guide process model evolution.
The overall methodology can be rather independent of
the actual PML and its process tools.

Change propagation may be eager (changes are
propagated immediately), opportunistic (changes are
propagated at some later convenient time), lazy (each
fragment is checked for consistency upon later access).
To facilitate precise forward analysis and propagation,
and similar backward traceability, we need to explic-
itly represent external process elements and their de-
pendencies in an internal process model.

3 EPOS

EPOS? [8] is a process support environment that
offers a PML called SPELL (Software Process EvoLu-
tionary Language) [9], an initial process schema, and
a set of process tools.

In EPOS, the tnternal process model is a network of
activity descriptions (tasks), being linked to descrip-
tions of other tasks, products, tools, and roles. The
activities interact with each other and with tools and
humans.

The process model schema is represented as a set
of entity and relation classes that constitutes tem-
plate fragments. The meta-model part of the process
schema is represented as a set of meta-classes. The
instantiated and enacting process models consist of
instances representing external process elements. The
EPOS model fragments are meta-classes, classes, and
instances; both entity and relation.

The main process tools operating on the above
models are: a PM Manager, an Ezecution Manager
(Process Engine), an Al Planner, and EPOSDB, a
versioned object-oriented database.

3.1 The Layered EPOS Architecture

PSEs that rely on an object-oriented database, e.g.
PMDB [10] and ADELE [11], often have a PML as a
layer around the underlying database. EPOS extends
this by having three layers around the database. Thus,
the EPOS layers are:

A client-server EPOSDB with change oriented
versioning [12] [13] in a context of long, nested
and cooperating transactions. EPOSDB offers
a structurally object-oriented data model and
its DDL to define entity and (binary) relation
classes®. Entities (objects) have unique and im-
mutable identity (an OID). There is a system-
defined entity root class. Both entities and re-
lationships can have scalar attributes with inher-
itance. Entities can also have longfield attributes
to describe external files. This data model is close
to the object-relation model suggested by [15]. A
free-standing Prolog based DML is offered.

All entities, relationships, and their classes and
meta-classes (as class.descriptor instances)
are stored in the database and they are thus uni-
formly versionable.

SEPOS: Expert system for Program and (“Norwegian Og”)
System development.

4In the EPOS literature they are called types, but here we
adhere to the OMG [14] terminology.



A reflective and object-oriented PML
SPELL unifies and extends the underlying DDL/
DML, and offers class-level attributes and in-
stance/class-level procedures. Active procedures,
or triggers, may also be defined. Meta-classes are
used reflectively as in Smalltalk [16] to store class-
level information.

This EPOS layer supports meta-activities Anal-
ysis & Design (PM2) and Customization (PM3),
and later Evolution through the PM Manager.

A tasking framework for concurrent enaction of
process models. This 1s done by the Execu-
tion Manager that interprets special class-level
attributes defined in a predefined task_entity
class whose definition i1s shown in fig. 6. The
Execution Manager cooperates closely with the
Planner, that incrementally (re)instantiates task
networks, and with external tools.

That is, this EPOS layer supports meta-activities
PM5 (Enaction) and partially PM4 (Instantia-
tion).

Application-specific process models are domain-
specific and include both schemas, e.g task tem-
plates, and instances, e.g. production tools.

Instances often constitute a network of tasks and
products, connected to production tools and hu-
man resources. Relationshipsto describe subtask-
ing and dataflow between tasks and products are
commonly used.

Fig. 4 shows how the six meta-activities from fig. 1
are implemented by the EPOS process tools.

3.2 The SPELL Language

SPELL is a persistent object-oriented language
with a reflective architecture.

Classes and Model Structuring

Fig. 5 displays some system-defined and predefined
classes, showing the same layering as in Section 3.1.
SPELL supports several levels of abstraction and
composition to model the external process elements.
It supports definition of classes with both an instance-
level and a class-level part, enabling specific and gen-
eral information to be naturally represented. Class
level relations can be explicitly modeled and they
can be used to model subclassing, or some inter-
nal relations that encode the formals (dataflow)
and task decomposition. E.g., relation class
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formal_inputs is defined between task_descriptor
and data_descriptor, and it may be instantiated be-
tween task_entity and data_entity subclasses.

