
Constraint Query LanguagesParis C. Kanellakis1Gabriel M. Kuper2Peter Revesz3Technical Report No. CS-92-50October 1992
1Brown University Box 1910, Providence, RI 029122IBM T.J. Watson Research Center Yorktown Heights, NY3Brown University Box 1910, Providence, RI 02912

CONSTRAINT QUERY LANGUAGES�Paris C. Kanellakisy Gabriel M. Kuperz Peter Z. ReveszxJuly 1992AbstractWe investigate the relationship between programming with constraints and database querylanguages. We show that e�cient, declarative database programming can be combined withe�cient constraint solving. The key intuition is that the generalization of a ground fact,or tuple, is a conjunction of constraints over a small number of variables. We describe thebasic Constraint Query Language design principles and illustrate them with four classes ofconstraints: real polynomial inequalities, dense linear order inequalities, equalities over anin�nite domain, and boolean equalities. For the analysis, we use quanti�er eliminationtechniques from logic and the concept of data complexity from database theory. Thisframework is applicable to managing spatial data and can be combined with existing multi-dimensional searching algorithms and data structures.Keywords: database queries, spatial databases, data complexity, quanti�er elimination,constraint logic programming, relational calculus, Datalog.1 Introduction1.1 Motivation and FrameworkQ: What's in a tuple?A: Constraints.Constraint programming paradigms are inherently \declarative", since they describe compu-tations by specifying how these computations are constrained [7, 34, 50]. A major recentdevelopment in logic programming systems is the integration of logic and constraint paradigms,�A preliminary version of the results in this paper appeared in [28]. This is also a revision, with additionalmaterial, of Brown University technical report CS-90-31.yBrown University, Providence, RI. Research was supported by IBM, by an Alfred P. Sloan Fellowship, andby ONR grants N00014-83-K-0146 ARPA Order No. 4786 and N00014-91-J-4052 ARPA Order No. 8225.zIBM T.J. Watson Research Center, Yorktown Heights, NY.xBrown University, Providence, RI. Research was supported by NSF grant IRI-8617344 and by NSF-INRIAgrant INT-8817874. 1

e.g., in CLP [25], in Prolog III [15], and in CHIP [17], for a recent survey see [14]. One intu-itive reason for this successful integration is as follows. A strength of Prolog is its top-down,depth-�rst search strategy. The operation of �rst-order term uni�cation, at the forefront of thissearch, is a special form of e�cient constraint solving. Additional constraint solving increasesthe depth of the search and, thus, the e�ectiveness of the approach.The declarative style of database query languages is an important aspect of database sys-tems. Indeed, having such a language for ad-hoc database querying is a requirement today.It is rather surprising that constraint programming has not really in
uenced database querylanguage design. There has been some previous research on the power of constraints for theimplicit speci�cation of temporal data [12], for extending relational algebra [21], and for magicset evaluation [42], but no overall design principles. The bottom-up and set-at-a-time style ofevaluation emphasized in databases, and more recently in knowledge bases, seems to contradictthe top-down, depth-�rst intuition behind Constraint Logic Programming.The main contribution of this paper is to show that it is possible to bridge the gap between:bottom-up, e�cient, declarative database programming and e�cient constraint solving. A keyintuition comes from Constraint Logic Programming: a conjunction of constraints is the correctgeneralization of the ground fact. The technical tools for this integration are: data complexity[9, 57] from database theory, and quanti�er elimination methods from mathematical logic.Let us provide some motivation for the integration of database and constraint solving meth-ods. Manipulation of spatial data is an important application area (e.g., spatial or geographicdatabases) that requires both relational query language techniques and arithmetic calculations.Indexes for range searching and modeling of complex structures have been used to bridge thegap between declarative accessing of large volumes of spatial data and performing commoncomputational geometry tasks. However, even with these extensions arithmetic calculationshave not been given �rst-class citizen status in the various query languages used, and the inte-gration of language and application has been \loose". For an example of \tight" integration ofapplication, language paradigm, and implementation, let us review the relational data model.In the relational data model, [13], an important application area (data processing) is de-scribed in a declarative style (relational calculus) so that it can be automatically and e�cientlytranslated into procedural style (relational algebra). Program evaluation is bottom-up and set-at-a-time as opposed to top-down and tuple-at-a-time, because the applications involve massiveamounts of structured data. This evaluation may be optimized, e.g., via algebraic transforma-tions, selection propagation etc. It may be performed in-core in PTIME, because of the lowcomplexity of the calculations expressed. Most importantly, it may be implemented e�cientlywith large amounts of data in secondary storage via indexing and hashing.Our claim in this paper is that by generalizing relational formalisms to constraint for-malisms it is, in principle, possible to generalize all the key features of the relational datamodel. (1) The language framework that we propose preserves the declarative style and thee�ciency of relational database languages. (2) The possible applications of constraint databasesinclude both data processing and numerical processing of spatial data. (3) The implementationtechnology of spatial access methods (see [46, 47]) naturally matches the new formalism.2

- �(db, constraints) -... ...query program database outputdatabase input
tuple = V constraints 1. closed form2. evaluated bottom-up3. low data complexityFigure 1: The CQL database frameworkWe will now explain our new framework and give arguments in support of the above (1-3).(1) What could be sound criteria for achieving language integration of data processing andother computations, such as arithmetic calculations? Here are some examples:(a) Preserving the declarative language style is desirable.(b) Additional expressive power is desirable, but must come without a serious loss of e�ciency.(c) Bottom-up processing is desirable, since it is a good candidate for many optimizations.These criteria are satis�ed by the Constraint Query Language (CQL) design principlesoutlined below (and illustrated in Figure 1). The formal de�nitions are in Section 1.2.� A generalized k-tuple is a quanti�er-free conjunction of constraints on k variables, whichrange over a domain D. In the relational database model R(3; 4) is a tuple of arity 2. Itcan be thought of as a single point in 2-dimensional space and also as R(x; y) with x = 3and y = 4, where x; y range over some �nite domain. In our framework, R(x; y) with(x = y ^ x < 2) is a generalized tuple of arity 2 and so is R(x; y) with x+ y = 2:5, wherex; y range over the rational or the real numbers. Hence, a generalized tuple of arity k isa �nite representation of a possibly in�nite set of tuples of arity k.� A generalized relation of arity k is a �nite set of generalized k-tuples, with each k-tupleover the same variables. It is a disjunction of conjunctions (i.e., in disjunctive normalform DNF) of constraints, which uses at most k variables ranging over domain D.A generalized database is a �nite set of generalized relations. Each generalizedrelation of arity k is a quanti�er-free DNF formula of the logical theory of con-3

straints used. It contains at most k distinct variables and describes a possiblyin�nite set of arity k tuples (or points in k-dimensional space Dk).� The syntax of a CQL is the union of an existing database query language and a decidablelogical theory. For example: Relational calculus [13] + the theory of real closed �elds[51] (Section 2); In
ationary Datalog: [1, 20, 31] + the theory of dense linear order withconstants (Section 3); In
ationary Datalog: + the theory of equality on an in�nite domainwith constants (Section 4); and Datalog + boolean equations (Section 5). In each of thesecases, we combine in the obvious way the syntax of the database language and the logicaltheory.� The semantics of a CQL is based on that of the decidable logical theory, by interpretingdatabase atoms as shorthands for formulas of the theory. Let � = �(x1; . . . ; xm) be a queryprogram using free variables x1; . . . ; xm. Let predicate symbols R1, . . . , Rn in � name theinput generalized relations and let r1; . . . ; rn be corresponding input generalized relations.We interpret the program in the context of such an input. Let �[r1=R1; . . . ; rn=Rn] be theformula of the theory that is obtained by replacing in � each database atom Ri(z1; . . . ; zk)by the DNF formula for input generalized relation ri, with its variables appropriatelyrenamed to z1, . . . , zk. (Note that, without loss of generality, an occurrence of a databaseatom in � is of the form Ri(z1; . . . ; zk) 1 � i � n, where Ri is a predicate symbol of arityk and z1, . . . , zk are distinct variables; this is because in our framework we can alwaysuse equality constraints among variables in �.) Let D be the constraint domain:Query program � = �(x1; . . . ; xm) applied to input database r1; . . . ; rn is aformula of the logical theory of constraints used, i.e., �[r1=R1; . . . ; rn=Rn]. Theoutput is the possibly in�nite set of points in m-dimensional space Dm, suchthat instantiating the free variables x1; . . . ; xm of this formula to any one ofthese points makes the formula true.� For each input, the queries must be evaluable in closed form and bottom-up. By closedform we mean that the output of any query program applied to any input generalizedrelations must be a generalized relation. The analogue for the relational model is thatrelations are �nite structures, and queries are supposed to preserve this �niteness. Thisis a requirement that creates various \safety" problems in relational databases [13, 52].The precise analogue in relational databases is the notion of weak safety of [3]. In ourframework, it is �niteness of representation of constraints that must be preserved. Eval-uation of a query corresponds to an instance of a decision problem. Interestingly, manyquanti�er elimination procedures realize the goal of closed form. Also, they use inductionon the structure of formulas, which leads to bottom-up evaluation.� For each input, the queries must be evaluable e�ciently in the input size, i.e., with lowdata complexity. Database atomic formulas indicate, in the declarative query languageitself, the parts that can grow asymptotically versus the parts that are constant-size. By�xing the program size and letting the database grow, we can prove that the evaluationcan be performed in PTIME or in NC or in LOGSPACE, depending on the constraintsthat we consider (for the various complexity classes see [19]).4

(2) Let us motivate these design principles by a very common task from computational geometryand spatial databases; the problem of computing all rectangle intersections [41, 47]. Note thatthe theory of constraints used in this simple, but very common, example is the theory of denselinear order with constants (see Section 3).
s(a1;b1) s(c1;b1)s(a1;d1) s(c1;d1)s(a2;b2)s(a2;d2) s(c2;b2)s(c2;d2)
Figure 2: Rectangle intersectionExample 1.1 The database consists of a set of rectangles in the plane, and we want to computeall pairs of distinct intersecting rectangles.This query is expressible in a relational data model that has a � interpreted predicate. Onepossibility is to store the data in a 5-ary relation named R. This relation will contain tuplesof the form (n; a; b; c; d), and such a tuple will mean that n is the name of the rectangle withcorners at (a; b), (a; d), (c; b) and (c; d). We can express the intersection query asf(n1; n2)jn1 6= n2 ^ (9a1; a2; b1; b2; c1; c2; d1; d2)(R(n1; a1; b1; c1; d1) ^R(n2; a2; b2; c2; d2)^(9x; y 2 fa1; a2; b1; b2; c1; c2; d1; d2g)(a1 � x � c1 ^ b1 � y � d1 ^ a2 � x � c2 ^ b2 � y � d2))gTo see that this query expresses rectangle intersection note the following: the two rectanglesn1 and n2 share a point if and only if they share a point whose coordinates belong to the setfa1; a2; b1; b2; c1; c2; d1; d2g. This can be shown by exhaustively examining all possible intersect-ing con�gurations. Thus, one could eliminate the (9x; y) quanti�cation altogether and replaceit by a boolean combination of � atomic formulas, involving the various cases of intersectingrectangles.The above query program is particular to rectangles and does not work for triangles or forinteriors of rectangles. Recall that, in the relational data model quanti�cation is over constantsthat appear in the database. By contrast, if we use generalized relations the query can beexpressed very simply (without case analysis) and applies to more general shapes.Let R(z; x; y) be a ternary relation. We interpret R(z; x; y) to mean that (x; y) is a point inthe rectangle with name z. The rectangle that was stored above by (n; a; b; c; d), would now be5

stored as the generalized tuple (z = n) ^ (a � x � c) ^ (b � y � d). The set of all intersectingrectangles can now be expressed asf(n1; n2)jn1 6= n2 ^ (9x; y)(R(n1; x; y)^ R(n2; x; y)gThe simplicity of this program is due to the ability in CQL to describe and name point-setsusing constraints. The same program can be used for intersecting triangles.In this paper we shall argue that this simplicity of expression can be combined with e�cientevaluation techniques, even if quanti�cation is over an in�nite domain.2We refer to Section 2.1 for more concrete examples from computational geometry. Otherexamples are presented in Section 2.2 (the balanced checkbook example) and Section 5.2 (theadder circuit example).RemarkA:The constraint theories that we investigate here are applicable to spatial databases.Temporal databases require the development of analogous frameworks for the theory of discretelinear order with constants, e.g., see [26]. For recent developments of constraint-based ap-proaches to temporal databases we refer to [4, 11, 44]. Our results on linear order only applyto dense linear order. The case of discrete, or integer, linear order is analyzed in [44]. 2Remark B: The key concept in CQL, illustrated by Example 1.1, is that constraints describepoint-sets, such that all their points are in the database. With the appropriate constrainttheory these point-sets are accurate (and perhaps the most intuitive) representations of spatialobjects. Our framework is thus one of complete information. Constraint logic programmingparadigms are currently attracting a great deal of attention in languages for operations researchapplications [55, 56] and have also impacted the �eld of concurrent programming languagedesign [48]. The use of constraints for operations research and for concurrency is sometimessemantically di�erent from their use in our framework. For example: Constraints can be usedto represent the many possible states (of which one is true) of a set of concurrent processes.Each individual concurrent process maintains and manipulates constraints that describe thepartial information it has about the state of all processes. 2(3) The language framework of the relational data model does have low data complexity, butdoes not account for searches that are logarithmic or faster in the sizes of input relations.Without the ability to perform such searches relational databases would have been impractical.Very e�cient use of secondary storage is an additional requirement, beyond low data complexity,whose satisfaction greatly contributes to relational technology.B-trees and their variants B+-trees, [5, 16], are examples of important data structures forimplementing relational databases. In particular, let each secondary memory access transmitB units of data, let r be a relation with N tuples, and let us have a B+-tree on the attributex of r. The space used in this case is O(N). The following operations de�ne the problem of1-dimensional searching on relational database attribute x, with the corresponding performancebounds using a B+-tree on x: (i) Find all tuples such that for their x attribute (a1 � x � a2).If the output size is K tuples, then this range searching is in worst-case O(logBN + K=B)secondary memory accesses. If a1 = a2 and x is a key, then this is key-based searching. (ii) Insertor delete a given tuple. These are in worst-case O(logBN) secondary memory accesses.6