Inheritance and Protection

Single inheritance is provided for all properties (at-
tributes, procedures). A subclass may redefine class-
level attributes and instance/class-level procedures.
Three kinds of inheritance are available for class-level
properties and for procedures: redefine, append, and
concatenate. redefine means overwriting (the de-
fault), while append applies only to class-level at-
tributes and means logic conjunction (used on the
predicates in fig. 6). concatenate is inspired by the
Simula [17] inner mechanism. Tt means, that if the
code of a superclass is defined as step2, and the code
of a subclass 1s defined as (stepl,inner,step3), the
concatenated subclass code is (stepl,step2,step3).
Redefined procedures in a subclass may be inherited
by either redefine or concatenate. Attributes and
procedures can be declared private or public.

The SPELL Interpreter: Dynamic Binding

The access and binding of procedures, and attributes,
both instance- and class-level, are dynamic as in
Smalltalk. It is implemented by the SPELL Inter-
preter that consists of one Prolog predicate®:

call_proc(?Caller,+Called,+Procedure_Name,

+Input_Parameters,-Output_Parameters).

The predefined DML procedures read, write,
read relation, and write_relation, are used as
procedure parameters for accessing both instance- and
class-level attributes, e.g.:

call_proc (?7Caller, +Called, read,

+Attribute_Name, —-Attribute_Value).

Related entities may be accessed by:

call_proc (?Caller, -Called, read_relation,
+Relation_Name, -Relation_Item).

The task_entity class

A simplified definition of this basic task class is pre-
sented in fig. 6. Generally, a task has actual in-
put/output parameters to facilitate dataflow chain-
ing. The classes of these “product” parameters are

5In the specification of Prolog procedures, parameters pre-
fixed by 7 are optionals, by + are mandatory input parameters,
and by — are output parameters.

constrained by the formals class-attribute. Likewise,
a decomposition class-attribute describes the classes
of possible subtasks. Static and dynamic pre/post-
conditions and a code script are also defined. The
meaning of all these class-level attributes will be fur-
ther explained in the next subsections.

Task subclasses with empty decomposition model
low-level activations of atomic tools. Such classes
serve as tool envelopes. Task subclasses with non-
empty decomposition model high-level activities,
whose main work is delegated to their generated sub-
tasks.

class task_entity: entity

instance_level_attributes:
task_state:= created.

instance_level_procedures:
instance_delete(+Self0);
instance_convert(+Self0, +New_Class);
start(+Self0);
restart(+Self0);
stop(+Self0).

class_level_attributes:

pre_static true (inheritance=append);
pre_dynamic true (inheritance=append);
code inner (inheritance=concatenate);
post_static true (inheritance=append);
post_dynamic := true (inheritance=append);

formals data_entity —> data_entity ;
decomposition:= repertoire(task_entity);
executor nil;

role nil.

class_level_procedures:
instance_create(+SelfC, +Attribute_Values, —-Instance_
class_create(+SelfC, +Defined_Properties, -Class_Id);
class_delete(+SelfC);
class_change(+SelfC, +Defined_Properties).

Figure 6: The task_entity class.

3.3 The Process Tools

In the following, the Execution Manager, and the
Planner will be described. Then, the versioning model
of the EPOSDB will be introduced. Finally, the PM
Manager will be described.

3.3.1 The Execution Manager

Tasking is realized by the Execution Manager that uti-
lizes three class-level attributes:



e pre_dynamic, specifying the condition on when
to enact an instance of the given task class. The
condition is combined with local task information
about task state and goal-directed vs. opportunis-
tic execution.

e code, being a sequential program to perform the
intended job of the given task class. Thus, enac-
tion of a task means interpretation of its code.

For an atomic task class like compile, the code
contains all the relevant actions. For a composite
or high-level task class like develop, the middle
part of code 1s empty, causing the Planner to be
invoked to instantiate subtasks.

e post_dynamic, e.g. to treat errors.

The Execution Manager also maintains the instance-
level attribute task_state (line 4 in fig. 6), whose
value domain is: created during Planner instantia-
tion, waiting on its pre_dynamic condition, active
during code enaction, waiting children denoting an
expanded (planned) composite task waiting for its
children to terminate, forked denoting an atomic task
waiting for its associated operating system task to
stop, or terminated.

The attribute executor refers to the logical name of
the tool that should execute the task, while role refers
to the role or responsibility description of a generic
human actor, e.g. a software developer.

3.3.2 The Planner

The AT Planner [18] is technically a procedure in meta-
activity PM4. It is implicitly and incrementally in-
voked by the Execution Manager to detail a compos-
ite task at the time. That is, the Planner will au-
tomatically generate a new subtask network for each
composite task. The EPOS Planner uses a domain-
independent, non-linear Al planning algorithm, as in
TWEAK [19] and TPEM [20]. Dynamic and incre-
mental instantiation is achieved by this collaboration
between Planner and Execution Manager.

The Planner starts with a composite task and its
desired output which is the goal. It applies backward
chaining and hierarchical decomposition, combined
with domain-specific knowledge, to build a proper sub-
task network (a plan in Al terms). The planning is
based on the process schema as a knowledge base, and
a representation/model of the product structure as a
world state description.

The Planner consists of two layers: the core layer is
a domain independent planner, while the outer layer
is domain-specific to PM. The Planner transforms

the class-level attributes pre/post_static, formals,
and decomposition of task class into AI pre/post-
conditions of nodes, so the core layer can work. This
transformation also considers the product structure.
The Planner utilizes four class-level attributes:

e pre_static and post_static express necessary
conditions that must hold, respectively, before
and after enaction of a task.

e formals specifies the legal “product” classes of
actual parameter instances (Inputs/Outputs) of
the given task class.

e decomposition specifies a pool of candidate task
classes for subtasks of the given composite task.

These class-level attributes together specify legality
constraints on the structure of the task network.

Clearly, changes to these schema attributes and to
the product structure imply replanning. An incremen-
tal algorithm for replanning is presented in [21].

3.3.3 EPOSDB: The Change Oriented Ver-
sioning Model

In the following, we first describe transactions and
then versioning.

Transactions

EPOSDB offers long and nested transactions with
checked-out workspaces. Transactions may survive
several application sessions, and are represented by
special transaction objects in the database, connected
to project tasks. The transactions may be started,
committed or aborted interactively. All database op-
erations must be performed in a given transaction con-
text.

Each transaction selects the current version, i.e. the
visible sub-database. It also specifies the “scope” of
the local changes. Local changes are made visible to
the parent transaction (and its children) upon commit,
and possible conflicts must be resolved.

Change Oriented Versioning

EPOSDB implements Change Oriented Versioning or
COV. COV considers a set of physical changes to a
set of (related) fragments as one logical (or functional)
change. These changes may result from a sequence of
update jobs, using the above transaction mechanism.
COV is largely independent of the data model and en-
ables uniform versioning of entities and relationships,



including Schema-level information. Thus, COV con-
trols the version space at any granularity of data.

COV can be used together with normal check-
out/in towards workspaces in a long transaction con-
text. Checked-out configurations are bound in the
product space, according to the given product model
(entities and relationships).

A logical change is described by a boolean and
global option. Logical changes can be freely combined,
possibly constrained by stored version-rules (predi-
cates).

COV generalizes conditional compilation on the
entire database. In traditional versioning models,
changes (deltas) are computed as the differences be-
tween versions, being atomic data objects. In COV,
a version is not an explicit object, but can be evalu-
ated as a combination of the selected changes (deltas).
It applies to any granularity: atomic objects, subsys-
tems, configurations, entire databases.

Traditional versioning models use a version tree/
graph for each versioned object, thus creating a ver-
sion group of “similar” objects. However, making ver-
sion selections that combine (merge) changes done at
different “parts” (branches) in the version tree is not
automatic. In COV, the changes have no “history”,
and can in principle be freely combined. The ver-
sion tree is flat, and version history is (at a low level)
recorded by version-rules that regulate valid version
combinations (see below).

In a version selection in COV, we must first specify
an option binding of true/false values for the relevant
options. This binding is called a version-choice, and
will select the visible version of the entire database.
Then a selection in the product space can be done.
This 1s the inverse binding sequence of that in most
other CM systems, although ADELE has an inter-
mixed product/version binding sequence.

In a transaction, we must therefore give a version-
choice (a filter) for reading the database. We must
also give a possibly partial option binding, called an
ambition, for writing back to the database. The ambi-
tion specifies the scope of changes done in a transac-
tion. Many more “versions” may thus be affected by
the local changes, than the one given by the version-
choice. Hence, changes is automatically propagated
(merged) into many sub-databases. The ambition will
also “lock” a part of the version space for concurrent
updates.

If ongoing transactions have overlapping ambitions
and sub-products, we should encourage such sibling
transactions to cooperate, to avoid merges afterwards
or even loss of information by over-write or rollback.

In spite of many similarities between COV and tra-
ditional versioning, the main difference lies in: inten-
tional and flexible version selection based on logical
changes, explicit representation of the version space
(e.g. for locking), and versioning being orthogonal to
the stored data and its granularity.