The problem of k-dimensional searching on relational database attributes x1; . . . ; xk general-izes 1-dimensional searching to k attributes, with range searching on k-dimensional intervals. Itis a central problem in spatial databases for which there are many solutions with good secondarymemory access performance, e.g., grid-�les, quad-trees, R-trees (see the surveys [46, 47]).For generalized databases we can de�ne an analogous problem of 1-dimensional searchingon generalized database attribute x using the operations: (i) Find a generalized database thatrepresents all tuples of the input generalized database such that their x attribute satis�es(a1 � x � a2). (ii) Insert or delete a given generalized tuple.If (a1 � x � a2) is a constraint of our CQL then there is a trivial, but ine�cient, solutionto the problem of 1-dimensional searching on generalized database attribute x. One can addconstraint (a1 � x � a2) to every generalized tuple (i.e., conjunction of constraints) and naivelyinsert or delete generalized tuples in a table. This would involve a linear scan of the generalizedrelation and introduces a lot of redundancy in the representation. In many cases, the projectionof any generalized tuple on x is one interval (a � x � a0). This is true for Example 1.1, for ourCQL's with dense linear order, for relational calculus with linear inequalities over the reals, andin general when a generalized tuple represents a convex set. Under such natural assumptions,there is a better solution for 1-dimensional searching on generalized database attribute x.� A generalized 1-dimensional index is a set of intervals, where each interval is associatedwith a generalized tuple. Each interval (a � x � a0) in the index is the projection on xof its associated generalized tuple. The two endpoint a; a0 representation of an interval isa �xed length generalized key.� Finding a generalized database, that represents all tuples of the input generalized databasesuch that their x attribute satis�es (a1 � x � a2), can be performed by adding constraint(a1 � x � a2) to only those generalized tuples whose generalized keys have a non-emptyintersection with it.� Inserting or deleting a given generalized tuple are performed by computing its projectionand inserting or deleting intervals from a set of intervals.The use of generalized 1-dimensional indexes reduces redundancy of representation andtransforms 1-dimensional searching on generalized database attribute x into the problem of on-line intersections in a dynamic set of intervals. This is a well-known problem with many elegantsolutions from computational geometry [41]. It is a special case of 2-dimensional searching inrelational databases, called 1.5-dimensional searching in [39]. For example, the priority searchtrees of [39] are a linear space data structure with logarithmic-time update and search algorithmsfor in-core processing. Grid-�les, R-trees, and quad-trees have all been used for solving thisproblem with good secondary memory access performance.In summary, current spatial database access methods are applicable to indexing in our CQLframework because: If (a1 � x � a2) is a constraint of our CQL and the projection of anygeneralized tuple on x is an interval (a � x � a0), then the problem of 1-dimensional searchingon generalized database attribute x is a special case of 2-dimensional searching in relationaldatabases. 7

We will now concentrate on the technical development of the CQL framework and on theexistence of natural constraint query languages with closed form, bottom-up evaluation of lowdata complexity.1.2 Basic De�nitionsThe framework, of generalized relations with corresponding query languages, can be applied tomany di�erent classes of constraints.De�nition 1.2 The classes we consider in Sections 2-4 are as follows.1. Real polynomial inequality constraints are all formulas (and their negations) of the formp(x1; . . . ; xj) � 0, where p is a polynomial with real coe�cients, variables x1, . . . , xj , and �is one of =, �, < (or its negation 6=, >, �). The domain D is the set of real numbers andfunction symbols +; �, predicate symbols �, and constants are intepreted in the standardway over D.2. Dense linear order inequality constraints are all formulas (and their negations) of theform x�y and x�c, where x; y are variables, c is a constant, and � is one of =, �, <(or its negation 6=, >, �). We assume D is a countably in�nite set (e.g., the rationalnumbers) with a binary relation which is a dense linear order. Constants, =, �, and< are interpreted as elements, equality, the dense linear order, and the irre
exive denselinear order of D.3. Equality constraints over an in�nite domain are all formulas (and their negations) of theform x�y and x�c, where x; y are variables, c is a constant, and � is = (or 6=). We assumeD is a countably in�nite set (e.g., the integer numbers) but without order. Constants and= are interpreted as elements and equality of D.In Section 5, we present the de�nitions and analysis for boolean equality constraints.2Remark C: There are of course other classes of constraints that could illustrate the CQLframework, e.g., linear inequalities over the reals or discrete linear order constraints. However,the examples we have chosen illustrate all of our analytical techniques. (a) Real polynomialinequality constraints are quite general. They show the possible applicability of the frameworkto problems of computational geometry and the limits of data complexity analysis. It is pos-sible to combine them with relational calculus, but not with recursive formalisms. (b) Denselinear order constraints are also very general, since one may use them to simulate any PTIMEcomputation (as in [24] and [57]). We devote a large part of our analysis to this case, because itbest illustrates the desired integration with relational calculus and various recursive formalisms.Discrete linear order is much harder to combine with recursion [44]. (c) Equality constraintsover an in�nite domain were chosen as the simplest generalization of the relational data model.The analysis here is very close to that of dense linear order constraints. (d) Finally, booleanequality constraints capture important operations research applications, although their CQL isnot as \e�cient" as in the other cases. 2 8

De�nition 1.3 Let � be a class of constraints.1. A generalized k-tuple (over variables x1, . . . , xk) is a �nite conjunction '1 ^ � � � ^ 'N ,where each 'i; 1 � i � N; is a constraint in �. Furthermore, the variables in each 'i areall free and among x1, . . . , xk.2. A generalized relation of arity k is a �nite set r = f 1; . . . ; Mg, where each i; 1 � i �Mis a generalized k-tuple over the same variables x1, . . . , xk .3. The formula corresponding to a generalized relation r is the disjunction 1 _ � � � _ M .We use �r to denote the quanti�er-free formula corresponding to relation r.4. A generalized database is a �nite set of generalized relations.2In database theory, a k-ary relation r is a �nite set of k-tuples (or points in a k-dimensionalspace) and a database is a �nite set of relations. However, the relational calculus and algebra canbe developed without the �niteness assumption for relations. We will use the term unrestrictedrelation for �nite or in�nite sets of points in a k-dimensional space. It is possible to developquery languages using such unrestricted relations (e.g., see [37]). In order to be able to dosomething useful with such unrestricted relations, we need a �nite representation that we canmanipulate. This is exactly what the generalized tuples provide.De�nition 1.4 Let � be a class of constraints interpreted over domain D, r a generalizedrelation of arity k with constraints in �, and �r = �r(x1; . . . ; xk) the formula correspondingto r with free variables x1; . . . ; xk. The generalized relation r represents the unrestricted k-aryrelation which consists of all (a1; . . . ; ak) in Dk such that �r(a1; . . . ; ak) is true. A generalizeddatabase represents the �nite set of unrestricted relations that are represented by its generalizedrelations. 2Example 1.5 This is a generalization of the relational data model. Let relation r consist ofthe tuples (1; 2) and (3; 4). These tuples are equivalent to the generalized 2-tuples, x = 1^y = 2and x = 3 ^ y = 4. Therefore, the r corresponds to the set fx = 1 ^ y = 2; x = 3 ^ y = 4g andthe formula �r � (x = 1 ^ y = 2) _ (x = 3 ^ y = 4). It should be clear that a point (x; y) is inthe generalized relation i� it satis�es the corresponding formula.Let us illustrate our framework using real polynomial inequality constraints. Let generalizedrelation r consist of two generalized tuples (y = 2 � x^ x 6= y) and (x+ y � 1). Correspondingto this r is the DNF formula �r = (y = 2 � x^ x 6= y)_ (x+ y � 1). �r describes an in�nite setof points in 2-dimensional space namely the half plane x+ y � 1 and the line y = 2 � x withoutthe point x = y = 0. 2Note that the representation of an unrestricted relation by a �nite set of generalized tuplesneed not be uniquely de�ned.Relational calculus + constraints: We present a short but self-contained description ofthe relational calculus with a given a class of constraints. For more details on the relationalcalculus in database theory see [13, 27, 52]. 9

De�nition 1.6 Let � be a class of constraints. Let R1; . . . ; Ri; . . . be predicate symbols, eachwith a �xed arity. A relational calculus + � query program is a formula of the �rst-orderpredicate calculus with equality, such that its atomic formulas are (1) of the formRi(x1; . . . ; xj),where j is the arity of predicate symbol Ri, or (2) formulas from the class � of constraints.2Example 1.7 Let � be the class of dense linear order constraints. If R1 is a predicate symbolof arity 2, then the following is a query:�(x1; x2) � R1(x1; x2) _ 9y(R1(x1; y)^R1(y; x2) ^ (x1 � x2) ^ (x2 � y)):In order to formally de�ne its meaning, we need interpretations for the predicate symbols.These will come from input generalized relations. We also need interpretations of the symbolsin the constraints. These will come from the particular theory of constraints used.2De�nition 1.8 Let D be the domain of constraint class � and � the interpretation of thesymbols in these constraints. Let � be a relational calculus + � query program with predicatesymbols R1, . . . , Rn and with free variables x1, . . . , xm. Let r1, . . . , rn be generalized relationsof the same arities as R1, . . . , Rn. These generalized relations represent unrestricted relations�1, . . . , �n (where �i is the set of points that satisfy �ri). Using the standard �rst order meaningof j= we de�ne:� � � [�1=R1; . . . ; �n=Rn] � fa1; . . . ; am 2 Dm j hD; �; �1; . . . ; �ni j= �(a1; . . . ; am)gThe query expressed by program � is de�ned as a mapping: from unrestricted relations�1; . . . ; �n (represented by the input generalized relations r1; . . . ; rn) to an arity m unrestrictedrelation �. We also require that � be representable by some generalized relation r of arity m. 2Although unrestricted relation � � � [�1=R1; . . . ; �n=Rn] is always well de�ned, the readershould note that our de�nition requires an additional closure condition. Both input and outputshould be representable by generalized relations.Remark D: It is easy to verify that this de�nition is equivalent to interpreting database atomsas shorthands for formulas of the theory of constraints, as we required in our CQL designprinciples. In other words, if we let � � [r1=R1; . . . ; rn=Rn] be the result of replacing eachoccurrence of Ri in � by the formula �ri , then � [�1=R1; . . . ; �n=Rn] is precisely the set of pointsthat satisfy . This formula , however, might contain quanti�ers and even not correspond toany generalized database. So closure is a non-trivial condition. Quanti�er-elimination in thetheory of constraints will allow us to satisfy this condition. 2Example 1.9 For a simple example where closure does not hold consider real polynomial equal-ities. These are constraints of the form p(x1; . . . ; xn) � 0, where � is = or 6=. Let R(x; y) be abinary predicate symbol for the input generalized relation fy = x2g. The result (interpretingthe generalized relation as an in�nite set of points) of 9x:R(x; y) is the set fyjy � 0g, whichcannot be represented by polynomial equality constraints. 210

Datalog + constraints: We now consider Datalog with constraints. The syntax is that ofDatalog (e.g., see [1, 27, 31, 52, 53]) but we allow the bodies of rules to contain constraints.De�nition 1.10 Let � be a class of constraints. Let R1; . . . ; Ri; . . . be predicate symbols, eachwith a �xed arity. A Datalog + � query program � is a �nite set of rules of the form:t0 :| t1; t2; . . . ; tl:t0, the rule head, must be an atomic formula of the formR(x1; . . . ; xk), whereR is some predicatesymbol of arity k. The expressions t1; . . . ; tl, the rule body, are either of the form R0(x1; . . . ; xk0),where R0 is some predicate symbol of arity k0, or are constraints from �. The predicate symbolsthat appear in heads of rules are called intentional database predicates (IDBs) and the rest arecalled extensional database predicates (EDBs). 2The meaning of a Datalog + � query program � on generalized relations r1; . . . ; rn, thatrepresent the unrestricted relations �1; . . . ; �n, is the least �xpoint of the monotone mappingde�ned by a �rst-order formula �� and �1; . . . ; �n. The de�nition is the same as in the casewithout constraints, the only di�erence being the use of unrestricted relational databases [27,37, 52]. We present this de�nition by example.Example 1.11 Consider the Datalog query program � with dense linear order constraints.R(x; y) :| R(x; z); R0(z; y); x� y; y � zR(x; y) :| R0(x; y)Apply this query program to the generalized database r0 that represents the unrestricted rela-tion �0. Then �� is the following �rst-order formula,��(x; y) � (x; y;R)� R0(x; y)_ 9z(R(x; z)^R0(z; y)^ x � y ^ y � z):�� de�nes a mapping from arity 2 unrestricted relations � to arity 2 unrestricted relations.Note that, in this formula R0 is always interpreted as �0. Predicate symbol R is singled outbecause its interpretation as any value � de�nes the mapping:� �! fa; b 2 D2j < D; �; �0; � >j= ��(a; b)gThis mapping is monotone with respect to set inclusion for �. By the Tarski �xpoint theoremit has a least �xpoint, which is the output of the query program applied to input r0. 2The mere existence of the �xpoint, as guaranteed by the Tarski �xpoint theorem, is notenough for our purposes. As in the case of the relational calculus we require that the resultof a Datalog query be �nitely representable as a generalized database. We shall show thatthis closure condition is satis�ed by Datalog, when we consider constraints from the languageof dense linear order or equality over an in�nite domain. Unfortunately, as the next exampleshows, this rules out the use of Datalog with real polynomial inequalities.11