3.3.4 EPOS Project Context

The overall infrastructure of the EPOS process sup-
port tasks are as follows: a long EPOSDB transaction
is associated to a project task.

At start up, a transaction, that defines a database
version of the entire process model, and a local Project
governing this are started. This may require negoti-
ation and delegation from a parent project, e.g. ac-
cording to an incoming change-request. Under the
local Project task, the Planner will generate the in-
frastructure of subtasks.

The PM Manager is used to refine and adapt the
process schema that has been inherited from the par-
ent project into a more specific one. This meta-
activity results in appropriate class descriptions of lo-
cal activities, products, production tools, and roles.
Facilities for impact analysis of changes may be mod-
eled by procedures in special task classes. Such schema
evolution can also be done incrementally later.

Cooperation protocols, i.e. negotiation and prop-
agation rules and patterns against possible overlap-
ping neighbor projects/transactions may also be es-
tablished. Thereafter relevant workspace files are
checked out from the database.

Then, subtasks can be gradually (re)planned and
(re)enacted — respectively in meta-activities PM4 and
PM5. This process depends on the actual production
activities, e.g. product structure changes, and meta-
activities (class changes).

Finally, the local Project task will check-in the
modified workspace files to the database, and close
itself after committing the database transaction. The
Project Manager of the parent project is notified about
all this.

3.4 Methodologies of Change in EPOS

A process model always stands in a local project
context. Thus, the meta-process of changing frag-
ments of such model also occurs in such a context. If
some changes are found to be useful elsewhere, these
may be propagated to other projects.

We define a process model to be inconsistent, if
the meta-classes, the classes, and their instances may
lead to an unpredictable behavior of the PM tools.



E.g. if a task class has no pre_dynamic condition, the
Execution Manager will never be able to enact the
corresponding tasks.

Changing Instantiated /Enacting Models

Instantiated /Enacting models consist of objects rep-
resenting products, activities, tools, and human roles.
EPOS relies on the CM facilities offered by EPOSDB

to update product configurations. Tasks may also be

manipulated, i1.e. they may be created, started, sus-
pended, restarted, and killed. Tool descriptions may
as well be changed, e.g. new switches may be added
or the executable files may be substituted.

Hard and soft schema changes are distinguished. change_request on class C
The hard changes imply changes in the structure of
either the instance-level attributes or the subclasses.
The soft schema changes are the process-specific ones,

as they modify the behavioral part of a class. Hard impacts analysis
changes are prohibited by EPOSDB. Thus, we may on C extent

have to create a new subclass of the actual class, and SOV

explicitly convert a subset of the instances to the new none
subclass definition. user decides

Changes to one instance may affect 1nstapces re- start dialogf/ ordate subclass SC do change on C
lated to it, and may therefore leave the system in an in-
consistent state. E.g. if the relation instance connect-
ing a task to its parent task is deleted, the child task
execution may lead to unpredictable results. How- automatic subclasses
ever, such updates are not prohibited, but it is the and instances conversion
responsibility of the (privileged) user performing the

changes, to reinstate system consistency. The distinc- Is C aleaf class?

tion among different kinds of users and relative access
. . .. . No
right mechanisms is still under design.
duplicate the Yes

Changing Process Schemas Iunr?deer:,tasrge tree
A schema change request and an actual schema class
change are dlStngUIShed.. Fig. 7 depicts the meta- selectevely
process of evaluating the impact of a schema change convert instances
request and optionally performing the change on a

class definition. The feasibility of a requested class
change has to be evaluated against its possible impact
on the whole process model.

A class change may affect the extent of the class,
i.e. the instances of the modified class, but also the
related classes of the modified class and their extents.
The related classes® of a class are: its subclasses and

Figure 7: The meta-process of Process Schema change.

the entity classes related by class level relations, e.g.
formals.

Thus, when a schema change request is issued, the
PM Manager checks, for each of the possibly affected

6 The related classes are connected to the given class by class-
level relationships.
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related classes and instances, the possible effects of the
requested change.

If a requested change does not have any impact, the
PM Manager is free to perform the requested change.
All the existing instances and subclasses are automat-
ically converted to the new definition.

If the requested change has some impact, i.e. some
actions will be needed to reinstate consistency, the
possible consequences are then displayed to the user,
and a dialog is started. The user may decide to cre-
ate a new subclass by refining the class so that only
a subset of the extent of the old class will be affected.
Then, some existing instances may be converted to
the new subclass definition, thereby possibly adding
and initializing new attributes. If the modified class
is not a leaf node in the inheritance tree, i.e. if 1t al-
ready has subclasses, the whole inheritance tree has
to be duplicated under the new created class. This
is of course a disadvantage of refining by subclassing
versus modifying. On the other hand, the advantage
is that the old class is retained and the conversion of
the existing instances to the new definition may occur
in a selective and controlled way.