Example 1.12 Let � be the query program that consists of the rules S(x; y) :| R(x; y) andS(x; y) :| R(x; z); S(z; y) (i.e., S is the transitive closure of R). If the input r for R consistsof the generalized relation y = 2 � x, then the result of the query is the set of all points (x; y)that satisfy y = 2i � x for some i > 0. This set is not �nitely representable in the language ofpolynomial inequality constraints. 2In
ationary Datalog: + constraints: The syntax is that of Datalog with constraints withone addition. We allow in a rule body expressions of the form :R0(x1; . . . ; xk0), where R0 issome predicate symbol of arity k0. We give the language in
ationary semantics [1, 20, 31]. Inthe in
ationary semantics after each iteration the set of facts derived is added to the set of factsthat were derived in the previous iterations.We shall show that the closure results mentioned above, for Datalog with dense order orwith equality constraints, hold with in
ationary negation as well.Remark E: We have given the semantics of a Datalog + � (Datalog: + �) query program ona generalized database as the least �xpoint of a monotone (in
ationary) mapping from unre-stricted relations to unrestricted relations. It is easy to verify that our de�nition is equivalent tointerpreting EDB atoms as shorthands for formulas of the theory of constraints, as we requiredin our CQL design principles. 2Various fragments of relational calculus and Datalog have been found to be particularlyuseful in databases and have been examined in depth. Tableaux query programs form such afragment. We provide de�nitions and examples for them in Section 2.2, and refer to [2, 10, 30, 52]for a more detailed treatment.Complexity: We assume familiarity with the de�nitions of basic complexity classes such asLOGSPACE, PTIME, NC, and �p2 (see [19]).The prototypical logspace-complete problem in �p2 is the AE-quanti�ed boolean formulaproblem: Input, a formula 8x9y (x; y), where x; y are sets of boolean variables and (x; y) apropositional formula over these variables. Question, is the input formula true?We now de�ne data complexity. Our de�nition involves the complexity of evaluating somerepresentation for the output of a �xed query Q, given a variable input generalized database.This is more general than the de�nition of data-complexity for yes/no decision problems.De�nition 1.13 Our sequential machine model is a Turing Machine (TM) with a read-onlyinput tape, a write-only output tape, and a �xed number of work tapes. Our parallel machinemodel is a Parallel Random Access Machine (PRAM). Our input generalized relations areencoded using some �xed binary encoding.A query Q has data complexity in PTIME (resp. LOGSPACE, NC) if there is a TM (resp.TM, PRAM) which given input generalized relations d produces some generalized relationrepresenting the output of Q(d) and uses polynomial time (resp. logarithmic space on the worktape, polynomial number of processors running in polylogarithmic parallel time). 212

1.3 Overview of ContributionsFrom Codd's original work [13] it follows that: safe relational calculus can be evaluated bottom-up in closed form and LOGSPACE data complexity. Codd de�nes safe formulas via syntacticrestrictions on relational calculus. The LOGSPACE data complexity analysis is from [9]. Weprovide as evidence of the soundness of our design principles many variations of this observationin the context of constraints. The following table summarizes the main data complexity results:Polynomial Dense Order EqualityRelational Calculus NC LOGSPACE LOGSPACEDatalog: Not closed PTIME PTIMEIn more detail:1. Relational calculus with real polynomial inequality constraints can be evaluated bottom-up in closed form and NC data complexity. This is a direct consequence of [6, 33, 51] andillustrates the potential applicability of the framework to spatial databases (Section 2.1).2. As part of our analysis of the relational calculus and real polynomial inequality constraints,we provide a new interpretation of the homomorphism theorem for tableau query contain-ment from [2, 10, 30]. Our interpretation is based on the simple geometric fact that, \ana�ne space is contained in a �nite union of a�ne spaces i� it is contained in one memberof this union" [45], p. 139. We show that deciding containment between tableaux querieswith linear equalities is NP-complete, but that with quadratic equalities it is �p2-hard(Section 2.2).3. Relational calculus (In
ationary Datalog:) with dense linear order constraints can beevaluated bottom-up in closed form and LOGSPACE (PTIME) data complexity. This isshown by adapting the proof of [18]. Also, by a slight modi�cation of [24, 57] In
ationaryDatalog: with dense linear order expresses exactly PTIME (Section 3.1).4. For Datalog with dense linear order constraints, we develop a bottom-up evaluationmethod that is closer to the classical foundations of logic programming [36] and knowledgebases [52, 53] (Section 3.2). This allows us to show that piecewise linear Datalog withdense linear order constraints can be evaluated bottom-up in closed form and NC datacomplexity (Section 3.3).5. Relational calculus (In
ationary Datalog:) with equality constraints over an in�nite do-main can be evaluated bottom-up in closed form and LOGSPACE (PTIME) data com-plexity. This extends the approach to safe queries of [3, 23, 29, 42] (Section 4).6. Finally, Datalog with boolean equality constraints can be evaluated bottom-up and inclosed form. For the de�nitions we refer to Section 5 and [8, 32, 38]. The data complexityhere is higher than in the previous cases and it depends on the use of free boolean algebraswith m generators. We partly analyze this data complexity and show it to be �p2-hard(Section 5). 13

2 Real Polynomial Inequality ConstraintsThroughout Section 2, we assume that the constraint domain D is the set of real numbers, butour analysis applies to any real closed �eld.In Section 2.1, we give our �rst example of a CQL by combining relational calculus withreal polynomial inequalities.In Section 2.2, we investigate tableaux queries with constraints. We present several resultson the optimization of such queries, in the presence of linear equations, quadratic equations,and simple inequalities without arithmetic operations.2.1 Relational Calculus with Constraints and Computational GeometryConsider a query language consisting of all �rst-order formulas over the database predicatestogether with real polynomial inequality constraints. The syntax is the union of relationalcalculus with that of the theory of real closed �elds [51]. For the semantics, the databaseatomic formulas will be used as shorthands for large formulas of the theory of real closed �elds,as described in Section 1.The critical observation is that database atomic formulas express and highlight, in thedeclarative query language itself, the parts that can grow asymptotically versus the parts thatare constant-size calculations. That the database size N dominates the query size by manyorders of magnitude, is the rationale of data complexity. In the following examples N is theonly parameter that grows asymptotically.In Example 1.1, we already illustrated this language using the problem of object inter-section. It is interesting to note that most other basic operations of computational geometry(e.g., Convex Hull and Voronoi diagram { see [41]) can be described in this declarative querylanguage, which also happens to be e�ciently bottom-up evaluable.Example 2.1 Convex hull : The database consists of an arity 2 relation r, that describes Npoints of the plane. We want to select those points from r that form the convex hull. Todo this, observe that a point (x; y) is not a convex hull point i� there are 3 other points in rsuch that (x; y) is inside the triangle that they generate. Using constraints, we can de�ne apredicate Intriangle(x; y; x1; y1; x2; y2; x3; y3) that holds when (x; y) is in the triangle generatedby (x1; y1), (x2; y2) and (x3; y3). Point (x; y) in r will be in the convex hull i� there do not existpoints in r such that Intriangle(x; y; x1; y1; x2; y2; x3; y3). The naive algorithm based on thisobservation, known as Floyd's method, takes O(N4) time, because it involves four databaseatomic formulas. Although it cannot compete with various known O(N logN) algorithms, it isstill useful in combination with other convex hull techniques. 2Example 2.2 Voronoi diagram: We can show how to �nd the graph called the dual of theVoronoi diagram [41]. To do this, note that two points u and v are adjacent in the Voronoi14

dual i� all the points on the line from u to v are closer to u or to v than to any other point inthe database. This condition can easily be expressed in our language. 2Queries in the language of relational calculus and real polynomial inequality constraints canbe evaluated bottom-up in closed form, i.e., the result of a query on a generalized relation is alsoa generalized relation. This closure property follows immediately from the decision procedureof Tarski for the theory of real closed �elds [51] and is one of its basic properties. One can thinkof Tarski's procedure as a generalized relational algebra, where all the operations are simplevariants of the familiar database ones except for projection. Projection corresponds to quanti�erelimination and is the nontrivial operation. Unfortunately, Tarski's decision procedure hasextremely high complexity, even in our setting. In general, the decision problem for the theoryof real closed �elds requires nondeterministic exponential time.Fortunately, our setting has much more structure than the general problem of geometrictheorem proving. The reason for this is that if we focus our attention on data complexity thenthe problem is tractable. If we have a �xed query on a generalized database, we have a �xedbound on the number of variables and on the quanti�er depth. We can then use the results of[6, 33] to show that the data complexity is in NC.Theorem 2.3 Relational calculus with real polynomial inequality constraints can be evaluatedbottom-up in closed form and NC data complexity.Proof: This is a direct application of [6, 33]. To see this use the �xed dimension caseof the theorem p. 263 in [6]. The cell decomposition method in sections 6-7 of [33] can beused to output a formula in DNF (of size polynomial in the input) that represents the outputgeneralized database. 2It is true that the general-purpose bottom-up evaluation based on geometric theorem prov-ing is not as e�cient as the various specialized computational geometry algorithms. But it canbe thought of as a statement that the potential for optimization is present.Of course, given the NC data complexity bounds, there are computations that are notexpressible in relational calculus with real polynomial inequality constraints. It would be in-teresting to determine which natural computational problems are or are not expressible. Forexample, we conjecture that computing Euclidean Spanning Trees is not expressible because itinvolves reachability computations.As we pointed out in Section 1, if we consider Datalog with polynomial constraints, theresulting language is not closed. Furthermore, such a language combining arithmetic withrecursion has full Turing computability power. It would be interesting to design a CQL withlow data complexity which allows limited use of recursion and real polynomial inequalities.2.2 Tableaux Query Programs and their Containment ProblemData complexity is based on the assumption that there are su�cient resources for unlimitedprocessing of a query program. This is only a theoretical approximation, and many sophisticated15

x Balancedx f r m Expensesx s - - Savingsx w i - Incomef + r +m+ s = w + iFigure 3: The tableau with constraints \balanced checkbook" query program.techniques have been developed for query optimization. A key problem for optimization istesting containment of query programs.Each query program � computes for any input generalized database d an output generalizedrelation �[d]. Recall that generalized relations represent possibly in�nite sets of points. We saythat a query program �1 is contained in query program �2, denoted �1 � �2, i� for each inputgeneralized database d, all the points in �1[d] are also in �2[d]. The containment problem is:Given two query programs �1; �2 decide if �1 � �2.We now examine (tagged untyped) tableaux query programs. These query programs were thesubject of many investigations in relational database theory and can be presented as nonrecur-sive Datalog rules. The terminology (tagged untyped) tableau is used, because each programcan be described as a table, with variables or constants appearing in each entry, with the predi-cate symbols as row-tags, and possibly with some untyped variable appearing in many columns.We augment these queries using special real polynomial inequalities such as linear equations,quadratic equations, and inequalities without +; �. For instance:Example 2.4 In nonrecursive Datalog notation and using a single linear equation constraintwe express the following \balanced checkbook" query.Balanced(x) :| Expenses(x; f; r;m); Savings(x; s); Income(x;w; i); f + r +m+ s = w + iThis is a query program with Expenses, Savings and Income input relations, Balancedoutput relation, and a single linear equation constraint: x is user-id, f is amount spent forfood, r for rent, m for miscellaneous, s for transfer to savings, w for wages, and i for interest.The intended output of this query is the list of user-ids whose checkbooks balance.In tableau notation, the checkbook query can be represented by a four row tableau withBalanced, Expenses, Savings, and Income row-tags. The �rst row corresponds to the head ofthe rule and is called the summary row. The other three rows correspond to predicate symboloccurrences in the body of the rule. Each of these rows has width four, because we add dummyarguments up to the maximum arity, i.e., new distinct variables denoted � (see Figure 3). Thelinear equation constraint is extra.For the detailed terminology see [2].2 16

Let us now explain normal forms, symbol mappings, and homomorphisms. We break upeach �, tableau query program with constraints, into a tableau part T , that consists exclusivelyof distinct occurrences of variables, and a conjunction of constraints C. This normal form(T; C) is without loss of generality, since the constraints in C can force any equalities of thedistinct symbols in T .Let �1 = (T1; C1) and �2 = (T2; C2) be two normal form tableaux query programs with realpolynomial inequality constraints. A function h is a symbol mapping from the symbols of �2 tothose of �1 i� it maps the summary row of T2 into the summary row of T1, every constant toitself, and the tagged rows of T2 into similarly tagged rows of T1. A symbol mapping h extendsnaturally to rows and to constraints. We shall call such a symbol mapping h a homomorphismfrom �2 to �1 if it also has the property that whenever constraints C1 are satis�ed so are h(C2),i.e., when constraints C1 imply constraints h(C2).Lemma 2.5 Let �1 = (T1; C1) and �2 = (T2; C2) be two normal form tableaux query programswith real polynomial inequality constraints. Let h1, . . . , hm be all the possible symbol mappingsfrom T2 to T1. (8d, �1[d] � �2[d]) i� (C1 implies h1(C2) _ � � � _ hm(C2)).Proof: (If) If �1 is any constraint satisfying valuation for �1 (i.e., �1 is an assignment ofvalues to variables of T1 satisfying C1), then �1(C1) is true and, by the hypothesis, there is asymbol mapping hk such that �1(hk(C2)) is true. Then we can take �2 = �1hk as a satisfyingvaluation for �2. This implies that for any generalized database d, �1[d] � �2[d].(Only if) Let d be any generalized database and �1 be a valuation for T1 that satis�esC1, yielding some summary row output. Then there must be another valuation �2 for T2 thatsatis�es C2, yielding the same summary row output. Moreover, we can restrict �2 to map therows of T2 only to the image of �1, i.e., to the database tuples accessed to make a valid valuation.This restriction is without loss of generality, because the database could indeed be no larger,and if the query containment holds in this restriction, then it also holds for any larger databasethat contains the image.Now take any row t in T2. �2 maps t into a tuple t0 in the database. �1 also mapsat least one row t00 into t0 (choose an arbitrary t00). Then we can construct a mapping hfrom t to t00, by following the arrows in the mapping of �2 and reversing the arrows in themapping of �1. For example, if t = (a; b; c); t0 = (5; 8; 5) and t00 = (x; y; z), then we can takeh = (a ! x; b! y; c! z). Moreover, continuing this way h can be expanded into a completesymbol mapping from T2 to T1, because the variables are distinct in T2 so there are no clashesin the symbol mapping. This shows that if �1(C1) is true then there is a valuation �2 and asymbol mapping h such that �2(C2) is true and �1h = �2 and thus �1(h(C2)) is true.Therefore we see that for any valid valuation �1 of C1 there is some symbol mapping hdepending on �1 such that �1(h(C2)) is true. Moreover, the above argument did not use anyassumption about C1. Hence, this shows that for all C1's, C1 implies h1(C2) _ � � � _ hm(C2),where h1, . . . , hm are all the possible symbol mappings from T2 to T1. 2Let �1 = (T1; C1) and �2 = (T2; C2) be two tableau query programs with constraints, innormal form. We say that they have the homomorphism property, whenever there is a symbol17