If the user wants to modify the class despite the
suggested impact, again he interacts with the system
to selectively perform some of the suggested actions.

The interactive dialog with the user is performed
through a dialog window composed by two bottoms
and one menu as displayed in fig. 11.

The only changes that are not allowed are those
that violate the following class invariants:

e A class name must be unique over all projects.

e A class must have one super class (single inheri-
tance).

e The class and all super classes of an instance must
be visible in the actual project.

e Likewise for the version visibility of the related
entities of a relationship.

e Likewise, the related classes mentioned in the
decomposition and formals must exist.

For task classes we can further distinguish between the
following soft class changes:

e Changed code: this assumes that no task instance
is currently enacting it, i.e. the affected tasks are
all passive. This affects the Execution Manager.

e Changed pre_dynamic or post_dynamic: this can
technically be done as soon as no task instance is
not evaluating these. This also affects the Execu-
tion Manager.
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e Changed formals, decomposition, pre_static,
or post_static: this forces the Planner to reex-
amine the affected tasks in the task network to
check the constraints, and possibly rebuild parts
of the network (if feasible).

e Changed procedure: this also assumes that no
task is executing this.

Changing the Meta-Schema

The knowledge of how to create a subclass of a given
class, to change the class, to create instances of it, and
to convert instances to a new behavior 1s defined in its
meta-class defined in the Meta-Schema. It happens
that the first time we create a class, we do not want to
bother with how to reuse and maintain it. That is, we
do not redefine the class_create, class_change, and
instance_convert, but let them be inherited from the
superclass. Only when a class has been used and found
useful, class-level procedures telling how to change and
reuse the class may be added.

The PM Manager implementation

The PM Manager is in charge of defining, refining, and
modifying classes. The main procedures implementing
the PM manager are class_create, class_change,
instance_convert, and restart.

Procedure class_create

Procedure class_create, defined in the root entity
class and possibly redefined for its subclasses, im-
plements meta-activity PM2-PM3 concerning the
Schema. This corresponds to definition and compila-
tion. The PM Manager invokes the class_create of
the given superclass with the following subclass data
as parameters:

e name of new subclass;
e definition of new instance-level attributes;

e definition of new instance-level procedures or re-
definition of existing ones;

e redefinition of values of pre-defined class-level at-
tributes;

e definition of new class-level procedures or redefi-
nition of existing ones.

The definition of a new subclass cannot, of course,
affect the definitions of existing classes.



Procedure class_change

Procedure class_change attempts to update proce-
dures or class-level attributes of a class, and has the
same parameters as class_create. All the instances
of the old class are implicitly converted to be instances
of the modified class.

Procedure class_change can change a PM_entity
subclass, and tries to preserve the consistency of the
system state.

A class change may affect: the related classes of the
modified class; and the instances of the modified class,
including the instances of related classes.

Procedure class_change operates a single change
on a PM_entity subclass. Since the Planner and
the Execution Manager relies on class-level attributes
to manage process model instantiation and enaction,
such changes may lead to inconsistent situations.

The procedure class_change is in charge of evalu-
ating the impact of the proposed change and to find
those actions that are necessary to put the system in
a consistent state again.

However, as the proposed actions may have a deep
impact, a dialog is started with the user who may
choose not to carry out all the proposed actions, or
even to cancel the change request.

Fig. 8 shows the template model fragment of the
procedure class_change that implements the modi-
fication of dynamic pre-conditions. Lines 2-3 specify
that for each instance of class Sel£C”, the state is read.
If the task_state is waiting or created, the given
instance is not affected. Otherwise, it means that the
pre-condition was evaluated to true before, and the
pre-condition should be re-evaluated (line 8). If this
evaluation leads to true, it means that the task is not
affected; if not, the task has to be restarted.

Procedure restart

Procedures restart and stop are heavily used by
the PM Manager for stopping, converting, and restart-
ing instances of evolving classes.

The instance-level procedure restart suspends the
work done by a task instance and put its state to
initiated. This procedure must rollback the actions
that have been done by the task itself and its subac-
tivities, and by the tasks that operate on the data that
it has produced.