mapping h from �2 to �1 such that (for all generalized databases d, �1[d] � �2[d]) i� (C1implies h(C2)). We will now show that the homomorphism property holds when we have linearequations and is the key to proving containment in NP. This extends the basic technique of[2, 10].Theorem 2.6 Given two query programs, each a tableau with a conjunction of linear equationconstraints, deciding containment is NP-complete.Proof: NP-hardness is immediate, since it is NP-complete to determine containment forsuch queries just with equations of the form x = y [2, 10]. The new part is showing membershipin NP, given more general linear equations. We show that for two queries �1 and �2 in normalform: �1 is contained in �2 i� there is a homomorphism mapping �2 into �1.We use the previous lemma and from [45], p. 139, the simple geometric fact: \an a�nespace is contained in a �nite union of a�ne spaces i� it is contained in one member of thisunion".For linear equation constraints, each of the conjunction of constraints C1 and hi(C2) de-scribes an a�ne space. Moreover, C1 implies h1(C2) _ . . . _ hm(C2) i� the a�ne space C1 iscontained in the union of other a�ne spaces. But this can happen only if one of the a�nespaces hi(C2) contains the a�ne space C1. Therefore one of the symbol mappings must be ahomomorphism from �2 to �1. Such a homomorphism can be guessed in NP, and containmentof an a�ne space in another can be checked in polynomial time. 2In contrast, with quadratic equations we can show:Theorem 2.7 Given two query programs, each a tableau with a conjunction of quadraticequation constraints, deciding containment is �p2-hard.Proof: We can give a simple reduction from the 8x9y (x; y) quanti�ed boolean formulaproblem, which is known to be �p2-complete. Without loss of generality assume that in negation is only used on the boolean variables, i.e., negation has been pushed to the leaves ofthe parse tree of .Let �2 be:R(x) :| x1(1� x1) = 0; . . . ; xn(1� xn) = 0; y1(1� y1) = 0; . . . ; ym(1� ym) = 0; �(x; y; s)In �2 all the constraints except the last one are used to restrict the x = (x1; . . . ; xn) andthe y = (y1; . . . ; ym) vectors of variables to be either 0's or 1's.The formula �(x; y; s) denotes the conjunction of quadratic constraints that is constructedas follows. Let F1; . . . ; Fl be the subformulas of , with Fl = . Let s1; . . . ; sl be distinct freshvariables. Then add the conjunct sk = si + sj whenever Fk = Fi ^ Fj , add sk = sisj wheneverFk = Fi _ Fj , add sk = (1� si) whenever Fk = :Fi. If Fk = Fi and Fi is a boolean variable xior yi in (x; y), add sk = (1� xi) or sk = (1� yi). Finally add the conjunct sl = 0.18

By induction, it can be proven that for any truth assignment (x; y) is true i� 9s�(x; y; s)is true assigning 1 (0) to xi; yi if the respective boolean variables get assigned true (false). Thebasic intuition is that subformula Fi is made true by the assignment i� constraint si = 0 issatis�ed. Hence, �2 will have as output all x truth assignments for which there is some y truthassignment such that (x; y) holds. Then let �1 be:R(x) :| x1(1� x1) = 0; . . . ; xn(1� xn) = 0Note that �1 will have as output all possible x vectors, hence �1 � �2 if and only if thequanti�ed boolean formula holds. 2Containment in the presence of inequality constraints without + and � is the problemexamined in[30]. For containment of tableaux with inequalities and no +; �, we can show thatthe homomorphism property fails even for semiinterval query programs.Semiinterval query programs are those in which each variable is bounded by a constant fromonly one side i.e., left or right, and there are no other constraints. In [30] it is shown that thehomomorphism property holds for left-semiinterval queries or right-semiinterval queries aloneand does not work for interval queries, i.e., variables are bounded from both sides.Theorem 2.8 The homomorphism property fails for semiinterval query programs.Proof: We give two example queries �1 and �2 such that �1 � �2, but there is no homo-morphism from �2 to �1. The query �2 is:R00(u) :| R0(u); R(v; w); v � 4; w � 4While the query �1 is: R00(u) :| R0(u); R(x; y);R(y; z); x� 4; z � 4There are two possible symbol mappings from the symbols of �2 to the symbols of �1. The �rstis h1 = (u! u; v! x; w! y), and the second is h2 = (u! u; v ! y; w! z).�1 � �2 is easy to see, because either y � 4 and R(x; y); R(y; z), x � 4; z � 4 impliesR(x; y), x � 4; y � 4, which is the same as in �2 after renaming, or y < 4 and R(x; y); R(y; z),x � 4; z � 4 implies R(y; z); y � 4; z � 4, which is again the same as in �2 after a di�erentrenaming. Therefore, for each database if �1 gives some output, then �2 also gives a supersetof that output. However, one symbol mapping is not enough to show containment.Consider now the database R(1; 3); R(3; 5);R0(7). Then for the valuation � = (x! 1; y !3; z ! 5; u ! 7), �1 yields R00(7). However, �h1(�2) is not a valid valuation for �2, because�h1(R(v; w); v � 4; w � 4) = R(1; 3), 1 � 4, 3 � 4, i.e., it is unsatis�able and cannot produceany output tuple.Similarly, considering the database R(1; 5); R(5; 9);R0(7) and the valuation �0 = (x !1; y ! 5; z ! 9; u ! 7), �1 again yields R00(7). However, �0h2(�2) is not a valid valuation,because �0h2(R(v; w); v � 4; w � 4) = R(5; 9); 9 � 4; 5 � 4, i.e., it is also unsatis�able andcannot produce any output tuple. 2 19

3 Dense Linear Order Inequality ConstraintsThroughout Section 3, we assume that the constraint domain D is the set of rational numbers,but our analysis applies to any set with a dense linear order.In Section 3.1, we show that the relational calculus (Datalog:) with dense linear orderinequality constraints can be evaluated bottom-up in closed form and LOGSPACE (PTIME)data complexity. These are tighter bounds than the NC bounds that we get from the analysisof relational calculus with real polynomial inequality constraints.In Section 3.2, we provide an alternative bottom-up evaluation for Datalog, which em-phasizes logic programming tools, as opposed to decision procedures for logical theories. Themotivation for this is to gain more intuition about Herbrand atoms, minimal models, derivationtrees, and the other machinery of constraint logic programming [25, 36].In Section 3.3, we examine the parallel bottom-up evaluation of Datalog programs withdense linear order constraints, using the logic programming tools developed in 3.2.3.1 Data Complexity of Relational Calculus and Datalog: with Dense OrderWe will �rst show that the relational calculus with dense linear order inequality constraints hasLOGSPACE data complexity. The proof of this result is based on the proof of [18], which weextend to languages with constants and adapt for data complexity analysis. Our basic technicalcontribution is the appropriate de�nition of r-con�guration (for rational-con�guration).In order to use the decision procedure techniques of [18], we transform the query programapplied to the input set of constraints into one semantically equivalent formula � of the theoryof dense linear order with constants (see Section 1).For example, let R(x; y) be a binary generalized relation containing the three generalizedtuples x < y, x < 5 and y = 4. Consider the query program (9z)(R(x; z)^R(z; y)) applied tothis generalized database. Then the equivalent formula is�(x; y) � (9z)((x < z _ x < 5 _ z = 4) ^ (z < y _ z < 5 _ y = 4))Furthermore, we can, within the required resource bounds, eliminate all occurrences of =;�and just use atoms of the form xi < xj ; xi < c; c < xi. For this replace x � y by (x = y)_(x < y)and x = y by :((x < y) _ (y < x)). We similarly eliminate all logical connectives but _;:; 9.This is for minimizing the case analysis in the proof.In what follows: we �x the query program and the input generalized database and considerthe equivalent formula � (as in the above example). The following de�nition of r-con�gurationis the key one. Note that it is with respect to the formula �, which we consider �xed. Weshall refer throughout to r-con�gurations, without mentioning the formula �. Throughout thissection, we use D� be the set of constants that appear in �.20

De�nition 3.1 An r-con�guration � = (f; l; u) of size n consists of a sequence f = (f1; . . . ; fn),where ff1; . . . ; fng = f1; . . . ; jg, for some j � n, and two sequences l = (l1; . . . ln) and u =(u1; . . . ; un), where the li's are in D� [f�1g, and ui's are in D� [f+1g, such that:1. For all i, li � ui.2. There is no constant c in D� with the property that li < c < ui.3. Whenever fi < fj , then li < uj .4. Whenever fi = fj , then li = lj and ui = uj . 2The idea behind r-con�gurations is as follows. Consider two points x = (x1; . . . ; xn) andy = (y1; . . . ; yn) in Dn. We want to know whether they can be distinguished using the orderconstraints and the available constants. We say that: these points can be distinguished if1. The relative order of the xi's is di�erent from the relative order of the yi's, or2. Some xi is in a di�erent relation to some constant in D� than some yi.Each r-con�guration characterizes a set of non-distinguishable points. The fi's describe therelative order of the xi's, i.e., xi < xj i� fi < fj . li and ui, on the other hand, bound xi frombelow and above by constants from D� [f+1;�1g in the tightest fashion possible.Example 3.2 Assume that the constants in D� are f0; 1; 2; 3g. The sequence of numbers(0:5; 3:5; 1:5; 1:5; 2) can then be represented by the r-con�guration consisting of1. f = (1; 4; 2; 2; 3) describing the order between the elements of the sequence.2. l = (0; 3; 1; 1; 2)3. u = (1;+1; 2; 2; 2)2We also need some technical de�nitions: (3.3) Express an r-con�guration as a conjunctionof constraints. (3.4) The points satisfying this conjunction are the indistinguishable pointsdenoted by the r-con�guration. (3.5) An r-con�guration can be extended by adding othervariables.De�nition 3.3 The formula F (�), with n free variables fx1; . . . ; xng, corresponding to an r-con�guration � = (f; l; u), of size n, is the conjunction of: (1) xi < xj , whenever fi < fj .(2) xi = xj , whenever fi = fj . (3) li < xi < ui whenever li < ui. (4) xi = li whenever li = ui.2De�nition 3.4 j= F (�)(a1; . . . ; an) will mean that F (�) is satis�ed by the assignment of eachai to the corresponding variable xi.2 21

De�nition 3.5 Let � = (f; l; u) be an r-con�guration of size n. An r-con�guration �0 =(f 0; l0; u0) of size n + 1 is an extension of � if1. f 0 is an extension of f . This means that for all i; j, 1 � i; j � n, f 0i < f 0j i� fi < fj ,2. l0 = (l1; . . . ; ln; ln+1), and3. u0 = (u1; . . . ; un; un+1).2The idea behind the proof is as follows. We show that the r-con�gurations partition multi-dimensional space in such a way that to test whether a subformula of the query holds throughoutan r-con�guration, it su�ces to test whether it holds at an arbitrary point in this con�guration.This partitioning is made formal using the �ve Lemmas 3.6{10. We use this partitioning toconstruct an algorithm EVAL�, which evaluates the query in closed form. The output of EVAL�consists of a set of r-con�gurations. Its correctness is described in the two Lemmas 3.11{12.We then argue that EVAL� can be implemented in LOGSPACE.Query Evaluation Algorithm EVAL�Input of EVAL�: A generalized database. We will assume from now on that � is the result ofsubstituting the de�nition of the generalized database for each occurrence of a predicate symbolin the query (we comment later on why this does not a�ect the LOGSPACE complexity).For each r-con�guration � of size n, with constants from D�, test whether F (�) ! � is valid(i.e., true for all assignments to its free variables). This test is performed using recursiveprocedure Boolean-EVAL�.Procedure Boolean-EVAL takes as input an r-con�guration �0. It is only called on subfor-mulas of �, thus guaranteeing that all the constants in are in D�. Boolean-EVAL returns 1i� F (�0)! is valid. Its various cases are:1. is an atomic formula xi < xj .If fi < fj (where fi; fj are from �0) then return 1 else return 0.2. is an atomic formula xi < c or c < xi.For xi < c, if li = ui < c or li < ui � c (where li; ui are from �0) then return 1 else return 0.For c < xi, if c < li = ui or c � li < ui (where li; ui are from �0) then return 1 else return 0.3. is 1 _ 2.If the result of Boolean-EVAL 1(�0) is 1 then return 1 else return result of Boolean-EVAL 2(�0).4. is : 0.If result of Boolean-EVAL 0(�0) is 1 then return 0 else return 1.5. is (9x) 0.For every extension �00 of �0, do Boolean-EVAL 0(�00).If the result on one of these r-con�gurations is 1 then return 1 else return 0.Output of EVAL�: The disjunction of the F (�)'s for which F (�)! � is valid.22