Performing a possible rollback of the actions means
to reset the output data to the state they had before
the task was started, to kill possible forked operating

73e1f0 and SelfC are used to denote the instance or class a
procedure is invoked on.
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class_change(Sender,SelfC,pre_dynamic-X):—
call_proc(SelfC,SelfC,read_relation,instance_of,I)
call_proc(SelfC,I,read,task_state,S),
(member (S, [waiting,created])->
call_proc(SelfC,Sender,notify,
["task",I,"in state",S,"not affecte
member (S, [active,waiting_children,forked, terminat
(eval(X)->
call_proc(SelfC,Sender,notify,
["task",I,"in state",S,"not affect
call_proc(SelfC,I,restart,[],_),
call_proc(SelfC,Sender,notify,
["task",I,"in state",S,"restarted"]))
fail;
call_proc(SelfC,SelfC,write,pre_dynamic,X),
call_proc(SelfC,Sender,notify, ["work done"]).

Figure 8: The class change procedure for dynamic pre-

condition.

1 restart(Sender,Self0):-

2 call_proc(Self0,Self0,read,task_state,S),

3 (member (S, [created,waiting])->

4 true;

5 S=active—>

8 (call_proc(Self0,Self0,read_relation,act
7 call_proc(Self0,0ut,reset,[1,_),

8 fail;

9 true);

10 S=waiting_children->

11 (call_proc(Self0,Self0,read_relation,sut
12 call_proc(Self0,T,restart,[]1,_),

13 fail;

14 call_proc(Self0,Self0,read_relation,act
15 call_proc(Self0,0ut,reset,[1,_),

16 fail;

17 true),

18 S=forked->

19 (call_proc(Self0,Self0,read,os_pid, Pid)
20 kill_os(Pid),
21 call_proc(Self0,Self0,read_relation,act
22 call_proc(Self0,0ut,reset,[1,_),
23 fail;
24 true),
25 S=terminated—>
26 (call_proc(Self0,Self0,read_relation,act
27 call_proc(Self0,0ut,reset,[1,_),
28 fail;
29 true)),
30 call_proc(Self0,Self0,write,task_state,waiting).

Figure 9: Procedure restart.



system jobs, and to eliminate all the side-effects as-
sociated to code enaction. Otherwise, the conditions
on which the Planner is based to perform automatic
instantiation would not hold.

However, it is not possible to determine automat-
ically the effects of code enaction. Thus we assume
that an instance-level procedure fail specifies actions
to “undo” the results from the code part.

The implementation of procedure restart is given
in fig. 9. Procedure restart reinitiates the task state
and possibly backtracks the actions performed by the
task. Procedure restart first inspects the state of
SelfO (line 2). If this state is created or initiated
no action is taken; otherwise the procedure fail is
invoked.

The procedure fail may be alternatively imple-
mented by an interaction with the user. For instance,
it 1s not wise to cancel all the effects performed by
very long transaction tasks.

3.5 An example: the ISPWT7 Reference

Problem

We here give the EPOS solution to the reference
problem of software process model change, as pro-
posed for by 7Tth International Software Process Work-
shop (ISPWT) [22].

Let us suppose we have a process schema that in-
cludes a coding task class, stating that it is possible to
begin coding before the design is approved. Suppose
that it is later decided to tighten the schema require-
ments detailing when coding can begin, so that the
design must be approved before coding begins. Fur-
thermore, assume that this schema change affects only
one currently instantiated or enacting process model
fragment (task object).

This example does not explore all the possibilities
discussed before, because there is only one instance is
affected, there is only one project, class coding does
not have any subclasses. In EPOS, this means that
the dynamic pre-condition of the coding class must
be modified. The requested change does not violate
any consistency constraints, thus the class coding may
be changed by modification. However, we show how
the problem can be solved in EPOS by using either
class_change (overwrite) or class_create (subclass-
ing). In fig. 10, we depict a scenario where two parallel
subprojects, PMB and PMC, co-exist under a superpro-
ject PMA. The class coding has originally been defined
in the context of the project PMA. The set of classes
created in project PMA, is available to both subprojects
PMB and PMC. In subproject PMB the Process Schema
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change is performed by subclassing (class_create),
while in subproject PMC by overwrite (class_change).

PMA

Classes

l

task_entity |

[ data_entity ]

7

E

"""" Instances
des_doc
coding
refinement )
_variant_—
PMB PMC

Ciasses

sy | [ data eniy ] —
= 1 coding E
O Instances O
des—dm des_doc
coding coding

new subcl ass

changed cl as:

Figure 10: A scenario based on subclassing and ver-
sioning.

In subproject PMB, the knowledge (process model,
database) of its superproject PMA is customized by cre-
ating a subclass sub_coding, but still retaining the
classes as defined in the superproject. In subproject
PMC the class definition is changed.

Lastly, when subclass sub_coding is created from
class coding in subproject PMB, the existing instance is
implicitly converted to an instance of the new subclass.
On the other hand, when class coding is updated in
subproject PMC, the existing instance i1s automatically
converted to an instance of the modified class. In both
cases, the task may have to be restarted.

Fig. 11 shows the change dialog window that is
displayed, in case the dynamic pre-condition of class
coding is requested to be changed, and there is one
coding instance with two existing subtasks, one of
class edit and one of class compile. As displayed
in fig. 11, the suggested actions are: (1) updating of
the static pre-conditions of class coding, (2) restart of
the edit, compile, and testing instance, (3) reset of
both the edit and compile output. The user may or
may not choose the suggested actions. Concerning re-



setting of products, we have chosen not to delete their
file attributes, if these are not produced by automatic
tools, only to reset the state of the objects. This is
because the work done has not to be automatically
destroyed, but the responsible user has to be notified
that some inconsistencies may have been introduced.

4 Comparisons and Related Work

Many PSEs have been prototyped and documented
over the last 5 years and some experiments in realistic
external production environments, have been reported
(Process Weaver [23], IPSE 2.5 [24]). In addition,
some large examples have been run by the develop-
ment teams, and several PSEs can assist in maintain-

N | ves (ADELE [11], MARVEL [25]).

Lo dhe following, the main characteristics of the
— EPOPB|system are compared against those offered by
some¢ ¢ther systems. During this comparison process
| done | Fancel | we taHe as parameters both the general process evo-
| 126 wnteeat e lutiof ssues and the specific EPOS solutions. Among
- the deperal issues; 1) reflection and meta-process, 2)
- | L) zsrestang chanpd assessment simulation and validation, 3) when
\é 127: restart) procgsp evolution may happen, 4) items of change, are
\é 125: restart() taker} fnto consideration. Among the specific EPOS
V] srese choigeg, 1) Object Orientation, 2) Database support
- < 138 rese and yepsioning, 3) Automatic and incremental instan-

——= Inputioutput tiation| by planning, are considered.
121 Reflection and meta-process The EPOS meta-
develop process is explicitly represented by meta-classes.
This is strongly influenced by the meta-class
1 :5 mechanism in Smalltalk [16]. CLOS [26] also of-
1?2 — ] 1?4 1_25 fers reflective features and pre-defines procedures
desion coding esing to change class definitions, and to convert the af-
123 fected instances. Similarly, SELF [27] provides

— 126 127 rules to control evolution.

- e Further, IPSE 2.5 offers reflection, while MAR-

Figure 11: The EPOS task network and change dialog
window.
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VEL has a fixed meta-process expressed in an-
other (non-reflective) language. SPADE [28] of-
fers only task-level reflection. Laws to control
evolution of both product and of the rules them-

selves may be defined DARWIN [29].

The use of reflection to manage process model
evolution is not new, but EPOS exploits an inte-
grated, object-oriented architecture for managing
class changes.

Change assessment, simulation, and validation
In most PSEs, relationships can be used to con-
trol and propagate the impacts of change. At the
moment, EPOS does not provide facilities for sim-
ulation of changes, and weak mechanisms for for-
mal verification of changes. MARVEL [25], Mer-
lin [30] and IPSE 2.5 [24] can offer some formal
verification support, and MELMAC [31] can per-
form simulations.

When process evolution may happen



Process model changes fall into two main cate-
gories: refinement/customization before enaction,
as in Process Weaver, and MELMAC [31]; or cor-
rection after enaction, as in MARVEL, TPSE 2.5,
SPADE, and EPOS. To implement correction af-
ter enaction either late/dynamic binding or re-
build mechanisms are needed. Generally the sec-
ond category includes the first.

Items of Change HFSP [32] enables to define meta-

rules for changing the enaction state. This can
be done also in EPOS. ARCADIA [33] can add
triggers and turn on/ofl predicates at runtime
whereas EPOS does not offer the possibility of
imposing global constraints, such as predicates.

Adding new (production) tools is easy in most
systems and it corresponds to the tool installation
and subsequent addition of a tool envelope. A
tool envelope corresponds to a task class in EPOS.
To change a tool interface or to remove it, is much
harder and may lead to loss of functionality.