Lemma 3.6 Let � be an r-con�guration of size n, and let �0 be an extension of size n + 1.Then we have that j= F (�)(a1; . . . ; an) i� for some a j= F (�0)(a1; . . . ; an; a).Proof: Since F (�) is a conjunction of some of the conjuncts in F (�0), F (�0)(a1; . . . ; an; a)implies F (�)(a1; . . . ; an). For the converse,1. If for some i, fn+1 = fi, let a = ai.2. Otherwise, let i and j be such that fi and fj are maximal and minimal, respectively,satisfying fi < fn+1 < fj (the construction can easily be modi�ed to handle the boundarycases with i or j nonexistent). If ln+1 = un+1, let a = ln+1. It then follows thatai < a < aj . Otherwise, pick a arbitrarily satisfying the conditions ai < a < aj andln+1 < a < un+1. The reason such an a exists is shown as follows. Given the densityof order, such an a would not exist only if aj � ln+1 or un+1 � ai. Assume aj � ln+1.fn+1 < fj , together with part 3 of De�nition 3.1, implies that ln+1 < uj . However, bythe de�nition of F (�), lj � aj . Since lj � aj � ln+1 < uj , it follows that lj < uj ; and bythe de�nition of F (�) once more, lj < aj . We therefore havelj < aj � ln+1 < ujwhich contradicts part 2 of De�nition 3.1. The second case is similar.In both cases, it follows that (a1; . . . ; an; a) satis�es F (�0).2Lemma 3.7 Let � be an r-con�guration of size n. There exist elements a1, . . . , an of D, suchthat j= F (�)(a1; . . . ; an).Proof: Induction on the size of �, using Lemma 3.6.2Lemma 3.8 Let a1, . . . , an be elements of D. There exists a unique r-con�guration � of sizen such that j= F (�)(a1; . . . ; an).Proof: Uniqueness follows from the fact that if �1 6= �2, then F (�1)^F (�2) is unsatis�able.To show this, suppose that (a1; . . . ; an) satis�es F (�1) ^ F (�2). Let �1 = (f1; l1; u1) and �2 =(f2; l2; u2).1. Let f1i 6= f2i , w.l.o.g, f1i < f2i . Since f2 is a sequence that consists of all the integers from1 to some k (possibly with repetitions), it follows that for some j, f2j = f1i . But then, byDe�nition 3.3, aj < ai. This implies, using De�nition 3.3 again, that f1j < f2j . Repeatingthis, we get an in�nite descending sequence of positive integers, a contradiction.2. Let l1i 6= l2i , w.l.o.g., l1i < l2i . Suppose �rst that l1i = u1i . Then, by De�nition 3.3,l1i = ai < l2i � ai, a contradiction. On the other hand, if l1i < u1i , then part 2 ofDe�nition 3.1 implies that u1i � l2i . Once more, by De�nition 3.3, ai < u1i � l2i � ai, acontradiction. 23

3. The case when u1i 6= u2i is similar.Existence is shown by induction on n. The case n = 1 is trivial. Assuming that the resultholds for n, let a1,. . . , an, an+1 be given, and let � be such that (a1; . . . ; an) satis�es F (�).We show how to extend � to �0 such that (a1; . . . ; an+1) satis�es F (�0). There are two cases toconsider for a = an+1:1. For some i, a = ai. �0 is de�ned by f 0j = fj for i � n, f 0n+1 = fi, l0n+1 = li and u0n+1 = ui.2. Let i and j be such that ai and aj are maximal and minimal, respectively, satisfyingai < a < aj (the construction can easily be modi�ed to handle the boundary cases).ln+1 will be the largest constant in D� such that ln+1 � a, un+1 the smallest such thata � un+1. f 0 is de�ned in such a way that it is compatible with the ordering of the ai's,i.e.,(a) If fk � fi, then f 0k = fk .(b) If fk � fj , then f 0k = fk + 1.(c) f 0n+1 = fj .In both cases, j= F (�0)(a1; . . . ; an+1).2Lemma 3.9 Let be a formula, with at most k free variables, using only constants in D�.Let � be an r-con�guration of size k and j= F (�)(a1; . . . ; ak) and j= F (�)(a01; . . . ; a0k), thenj= (a1; . . . ; ak),j= (a01; . . . ; a0k).Proof: We show, by induction on the size of , that the result holds for all r-con�gurations� and all ai's and a0i's.1. Atomic formulas. There are two types of atomic formulas xi < xj and xi < c (c < xi istreated similarly). In the �rst case, ai < aj i� fi < fj , and likewise, a0i < a0j i� fi < fj .Therefore, ai < aj i� a0i < a0j . In the second case, ai < c i� ui < c or li < ui � c, andsimilarly for a0i.2. If is of the form : 1 or 1 _ 2, the proof is straightforward.3. If is (9x) 0, then (a1; . . . ; ak) satis�es i� for some a, (a1; . . . ; ak; a) satis�es 0. ByLemma 3.8, there is an r-con�guration �0 such that (a1; . . . ; ak; a) satis�es F (�0). It is easyto see (by the existence argument in Lemma 3.8) that �0 must be an extension of �. Since(a01; . . . ; a0k) satis�es F (�), by Lemma 3.6 there is an a0 such that (a01; . . . ; a0k; a0) satis�esF (�0). But then, by the induction hypothesis, (a01; . . . ; a0k; a0) satis�es 0, and therefore(a01; . . . ; a0k) satis�es . 2Lemma 3.10 Let � be an r-con�guration, and a formula using only the constants in D�.Then F (�) ! is valid (i.e., true for all assignments to its free variables) i� F (�) ^ issatis�able (i.e., true for some assignment to its free variables).24

Proof: If F (�) ! is valid, then Lemma 3.7 implies that F (�) ^ is satis�able. On theother hand, if F (�) ^ is satis�able, say by (a1; . . . ; an), and F (�) is satis�ed by (a01; . . . ; a0n),then Lemma 3.9 implies that is satis�ed by (a01; . . . ; a0n). 2We now prove correctness of Boolean-EVAL and EVAL�.Lemma 3.11 The algorithm Boolean-EVAL (�0) described above returns 1 i� F (�0) ! isvalid.Proof: The proof is by induction on the structure of .1. is an atomic formula xi < xj . The proof of correctness is trivial.2. is an atomic formula xi < c. Correctness when li = ui < c is trivial. When li < ui � c,correctness follows from the fact that c 2 D� and thus c < ui implies c � li.3. is an atomic formula c < xi. The proof is similar with 2.4. is 1 _ 2. Correctness follows from Lemma 3.10, together with the fact that F (�0) ^(1 _ 2) is satis�able i� (F (�0) ^ 1) _ (F (�0) ^ 2) is satis�able.5. is : 0. To show correctness we must show that F (�0) ! : 0 is valid i� (F (�0) ! 0)is not valid. By Lemma 3.10, F (�0) ! : 0 is valid i� F (�0) ^ : 0 is satis�able. ButF (�0) ^ : 0 is the same as :(F (�0)! 0), which completes the proof.6. is (9x) 0. To show correctness it su�ces, by Lemma 3.10, to show that F (�0) ^ (9x) 0is satis�able i� F (�00) ^ 0 is satis�able for some �00.For the if, assume that the formula F (�00)^ 0 is satis�ed by some (a1; . . . ; an; a). Lemma3.6, then implies that F (�0) ^ (9x) 0 is satis�ed by (a1; . . . ; an). For the only if, assumethat F (�0) ^ (9x) 0 is satis�ed by (a1; . . . ; an). There must then exist an element a 2 D,such that (a1; . . . ; an; a) satis�es 0. By Lemma 3.8, there is a r-con�guration �00 suchthat (a1; . . . ; an; a) satis�es F (�00). By restricting �00 to the �rst n variables, and usingLemma 3.6 together with the uniqueness part of Lemma 3.8, it follows that �00 is anextension of �0.To show that EVAL� is correct, we have to show that it outputs a formula in DNF that isequivalent to �. The formula output by EVAL� is clearly in DNF, and it therefore su�ces toshow:Lemma 3.12 The result of EVAL� is equivalent to the formula �.Proof: Let S = f�1; . . . ; �ng be the set of those con�gurations for which of F (�i) ! � isvalid. Clearly, W1�i�n F (�i) ! � is valid. For the converse, let (a1; . . . ; ak) be an assignmentof values to the free variables of � such that j= �(a1; . . . ; ak). By Lemma 3.8, there exists acon�guration � such that (a1; . . . ; ak) satis�es F (�). But then (a1; . . . ; ak) satis�es F (�) ^ �,and by Lemma 3.10, it follows that � 2 S, completing the proof. 2We still have to show that: 25

Lemma 3.13 EVAL� can be implemented in LOGSPACE.Proof: First, consider Boolean-EVAL�. The �rst problem we have to address is that the al-gorithm assumes that we have constructed the formula �, which cannot be done in LOGSPACE.The solution is to use the query formula as given, switching to the database whenever the querycontains a predicate symbol, rather than copying explicitly the contents of the relation at thispoint. This can be easily done with only a constant extra memory cost.To run Boolean-EVAL� we need to store the current con�guration. Since we have a �xedquery formula, we have a bound on the number of quanti�ers, and hence on the maximum sizeof the con�gurations we have to consider. It then follows that we can store each con�gurationin LOGSPACE.For a given con�guration �, we use a �xed number of pointers to �nd the subformulas of� and perform the appropriate steps of Boolean-EVAL on them. Whenever we encounter apredicate symbol, we use one pointer to remember where we are in the query, and a secondpointer to scan the database, as though it were part of the query formula at this point. The�rst pointer is to remember where to return to after we reach the end of the database relation.Most of the subcases of Boolean-EVAL are straightforward. When we are considering aquanti�er, however, we have to iterate over all extensions of �. We can do this in LOGSPACEby considering each extension to � in turn, and �rst testing whether it is a legal con�gurationor not. This shows that Boolean-EVAL is a LOGSPACE algorithm.The algorithm EVAL� iterates over all con�gurations �, and performs Boolean-EVAL� oneach one. As before, we can easily iterate over all con�gurations in LOGSPACE, and this showsthat EVAL� is also in LOGSPACE. 2Now we can show that:Theorem 3.141. The relational calculus with dense linear order inequality constraints can be evaluatedbottom-up in closed form with LOGSPACE data complexity.2. In
ationary Datalog: with dense linear order inequality constraints can be evaluatedbottom-up in closed form and PTIME data complexity.Proof: The �rst part of the theorem follows from Lemmas 3.12{3.13. Note that, EVAL�proceeds by structural induction on � and all calls to its outermost for can proceed in parallel.For the semantics of a query program �, of In
ationary Datalog: with dense linear orderconstraints, we have to iterate a relational calculus formula �� . We can use EVAL� of the �rstpart of the theorem as one iteration of the query. Since the relational calculus formula is �xed,there are at most a polynomial number of r-con�gurations. Since under in
ationary semanticswe can only add r-con�gurations at each iteration, we obtain a polynomial time algorithmfor In
ationary Datalog: with dense linear order constraints. These iterations proceed in abottom-up fashion. 2 26

A �nal observation involves the expressive power of In
ationary Datalog: with dense linearorder inequality constraints.Theorem 3.15 In
ationary Datalog: with dense linear order inequality constraints can ex-press any relational database query computable in PTIME (for a formal de�nition of thesequeries see [9]).Proof: As shown in [24] and [57] the �xpoint queries of [9] together with a �nite discretelinear order express exactly PTIME. It follows from the proofs of this fact, as well as the normalform results of [24, 20, 1] that In
ationary Datalog: with a �nite discrete order expressesexactly PTIME. These simulation proofs can be easily modi�ed, by making all programs useonly constants appearing in the database. 23.2 Datalog Bottom-up Evaluation RevisitedLet us now consider an alternative proof for the Datalog case of Theorem 3.14. The main ideacomes from the semantics of Constraint Logic Programming [25]. It involves generalizing thenotion of a Herbrand atom. The result is a \natural" bottom-up evaluation for Datalog withdense linear order constraints.De�nition 3.16 Let P be a generalized database logic program, that is, a Datalog + constraintsprogram de�ning the IDB predicates and a generalized database de�ning the EDB predicates.1. A generalized EDB Herbrand atom is an EDB predicate symbol with distinct variable sym-bols as arguments and a conjunction of dense linear order constraints on these variables.(Note that these atoms are generalized tuples).2. A generalized IDB Herbrand atom is an IDB predicate symbol with distinct variable sym-bols as arguments and an r-con�guration � on these variables. F (�), as in De�nition 3.4,is a conjunction of constraints on these variables. (Note that these atoms are generalizedtuples of a special form). 2Example 3.17 For example, an r-con�guration can also describe a generalized Herbrand atomwhen it is attached to a predicate symbol. Start from the r-con�guration � of Example 3.2,assume predicate R has arity 5 and the database has only the constants f0; 1; 2; 3g in it. Theconjunction of constraints F (�) gives us a generalized Herbrand atom denoted as:R(x1; x2; x3; x4; x5) :| 0 < x1 < 1 < x3 = x4 < 2 = x5 < 3 < x2:2 First, let us observe that r-con�gurations are closed under projection. We say that an r-con�guration is projected onto a subset of its variables when all the variables outside this subsetare eliminated, i.e., their bounds are deleted from l; u and they are removed from the orderingf . It is easy to see that the projection of an r-con�guration is an r-con�guration of smaller size.27

The evaluation of a generalized database logic program P starts by collecting in a set Hall the predicate, variable, and dense linear constant symbols that occur in the program, thatis, either in its rules or in its database part. We call H the generalized Herbrand base of P ,because all symbols that are ever used during our evaluation must be in H . Since each programis by de�nition �nite, H must be also a �nite set.The generalized Herbrand universe of P consists of all generalized EDB Herbrand atomsof P (these remain �xed throughout the evaluation of the program) and all generalized IDBHerbrand atoms that can be built out of the generalized Herbrand base. Since there is a �nitenumber of r-con�gurations the generalized Herbrand universe is �nite. Its lattice of subsets isalso �nite and thus complete.We let an interpretation I of P be a subset of its generalized Herbrand universe, containingall the generalized EDB Herbrand atoms of P .De�nition 3.18 Let P be a generalized database logic program and H be its generalizedHerbrand base. Let I be an interpretation of P . All generalized EDB Herbrand atoms of I arederivable in one rule �ring from P and I . Generalized IDB Herbrand atoms are derivable inone rule �ring from P and I as follows:Choose any rule A0 :| A1; A2; . . . ; Ak; C of P , where A0; A1; A2; . . . ; Ak are relationalatoms and C is a conjunction of dense linear order constraints.Without loss of generality the n occurrences of variables in the relational atoms are distinctand any equalities are part of C.1. Choose any r-con�guration � of size n built from H .2. Check that F (�)! C is valid, i.e., true for all values of the free variables.3. If Ai, 1 � i � k is an EDB relational atom R(. . .) then project � onto its variablesto produce r-con�guration �i. Check that for some generalized EDB Herbrand atomR(. . .) :| in I we have that F (�i)! is valid.4. If Ai; 1 � i � k is an IDB relational atom R(. . .) then project � onto its variables toproduce r-con�guration �i. Check that generalized IDB Herbrand atom R(. . .) :| F (�i)is in I .5. If all tests are true and if A0 is the IDB relational atom R(. . .) then project � onto itsvariables to produce r-con�guration �0. Fire the rule once to derive generalized IDBHerbrand atom R(. . .) :| F (�0).We de�ne a function TP from interpretations to interpretations as follows:TP (I) = fA : A is derivable in one rule �ring from P and Ig2 28

In the above de�nition, generalized IDB Herbrand atoms are e�ectively r-con�gurationsand are treated purely syntactically. The constraints C and the generalized EDB Herbrandatoms are treated in a slightly di�erent fashion. This is because we avoid transforming theminto disjunctions of r-con�gurations. This could be done but would be rather awkward andunnecessary. Let us comment on the tests involving C and the EDBs.(1) Checking that F (�)! C is valid can be done simply by picking one assignment to thevariables that satis�es F (�) and verifying that it satis�es C. This is by Lemmas 3.9 and 3.10.(2) Checking that, for some generalized EDB Herbrand atom R(. . .) :| , the implicationF (�i)! is valid can be done scanning the input and for each tuple checking as in (1) above.The reason for this test is to guarantee that the multi-dimensional points of F (�i) are points ofthe input generalized EDB relation r that corresponds to R. Recall that �r is a DNF formula,in fact, it is the disjunction of all possible 's of this test. It is interesting to note that byLemmas 3.9 and 3.10: F (�i)! �r is valid i� F (�i)! W is valid i� F (�i) ^ W is satis�ablei� for some , F (�i) ^ is satis�able i� for some , F (�i)! is valid.We de�ne a model M of P to be an interpretation of P such that TP (M) � M . P mayhave several models ordered according to set inclusion. We have the following analogues totraditional logic programming:Theorem 3.19 Let P be a generalized database logic program and LP the intersection of allmodels of P . Then we have that,1. LP is the unique least model of P .2. LP is the unique least �xpoint of TP .3. LP can be produced by a �nite number of iterations of the mapping TP .4. Each generalized Herbrand atom in LP is derivable by a �nite number of rule �rings fromthe interpretation with empty IDBs.5. LP can be evaluated bottom-up in PTIME data complexity, by rule �rings starting fromthe interpretation with empty IDBs.Proof: (1) Identical to traditional logic programming model intersection property for Hornclauses. (2) By Tarski's theorem on the complete lattice of subsets of the generalized Herbranduniverse. (3) By the �niteness of the generalized Herbrand universe. (4) and (5) The argumentsare the same as for Datalog \naive" bottom-up evaluation. 2Call generalized naive evaluation the bottom-up evaluation by rule �rings starting from theinterpretation with empty IDBs. This evaluation has the well de�ned �nite output LP . Is thisgeneralized database output the desired result according to the semantics de�ned in Section 1?Recall that for the semantics in Section 1 we interpreted programs as mappings from unre-stricted relations to unrestricted relations. These semantics are computable via naive evaluationof Datalog rules on unrestricted relations. 29

The following theorem expresses the fact that generalized naive bottom-up evaluation of Pis semantically sound and complete. Namely, given any generalized database representing inputunrestricted relations then its generalized database output LP �nitely represents the output ofnaive evaluation on the input unrestricted relations.Theorem 3.20 Let P be a generalized database logic program with generalized EDB Herbrandatoms d1. Let d2 be the unrestricted relational database represented by the generalized databased1, that is, points(d1) = d2. If LP (d1) is the output of the generalized naive evaluation of Pand LP (d2) is the output of the naive evaluation of P [d2=d1] (with input d2 instead of d1) thenpoints(LP (d1)) = LP (d2).Proof: We need to prove two directions. The soundness direction, that is, any point p inpoints(LP (d1)) is also in LP (d2), and the completeness direction, that is, any point p in LP (d2)is also in points(LP (d1)).We prove each direction by induction on the number of iterations i of the two evaluations.We shall show that for each i, points(T iP (d1)) = T iP (d2). Since generalized naive evaluation is�nite this also proves that a �nite number of iterations su�ce for naive evaluation as well!For i = 0, we have points(T 0P (d1)) = points(d1) = d2 = T 0P (d2), hence the claim holds. Nowwe assume that points(T iP (d1)) = T iP (d2) is true and prove the equality for i+ 1.For the soundness direction, let A0 :| A1; A2; . . . ; Ak; C be any rule of P where C are denselinear order constraints. To perform a rule �ring of generalized naive evaluation, assume thatan r-con�guration � is chosen whose set of satisfying points also satisfy C. Suppose that each ofthe projections of � onto the A's of the body are r-con�gurations whose set of satisfying pointsare also satis�ed by some atoms of T iP (d1). Then by our rule application � is projected ontothe head of the rule and is turned into an atom of T i+1P (d1). Now let p be any point within �.Then all the projections of p are points. By the induction hypothesis, points(T iP (d1)) = T iP (d2).Therefore, each projection of p onto the A's of the body must be points within T iP (d2). Hence,taking that collection of points from T iP (d2) we can derive via naive evaluation into T i+1P (d2)the projection of p on the rule head. Thus, points(T i+1P (d1)) � T i+1P (d2).For the completeness direction, let A0 :| A1; A2; . . . ; Ak; C be any rule of P where C areany dense linear order constraints. To perform a rule �ring in naive evaluation, assume thatsome point p is chosen as the values of all variables in the rule. Suppose that the projectionsof p are all present among the atoms of T iP (d2), and hence the projection of p on the headis derived into T i+1P (d2) (call it p0). By Lemma 3.8 p satis�es some unique r-con�guration�. Use that � and generalized naive evaluation. The point p must also satisfy C and byinduction some atoms in T iP (d1). By Lemma 3.9 all points in � satisfy exactly the same formulas.Hence, taking � a generalized naive rule �ring can derive (as a projection of � onto the head)an atom of T i+1P (d1) that contains p0. We can reason similarly for each point, proving thatT i+1P (d2) � points(T i+1P (d1)). 2 30

3.3 Datalog Derivation Trees and ParallelismA generalized derivation tree for generalized Herbrand atom A using program P is a tree whosenodes are labeled as follows:1. A labels the root.2. Every leaf is labeled by a generalized EDB Herbrand atom of P .3. Every internal node is labeled by a generalized IDB Herbrand atom B. Let its childrenhave labels B1; . . . ; Bk. There is a rule in P and an r-con�guration such that: B is derivedby one �ring of this rule using B1, . . . , Bk as atoms and this r-con�guration.Each generalized derivation tree illustrates one possible sequence of rule �rings to derivethe label of its root. An obvious parallel evaluation method tries all possible ways of �ring eachrule in every iteration step. Therefore the number of iteration steps necessary for this parallelalgorithm to derive an IDB atom is exactly the minimum depth generalized derivation tree forthe IDB atom.This observation motivates the de�nition of a generalized polynomial fringe property. Wesay that a program P has the generalized polynomial fringe property, if each atom in LP has ageneralized derivation tree with at most a �xed polynomial (in the size of the EDB part of P)number of leaves.The (generalized) polynomial fringe property is a semantic notion. A natural class ofqueries can be described purely syntactically by piecewise linear programs|see [53] for theexact de�nition. Following [53] one can show that piecewise linear programs always have the(generalized) polynomial fringe property.Theorem 3.211. Datalog programs with dense linear order constraints that have the generalized polynomialfringe property can be evaluated bottom-up in closed form and NC data complexity.2. Piecewise linear Datalog with dense linear order constraints can be evaluated bottom-upin closed form and NC data complexity.Proof: Use the analysis of parallelism in Datalog programs by Ullman and van Gelder [53]by substituting \generalized derivation tree" for \derivation tree". 2We close this section with the observation that our development of constraint logic pro-gramming machinery can have many applications. For example, various forms of analysis ofDatalog: in logic programming (e.g strati�ed or in
ationary semantics) can be directly trans-lated into Datalog: + dense linear order constraints.31

4 Equality Constraints over an In�nite DomainThroughout Section 4, we assume that the constraint domain D is the set of integer numbers,but our analysis applies to any countably in�nite set. In a sense, we have a special case ofDatalog: and dense linear order constraints. We present a separate analysis because for denselinear order constraints we expressed 6= using <, but here we cannot.We are interested in this class of constraints for the following reason. Suppose we have arelational database. Any �nite relation in this database can be represented as a set of equalityconstraints. However, in the relational data model, there are \unsafe" queries for which theresult is not �nite. This is a signi�cant restriction in the relational model, since there is no wayto deal with these queries. However, in our generalized setting, the problem goes away. as longas the result has a �nite representation of the appropriate kind.For the relational calculus and Datalog: applied to �nite relations there are similar resultsin the literature [3, 29, 23]. Our work extends some of the results of [3, 29, 23], by addingrecursion and handling any input generalized relation. In fact, the speci�c number of constantsadded in [3] and [23] to the \active domain" (the set of constants that appear in the databaseand in the query) corresponds precisely to the induction depth used in proving our evaluationmethod correct.We show similar results to the dense linear order case, namely that the relational calculuswith equality constraints can be evaluated bottom-up in closed form and LOGSPACE datacomplexity, and that in
ationary Datalog: with equality constraints can be evaluated bottom-up in closed form and PTIME data complexity.The algorithm and proofs follow the same outline as those in Section 3.1. We have to usea di�erent notion of con�guration. As in Section 3.1, let � be the query formula applied to thegiven database instance, and let D� be the set of constants that appear in �. We will also havea special symbol � whose meaning will be explained below.De�nition 4.1 An e-con�guration � = (e; v) of size n consists of an equivalence relation e onf1; . . . ; ng and a sequence v = (v1; . . .vn), where each vi is in D� [f�g, such that,1. If i e j, then vi = vj , and2. If vi = vj 6= �, then i e j. 2Consider a point x = (x1; . . . ; xn). The e-con�guration that contains x is determined asfollows. The equivalence relation e is de�ned by i e j i� xi = xj . If xi is equal to some constantv in D�, we set vi equal to v. Otherwise vi will be the special symbol � whose meaning is thatxi is not equal to any constant in D�.Example 4.2 Let D� be the set f1; 2g. The sequence (1; 1; 2; 4; 2; 4; 3) is represented by thee-con�guration that consists of the equivalence relation e = ff1; 2g; f3; 5g; f4; 6g; f7gg togetherwith the sequence v = (1; 1; 2; �; 2; �; �). 2 32

We now proceed as in Section 3.1.De�nition 4.3 The formula F (�) with n free variables fx1; . . . ; xng that corresponds to an e-con�guration � = (e; v) of size n is the conjunction of: (1) xi = xj , whenever i e j, (2) xi 6= xj ,whenever :(i e j), (3) xi = vi whenever vi 6= �, and (4) for all v in D�, xi 6= v whenever vi = �.2De�nition 4.4 j= F (�)(a1; . . . ; an) means that F (�) is satis�ed by the assignment of each aito the corresponding variable xi.2De�nition 4.5 Let � = (e; v) be an e-con�guration of size n. An e-con�guration �0 = (e0; v0)of size n+ 1 is an extension of � i�1. For all i and j, 1 � i; j � n, i e j i� i e0 j, and2. v0 = (v1; . . . ; vn; v0n+1).2Lemma 4.6 Let � be an e-con�guration of size n, and let �0 be an extension of size n + 1.Then j= F (�)(a1; . . . ; an) i� for some a, j= F (�0)(a1; . . . ; an; a).Proof: Since F (�) is a conjunction of some of the conjuncts in F (�0), F (�0)(a1; . . . ; an; a)implies F (�)(a1; . . . ; an). For the converse,1. If for some i, i e0 n+ 1, let a = ai.2. Otherwise, there are two cases. If v0n+1 is in D�, let a = v0n+1. Otherwise, let a be someelement of the domain di�erent from a1, . . . , an, and not in D�. This is possible becausethere is an unbounded supply of integers. In both cases, it follows that (a1; . . . ; an; a)satis�es F (�0).2Lemma 4.7 Let � be an e-con�guration of size n. Then there exist domain elements a1, . . . ,an, such that j= F (�)(a1; . . . ; an).Proof: Induction on the size of �, using Lemma 4.6.2Lemma 4.8 Let a1, . . . , an be domain elements. There exists a unique e-con�guration � suchthat j= F (�)(a1; . . . ; an).Proof: Uniqueness follows from the fact that if �1 6= �2, then F (�1)^F (�2) is unsatis�able.To show this, suppose that (a1; . . . ; an) satis�es F (�1) ^ F (�2). Let �1 = (e1; v1) and �2 =(e2; v2).1. Suppose that e1 6= e2. Let i and j be such that i e1 j but :(i e2 j). Then F (�1)contains the conjunct xi = xj , while F (�2) contains the conjunct xi 6= xj , and thereforeF (�1)^ F (�2) is unsatis�able. 33