Among PSEs that have an explicit representa-
tion of team structure, Merlin [30] allows this to
change. Other PSEs integrate with an external
project management tool to perform such actions,
as for Process Weaver. EPOS can offer only some
initial functionalities and it is not integrated with
a project management tool.

Process model schema fragments are items of
change in EPOS, as in SPADE, IPSE 2.5, and
PRISM whereas HFSP [32] enables to change en-
acting models, but not schemas.

PRISM [6] offers a Dependency Structure for de-
scribing change items and a Change Structure for
describing change related data. The structure of
EPOS instances, classes, and meta-classes con-
nected by relations resembles the PRISM Depen-
dency Structure whereas EPOS does not manage
change related data, 1.e. maintenance reports or
history of changes. As PRISM, EPOS provides
a way for incrementally defining or refining class
level procedures to implement changes.

Object-Orientation Among the PSEs exploiting

object-orientation, the closest to EPOS is IPSE
2.5 using PS-Algol, and partly MARVEL.
ADELE has a hybrid object-oriented model, with
run-time binding (delegation [34]) towards prod-
uct and/or project contexts for customization.
EPOS has derived dynamic binding and class-
properties from Smalltalk [16] to gain flexibility.
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Planning The

Database Support and versioning Many of the

PSEs have their own and partially propri-
etary Object Management Systems (OMSes), e.g.
MARVEL, ARCADIA (CHIRON). Others use ex-
isting OMSes, e.g. PS-Algol used in IPSE 2.5
PCTE in ALF [35], O2 in SPADE, and LDL in
OTKOS [36].

ADELE and EPOS are the only systems that rely
on a fully versioned OMS, thus integrating CM
and PM. Both exploit triggers and nested trans-
actions. However, ADELE does not apply the
same versioning on the schema as on product de-
scriptions: the Adele schema 1s bound to substi-
tutable project contexts, and classes are not first
order objects.

EPOS Planner uses
domain-independent, non-linear planning to in-
crementally (re)construct task networks. As men-
tioned, this is inspired by TWEAK [19], and also
by TPEM [20]. Other PSEs using goal-oriented Al
techniques are GRAPPLE [37], and for a similar
purpose as EPOS. SPADE uses reflection to incre-
mentally construct its task network (a PetriNet).
However, neither of them have facilities for incre-
mentally rebuilding (“replanning”) the network
after product or class changes.



5 Conclusions

An EPOS template process model consists of a pro-
cess schema of classes and meta-classes and its in-
stances, describing the external process entities and
their relationships. An instantiated and enacting pro-
cess model is represented by task instances, linked to
product, tool, and role instances.

The originality of the EPOS approach to process
model evolution lies in three parts: 1) a uniformly ver-
sioned database to store the entire process model and
offering nested cooperative transactions under PM
control; 2) a reflective and fully object-oriented data
model accessible through SPELL to flexibly define and
evolve a Process Schema and its instances; 3) a Plan-
ner to incrementally and dynamically (re)generate
task networks.

The EPOSDB i1s based on C-ISAM, with client-
server protocols using Sun RPC. The server is imple-
mented by 22,000 C lines and the client by 6,000 C
lines. EPOSDB offers a Prolog based interface. The
PM tools including the Planner are implemented by
7000 SWI-Prolog lines. The User Interface uses the
PCE Prolog-based graphical package.

EPOS has been demonstrated on a set of exam-
ples, covering software systems with some dozens of
modules, including parts of the ISPW7 example. We
are now starting to apply EPOS on itself, and on pro-
totyping external applications in several domains to-
gether with three Norwegian software companies. Fa-
cilities for process model evolution is judged crucial
for these test examples.

The EPOS system has not yet been demonstrated
to be “open-ended” versus other platforms and appli-
cation domains, i.e. 1t lacks distribution and federa-
tion aspects. Also, COV is promising, but unproven
technology. However, EPOS PM should be portable
on top of other object-oriented DBMSes with a differ-
ent versioning model.

Of the specific drawbacks of the EPOS process
model evolution support, we can mention: poor sup-
port for assessment, simulation and validation of
changes. In addition, the exploitation of CM tech-
niques for process evolution should be improved.

Our future work will try to rectify the above draw-
backs with particular emphasis on change assessment,
simulation, and validation. Further, a more high-level
PML supported by a small CASE tool for PM 1s under
design as an extension of the PM Manager. Finally,
the relation between processes and meta-processes has
to be better elaborated, both on the conceptual and
on the technical level.
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