2. Suppose that e1 = e2 but v1 6= v2. Let i be such that v1i 6= v2i . If neither v1i nor vi2 isequal to �, then F (�1) contains the conjunct xi = v1i , while F (�2) contains the conjunctxi = v2i . If on the other hand, say, v1i = �, then F (�1) contains the conjunct xi 6= v2i ,while F (�2) contains the conjunct xi = v2i .Existence is shown by induction on n. The case n = 1 is trivial. Assuming that the resultholds for n, let a1,. . . , an, an+1 be given, and let � be such that (a1; . . . ; an) satis�es F (�).We show how to extend � to �0 such that (a1; . . . ; an+1) satis�es F (�0). There are two cases toconsider for a = an+1:1. For some i, a = ai. �0 is de�ned by j e0 k i� j e k whenever 1 � j; k � n, and j e0 (n+ 1)whenever i e j. Also set v0n+1 = vi.2. If a 6= ai, for all i, we de�ne the extension e0 of e by :(i e0 n+ 1) for all i from 1 to n. Ifa 2 D�, then v0n+1 = a, otherwise v0n+1 = �.In both cases, j= F (�0)(a1; . . . ; an+1).2Lemma 4.9 Let be a formula, with at most k free variables, using only constants in D�.Let � be an e-con�guration of size k and j= F (�)(a1; . . . ; ak) and j= F (�)(a01; . . . ; a0k), thenj= (a1; . . . ; ak),j= (a01; . . . ; a0k).Proof: We show, by induction on the size of , that the result holds for all e-con�gurations� and all ai's and a0i's.1. is xi = c. Then c must be in D�, and therefore F (�) must contain one of the conjuncts(xi = c) if vi = c or (xi = c0) if vi = c0; c 6= c0 or (xi 6= c) if vi = �. Since we assume thatdistinct constant symbols denote distinct elements we have: ai = c i� a0i = c.2. If is of the form xi = xj or : 1 or 1 _ 2, the proof is straightforward.3. If is (9x) 0, then (a1; . . . ; ak) satis�es i� for some a, (a1; . . . ; ak; a) satis�es 0. ByLemma 4.8, there is an e-con�guration �0 such that (a1; . . . ; ak; a) satis�es F (�0). Itis easy to see that �0 must be an extension of �. Since (a01; . . . ; a0k) satis�es F (�), byLemma 4.6 there is an a0 such that (a01; . . . ; a0k; a0) satis�es F (�0). But then, by theinduction hypothesis, (a01; . . . ; a0k; a0) satis�es 0, and therefore (a01; . . . ; a0k) satis�es . 2Lemma 4.10 Let � be an e-con�guration, and a formula using only the constants in D�.Then F (�) ! is valid (i.e., true for all assignments to the free variables) i� F (�) ^ issatis�able (i.e., true for some assignment to the free variables).Proof: If formula F (�)! is valid, then Lemma 4.7 implies that F (�) ^ is satis�able.On the other hand, if F (�) ^ is satis�able, say by (a1; . . . ; an), and F (�) is satis�ed by(a01; . . . ; a0n), then Lemma 4.9 implies that is satis�ed by (a01; . . . ; a0n). 234

In the same way as we did for dense linear order, we can de�ne algorithms EVAL� andBoolean-EVAL . These algorithms are similar to those for dense order, but use e-con�gurations.For example, the algorithm Boolean-EVAL takes as input an e-con�guration � and a formula that uses only constants in D�. It returns 1 i� F (�) ! is valid. Only the base cases ofBoolean-EVAL (�) are di�erent from the dense linear order case:1. is an atomic formula xi = xj . Boolean-EVAL (�) returns 1 i� i e j in �.2. is an atomic formula xi = c. Boolean-EVAL (�) returns 1 i� c = vi in �.The proof of correctness and the complexity analysis proceed in an analogous way to theanalysis of dense linear order. Also, for equality constraints we can develop constraint logicprogramming machinery analogous to that of the previous sections. Therefore:Theorem 4.111. Relational calculus with equality constraints over an in�nite domain can be evaluatedbottom-up in closed form and LOGSPACE data complexity.2. In
ationary Datalog: with equality constraints over an in�nite domain can be evaluatedbottom-up in closed form and PTIME data complexity. 25 Boolean Equality ConstraintsIn this section, we describe the addition of boolean equality constraints to Datalog. The ideais to use boolean operations as shorthands for manipulating various boolean domains, �nite orin�nite.In order to make the material self-contained, we �rst give some de�nitions and basic factsabout boolean algebras (Section 5.1). In Section 5.2, we describe the syntax and semanticsof a simple language, which we motivate using some examples. Note that, in this section, we\parameterize" the concepts of database and general database. This allows more generality andmore
exibility in the language. Finally, in Section 5.3, we describe some lower bounds relatedto bottom-up evaluation of �xed size programs, i.e., related to data complexity.5.1 Boolean AlgebrasA boolean algebra B is a sextuple < D;^;_;0 ; 0; 1>, where D is a set, ^, _ are binary functions,0 is a unary function and 0, 1 are two speci�c elements of D (or zeroary functions) such thatfor any elements x, y, and z in D the following axioms hold:35

x _ y = y _ x x ^ y = y ^ xx _ (y ^ z) = (x_ y)^ (x _ z) x ^ (y _ z) = (x ^ y) _ (x ^ z)x _ x0 = 1 x ^ x0 = 0x _ 0 = x x ^ 1 = x0 6= 1For boolean algebras there is a representation theorem, known as Stone's theorem: \Everyboolean algebra is isomorphic to a �eld of sets and every �nite boolean algebra is isomorphic tothe power set of a �nite set". Thus, there is a unique (up to isomorphism) �nite boolean algebrafor every cardinality 2m. The boolean algebra of cardinality 22m is the one freely generated bym generators and is denoted by Bm. For m = 0, we have B0=hf0; 1g;^;_;0 ; 0; 1i.Let hD;^;_;0 ; 0; 1i be any boolean algebra. Then the structure hD;^;�; 0; 1i, is called aboolean ring with unity if we de�ne for any elements x and y the binary function x�y (exclusive-or) as (x ^ y0) _ (x0 ^ y). Because of one-to-one correspondence between boolean algebras andboolean rings with unity the theory here can be developed in either setting [38]. In what followswe use algebras and, sometimes, the exclusive-or as an abbreviation.Boolean Terms: We use T (F; V [C), for the set of terms built in the usual way, from F theset of function symbols f^;_;0 ; 0; 1g, V a set of variable symbols, and C a of constant symbolsdistinct from 0; 1. Ground terms are those terms which do not have any variable symbolsappearing in them. A (B; �)-interpretation is a pair, where B is a boolean algebra and � isa mapping of the constant symbols C to the elements of B. For each t in T (F; V [C), givena (B; �)-interpretation and an element of B for each variable symbol appearing in t, we canevaluate t in the usual way and have it denote one element of B.Boolean equations: An equation between terms t1 and t2 in T (F; V [C) is a statement t1 = t2.We say that: (1) t1 = t2 is true in B; � if after applying � to the constant symbols in t1; t2then for every substitution of the variable symbols by elements of B, t1 and t2 denote thesame element of B. (2) t1 = t2 is true in B if it is true in B; � for every �. (3) t1 = t2 istrue if it is true in every B. A number of useful properties hold in all boolean algebras. Forexample, the following equations are true: x _ (y _ z) = (x _ y) _ z, x ^ (y ^ z) = (x ^ y) ^ z,x� (y � z) = (x� y)� z. For another useful example:Lemma 5.1 Let t(z1; z2; . . . ; zn) be a term, where the z's are the distinct variable or constantsymbols occuring in it. Then the following equation is true:t(z1; z2; . . . ; zn) = (t(0; z2; . . . ; zn)^ z01)_ (t(1; z2; . . . ; zn) ^ z1)2Disjunctive Normal Form: We use the convention that z0 means z0 and z1 means z. Also, thatthe z's are ordered lexicograpically from z1 to zn. Then, we also may write the equation in theprevious lemma as t(z1; z2; . . . ; zn) = Wa1=f0;1g(t(a1; z2; . . . ; zn)^ za11). By repeatedly using the36

above lemma and the nine boolean algebra axioms, it is possible to transform each term intothe following disjunctive normal form:t(z1; . . . ; zn) = _a=f0;1gn(t(a1; . . . ; an) ^ za11 ^ za22 ^ . . .^ zann)where Wa=f0;1gn denotes the disjunction of all 0, 1 substitutions for a1; . . . ; an. The functiondetermined by t(z1; . . . ; zn) depends only on the values of the 2n expressions t(a1; . . . ; an), whereeach ai is either 0 or 1. One can see that each of these 2n expressions has value either 0 or1. Hence, it is possible to see that there are 22n disjunctive normal forms with n variable andconstant symbols.Constructing Bm: We give a simple example of how to construct the free boolean algebra Bmout of a set of m constant symbols C = fc1; . . . ; cmg. First we build all possible ground terms.Next we �nd all the equivalence classes of ground terms under the boolean algebra axioms.Each equivalence class is an element of Bm and corresponds to a disjunctive normal form.There are 22m distinct equivalence classes or elements of Bm. We call the constant symbols thegenerators. (Note that, naively we would have used 2m bits to represent every element of Bm,but this way we can use logm bits for each generator).De�nition 5.2 A boolean equality constraint is a statement of the form t(x; c) =B;� 0, for a(B; �)-interpretation and a term t built using a set of variables x and a set of constants c.(We sometimes omit subscript � if it is obvious from the context).Constraint t(x; c) =B;� 0 has a solution if the formula 9x(t(x; c) = 0) is true in B; � (i.e.,if after applying � to the constant symbols in t, there exists a substitution of the variablesymbols by elements of B that makes t denote the 0 element of B). A solution of a constraintis a substitution that makes t denote 0. 2It is always enough to use boolean constraints of the form above, because the generalconstraint t1 =B;� t2 has the same solutions as the constraint t1 � t2 =B;� 0, just by using theboolean algebra axioms and the de�nition of �.A useful fact about solving equations in boolean algebras is Boole's Lemma, which can beproven using the nine boolean algebra axioms and the disjunctive normal form described above.Boole's Lemma gives a simple way to eliminate existential quanti�ers.Lemma 5.3 The boolean equality constraint t(x1; x2; . . . ; xn; c) =B;� 0 has a solution i� theconstraint t(1; x2; . . . ; xn; c) ^ t(0; x2; . . . ; xn; c) =B;� 0 has a solution i� Vb2f0;1gn t(b; c) = 0is true in B; �. Furthermore, the set of substitutions for x2; . . . ; xn that make the formula9x1(t(x1; x2; . . . ; xn; c) = 0) true in B; � is the same as the set of solutions of constraintt(1; x2; . . . ; xn; c) ^ t(0; x2; . . . ; xn; c) =B;� 0. 2Remark F: In Lemma 5.3 the expression Vb2f0;1gn t(b; c) denotes the conjunction of all 0, 1substitutions into the variable symbols of t(x1; x2; . . . ; xn; c) and is the same expression for allB; �. Note that the correctness of Boole's Lemma is trivial if B happens to be B0, otherwisethe conjunction may well be 0 even if none of its conjuncts are. 237

5.2 Bottom-Up Evaluation of Datalog with Boolean Equality ConstraintsThe following evaluation method applies to any B; �-interpretation. We only describe a lan-guage for the boolean equality constraint part. This language can easily be combined with theone for dense linear order constraints, as we illustrate in the last example of this section.Syntax: Here, for simplicity of presentation, we use the convention that the various occurrencesof x and y are possibly di�erent vectors of variables from the set fx1; . . . ; xj; y1; . . . ; ylg, and 0(x) =B;� 0 and k+1(x; y) =B;� 0 are boolean equality constraints.(1) The facts (or generalized tuples) have the form, R0(x) :| 0(x) =B;� 0:(2) The rules have the form: R0(x) :| R1(x; y); . . . ; Rk(x; y); k+1(x; y) =B;� 0.In these facts and rules all the x variables that appear in the body appear in the head. The yvariables appear only in the body.Semantics: A set of rules and facts de�nes, in the standard fashion, a monotone mapping fromrelations whose elements are from B to relations whose elements are from B. The semantics ofthis set of facts and rules is the least �xpoint of this mapping.One constraint su�ces per fact/rule: Because, from the axioms one can show the equivalences:(1) a =B;� b has the same set of siolutions as a�b =B;� 0, and (2) a =B;� 0 and b =B;� 0 have thesame set of solutions as a_b =B;� 0, which has the same set of solutions as a�b�(a^b) =B;� 0.Using these properties many constraints can be equivalently replaced by one.Bottom-up Evaluation: We describe the �ring of one rule. Assume that we have either givenEDB or derived IDB facts Ri(x; y) :| i(x; y) =B;� 0 1 � i � k, and that we have the ruleR0(x) :| R1(x; y); . . . ; Rk(x; y); k+1(x; y) =B;� 0: We produce a quanti�ed description of theset of tuples from B that such a �ring will derive.R0 = fR(x) : 9y 1(x; y) =B;� 0; . . . ; k(x; y) =B;� 0; k+1(x; y) =B;� 0gFrom the above remark, it follows that R0 can be represented as a set of facts that satisfyone equation, except for the quanti�ed variables on the right side. These extra variables canbe eliminated by using repeatedly Boole's Lemma that formula 9y (y; x) = 0 is satis�ablein B; � i� (0; x) ^ (1; x) =B;� 0 has a solution. This allows us to add R0 in unquanti�edsingle equation form to the derived facts. (Note that, here we use Boole's Lemma to eliminatequanti�ers instead of some other \boolean uni�cation" algorithm).Soundness and Completeness: The bottom-up evaluation consists of repeatedly �ring rulesstarting from the input (EDB) facts and rules. Since the transformation into a single constraintand the quanti�er elimination preserve the set of solutions, this bottom-up evaluation doesimplement the intended semantics.Termination: As shown in the following theorem, this bottom-up evaluation can be made toterminate after a �nite set of �rings, by using the property that terms can be rewritten (viathe axioms) into equivalent disjunctive normal forms.We present now the simple \adder circuit" example of Buttner and Simonis [8], but in thiscase we use bottom-up evaluation to illustrate the previous method.38

Example 5.4 An adder circuit can be built from two half-adder circuits. We de�ne the oper-ation of the half-adder by a simple database fact using �nite boolean equality constraints overB0. Note that here � is empty and we omit it.Halfadder(x; y; z; w) :| x� y =B0 z; x^ y =B0 wwhere x and y are input variables, z is the sum and w is the carry. Turning the two constraintsin the body into a single equivalent one we have:Halfadder(x; y; z; w) :| (x� y � z)_ ((x^ y)� w) =B0 0The adder circuit can be described by the use of two half-adder circuits and an extra constraint,where x and y are input variables, c is carry in, s is sum, and d is carry out.Adder(x; y; c; s; d) :| Halfadder(x; y; s1; c1);Halfadder(s1; c; s; c2); d =B0 c1 _ c2When using these de�nitions as a database query, the evaluation proceeds bottom-up,substituting the constraints of the halfadder into the rule for the adder. That yields:Adder(x; y; c; s; d) :| (c1 _ c2)� d =B0 0; (x� y � s1) _ ((x ^ y)� c1) =B0 0;(s1 � c� s) _ ((s1 ^ c)� c2) =B0 0By transforming the three constraints in the body into one and using Boole's lemma toeliminate s1; c1; c2 we can transform the above into:Adder(x; y; c; s; d) :| (x� y � c� s) _ ((x ^ y)� (x ^ c)� (y ^ c)� d) =B0 02Example 5.5 Suppose we replace the variable symbols x; y and c in Example 5.4 by theconstant symbols X ;Y ; C. Then we get expressions for a subset of the variables in the constraint,that is, for s and d, in terms of the constant symbols, that is, the parameters, X ;Y ; C. Forexample, one solution would be s =B0 X �Y � C and d =B0 (X ^Y)� (X ^ C)� (Y ^ C). Thissays that given any � that interprets X ;Y ; C as elements of B0, then s and d will be computedaccording to the last two constraints. (See also Remark G below). 2Next we show that this evaluation method works in general by the following theorem.Theorem 5.6 Let Q be any query program of Datalog with boolean equality constraints oversome B; �. Then Q can be evaluated bottom-up in closed form.Proof: Let v be the maximum arity of a relation in the given query program. Let m be thenumber of constant symbols in the program and the input database. Our evaluation methodwill consist of a number of iterative steps. In each step we add all new facts that can be derivedfrom the already known facts and rules. By the proper substitutions of database facts into the39

rules we get formulas on the right-hand side of the rules. From these formulas we eliminateexistentially quanti�ed variables using Lemma 5.3.We also have to show that the procedure terminates. To do that, we always keep everyfact in disjunctive normal form. Note that Lemma 5.3 does not introduce any new constantsymbols, hence the number of constant symbols m does not change during evaluation. Thequanti�er elimination yields constraints that have up to m constant symbols and v variables.That means that the constraints for each relation R can be represented by at most 22v+mfacts by counting only disjunctive normal forms. Hence, after each iteration step, every newlyderived constraint can be compared easily with facts already present in the database. If allnewly derived constraints are already present, then the iteration can stop, otherwise we addthe new constraints. This procedure clearly must terminate because there are only a �nitenumber of facts that can be added. 2A parametric fact (or parametric generalized tuple) is a fact (or generalized tuple) forwhich we have not speci�ed either B or � or both. A parametric generalized database is aset of parametric generalized tuples. (Note the di�erence between a parametric tuple and ageneralized tuple. A generalized tuple describes the set of all tuples that one gets by substitutingvalues for its variables. A parametric tuple describes a single tuple, given a substitution for itsparameters).Example 5.7 As a simple example consider the problem of �nding the parity of n bits. Byconsidering these n bits as parameters, a simple solution would be the following:Paritybit(x) :| x =B0;� Y1 � Y2 � . . .� YnEach di�erent � would be a di�erent assigment of values from B0 to these n parameters. So ifwe do not specify � this would be a parametric fact. 2Remark G: For the procedure described in Theorem 5.6, the particular B; � in which theconstants are interpreted are not important. Syntactically, the same constraints are derived bythe evaluation algorithm for each B; �. This is really a consequence of Lemma 5.3 and RemarkF. Therefore, we have that:The evaluation of Theorem 5.6 can be applied to an input parametric generalized database dto produce an output parametric generalized database Q(d), such that for each I = (B; �) wehave I(Q(d)) = Q(I(d)). 2From a practical point of view, boolean equality constraints can be added on top of theDatalog framework with dense linear order that we already examined in Section 3.2. We canstrictly sort the arguments of each database predicate, e.g., each argument can range eitherover the rationals or over a �nite boolean domain. All of our results still hold in this combinedframework.Example 5.8 If the number of bits n of the previous example can vary, then we do not wantto write a new program each time n changes. We would like to have a �xed program and changeonly the input (generalized) database or the input parametric (generalized) database. This wecould do with the following program: 40

Paritybit(x) :| Parity(k; x); Last(k)Parity(i; x) :| Parity(j; y);Next(j; i); Input(i; z); x =B0;� y � zParity(1; x) :| Input(1; z)where we use Next(1; 2); . . . ;Next(n � 1; n), Last(n), and Input(1;Y1); . . . ; Input(n;Yn) as theparametric database inputs to the Datalog with boolean and dense linear order constraintsprogram. We use in this example n explicitly given elements of the nonboolean domain toorder the parity computation. Then the program recursively �nds the parity bit for the �rst ibits for 1 � i � n. 25.3 Data Complexity and Finite Boolean Equality ConstraintsFor each �xed �nite boolean algebra B, �xed Datalog query Q with constraints over B; �, andvariable input generalized database d with constraints over B; �, query evaluation is a constantsize problem.This is because: Given an input generalized database d (even with an asymptotically grow-ing number of constant symbols) and a �xed �nite boolean algebra B and a �, it is possibleto make the number of constant symbols �xed by substituting for them elements of B using �.B has a constant number of elements and Q has a constant number of variables, because theyare �xed. So the constraints can be eliminated by substituting the variables with elements ofB, and checking in which substitutions the constraints hold. Each time the constraint holds,record the database tuple implied. That yields a database d0 that is equivalent to generalizeddatabase d. The size of d0 is at most a constant. Hence the query evaluation is in this case atrivial problem. For example, the adder circuit can be described using width 5 constant sizerelations over 0,1 that de�ne bit addition.Recall, however, that the procedure described in Theorem 5.6 is \parametric", i.e., syntac-tically the same constraints are derived by the evaluation algorithm for each B; �. This mightbe wasteful for the case of �xed B and Q, but it is a general method applicable when B ispart of the problem input and when we do not know � a priori (so we have to manipulate theconstants symbolically).We now take an algebra that is closer to the idea of our \parametric" evaluation than a�xed algebra. Namely, we assume that the algebra is part of the input. In particular we assumethat the algebra is Bm where m is the number of constant symbols c1; . . . ; cm in the inputdatabase and the program. In the rest of the exposition, we assume that � maps c1; . . . ; cm tothe generators of Bm, so we omit the subscript � in constraints.Lemma 5.9 Let (x1; . . . ; xn; y1; . . . ; ym) be a term over variables x1; . . . ; xn; y1; . . . ; ym andthe function symbols ^;_;0. Let Bm be the free boolean algebra generated by the constantsymbols c1; . . . ; cm. Then the formula 8y9x (x1; . . . ; xn; y1; . . . ; ym) = 0 is true in B0 if andonly if the constraint (x1; . . . ; xn; c1; . . . ; cm) =Bm 0 has a solution.41

Proof: Note that in this proof we have to reduce a decision problem of size l to anotherdecision problem of size l, where l is the size of the formula . We do the proof by rewritingthe �rst problem to the second one, using identities, i.e. we will use i� steps in the reductioninstead of proving both directions separately.First, we rewrite 8y9x (x1; . . . ; xn; y1; . . . ; ym) = 0 is true in B0 into:8y2f0;1gm(9x2f0;1gn (x1; . . . ; xn; y1; . . . ; ym) = 0) is true in B0 by recognizing that eachvariable must be either 0 or 1 and by adding parenthesis for clarity.Note that the subformula within the parenthesis has a solution for the y's if and only if theconjunction of all 0; 1 substitutions into the x variables has a solution for the y's , that is, ifand only if, 8y2f0;1gm(Vx2f0;1gn (x1; . . . ; xn; y1; . . . ; ym) = 0) is true in B0.The last formula is true if and only if each of the 2m subproblems that result from 0; 1substitutions to the y variables is true. By using the identity that a =B 0 and b =B 0 i�a_b =B 0, the last formula can be rewritten as Wy2f0;1gm(Vx2f0;1gn (x1; . . . ; xn; y1; . . . ; ym)) =0 is true in B0.Claim: The last formula is equivalent to Vx2f0;1gn (x1; . . . ; xn; c1; . . . ; cm) = 0 is true in Bm.(This claim is the basis of Martin and Nipkow's method [38], but we can prove it in a simpleway as follows).To prove the claim rewrite the term in the claim into disjunctive normal form. We getWy2f0;1gm(Vx2f0;1gn (x1; . . . ; xn; y1; . . . ; ym)) ^ cy11 ^ . . . ^ cymm . Note that in Bm the constantsymbols are distinct, and their complements are distinct from each other and from 0 and 1.(It is a well-known fact that each element of a boolean algebra has only one complement.)Hence none of the last m conjuncts is either 0 or a complement of another one among the lastm conjuncts. (These are the only ways we can prove a conjunction to be equivalent to 0.)Therefore the conjunction of the last m conjuncts is never 0. Hence, the �rst conjunct, whichcould be only 0 or 1, must be always 0 if the whole formula is 0 in Bm. Hence, the formulacan be 0 in Bm if and only if Wy2f0;1gm(Vx2f0;1gn (x1; . . . ; xn; y1; . . . ; ym)) = 0 is true in Bm.Since we don't have any constant symbols in the formula, instead of Bm we may use B0, whichproves the claim.So far we have rewritten the formula to Vx2f0;1gn (x1; . . . ; xn; c1; . . . ; cm) = 0 is true inBm. Finally, we use Boole's Lemma to get the formula 9x2fBmgn (x1; . . . ; xn; c1; . . . ; cm) = 0is true in Bm, which is equivalent to saying that (x1; . . . ; xn; c1; . . . ; cm) =Bm 0 has a solution.2 Note that, we cannot guess and verify a solution of (x1; . . . ; xn; c1; . . . ; cm) =Bm 0 that issmall. The size of each element of Bm can be very large. In fact:Corollary 5.10 Given as inputs any t and m, where t is any boolean formula with constantsymbols c1; . . . ; cm, deciding whether t =Bm 0 has a solution is �p2-complete (where Bm is thefree boolean algebra generated by the constant symbols c1; . . . ; cm). 242

Theorem 5.11 There is a �xed yes/no query programQ in Datalog with �nite boolean equalityconstraints such that: If for each input database d, with constant symbols c1; . . . ; cm, we takethe � that maps these constant symbols to themselves and we interpret B as Bm then decidingwhether Q(d) is yes is �p2-hard.Proof: Our reduction will use the AE-quanti�ed boolean formula problem (see Section1.2). We will produce a yes/no query expressed in Datalog with boolean equality constraintsover the �nite boolean algebra Bm, which is the free boolean algebra generated by m constantsymbols, such that the query answer is YES i� the quanti�ed boolean formula 8y9x (x; y) = 0is true in B0. In this reduction m = O(j j). Assume x = fx1; . . . ; xng and y = fy1; . . . ; ypg .When the terms substituted for the variables x1; . . . ; xn are terms that contain y variables,the constant symbols 0 and 1, and the boolean operators ^;_;0 in them, then the substitutionis called a parametric solution. To check whether the quanti�ed boolean formula holds, it isenough to check whether it has a parametric solution. (To see this, suppose that the formula istrue. Then there is a solution of x's for any assignment of y's. Take any xi. For each assignmentA of y, xi is either 0 or 1. We could build a simple formula that says \if A then xi is 0" or \ifA then xi is 1" as appropriate. We could therefore build a parametric solution for each xi.)Our reduction will proceed in four steps. In this reduction we will use script letters forconstant symbols.(1) We build a \tree" circuit for (x; y) using some number of gates. The gates will be referredto by the constants G1; . . . ;Gtop with Gtop as the output gate of the whole circuit. For each xi wecreate a new constant symbol Bi and substitute the x variables by these constant symbols whilecreating the circuit. Similarly, for each yi we create a new constant symbol Ai and substitutethe y variables by these constant symbols while creating the circuit. We also have a constantYES. So we have as constants the A's, B's, G's, and YES.In the reduction we will present a query Q that uses a number of input database relations,called EDB relations, and a number of initially empty output database relations, called IDB rela-tions (following standard database terminology). We have Input;Top;Andgate; Orgate;Notgate,A;B, Next and Last as EDB relations. We have as IDB relations, Value, Aexpr, Replace,Parametric and Output. The yes/no output is carried in Output, i.e., yes if Output(YES) andno otherwise.Suppose that formula (x; y) has a total of l occurrences of variables in it. We enter foreach occurrence of yi and for each occurrence of xj the values Ai and Bj via the distinct gatesG1; . . . ;Gl. We create l database facts as follows. If the kth occurrence of a variable in theformula is yi (or xj), we create, using the EDB database predicate Input, the database fact:Input(Gk;Ai)or Input(Gk;Bj)We also declare Gtop as the output gate of the circuit, using the EDB database predicate Top:Top(Gtop)43

Next we look at the parse tree of the formula . We tag each boolean operator ^;_;0 inthe parse tree by a new distinct gate. We tag the operator at the root by the gate Gtop. Thenfor every i; j; k if an ^ (or an _ or an 0) operator is tagged by gate Gi and has as left child anoperator tagged by gate Gj and has as right child (for a ^ and an _ gate only) an operatortagged by gate Gk , we create, using one of the EDB database predicates Andgate, Orgate, orNotgate, the database fact: Andgate(Gi;Gj;Gk)or Orgate(Gi;Gj;Gk)or Notgate(Gi;Gj)The term corresponding to (x; y) is built bottom-up by the evaluation method, using the IDBpredicate Value and the following rules:Value(k; z) :| Input(k; z)Value(k; z) :| Andgate(k; i; j);Value(i; x);Value(j; y); z =Bm x ^ yValue(k; z) :| Orgate(k; i; j);Value(i; x);Value(j; y); z =Bm x _ yValue(k; z) :| Notgate(k; i);Value(i; x); z =Bm x0The bottom-up evaluation derives as the value of the topmost gate Gtop some ztop such thatztop =Bm (B;A). As the rules are evaluated variables i; j; x; y are eliminated but constantsymbols Gtop;A;B remain.Remark i: We know that we have created Value so that Value(Gtop; (B;A) is in the �xpoint.We will now proceed to construct in the �xpoint of Axpr all ground terms e that contain only0; 1;A's and the boolean operators ^;_;0. We will then replace the B's in the �xpoint, by allpossible such e's in Replace and in Parametric.Remark ii: We also know that the constraint (e;A) =Bm 0 has a solution for the e's in Bm ifand only if 9x2fBmgn (x;A) = 0 is true in Bm. By Lemma 5.9 that last formula is true if andonly if 8y9x (x1; . . . ; xn; y1; . . . ; yp) = 0 is true in B0, which is our original quanti�ed booleanformula problem.Therefore �nding the e's corresponds to �nding a parametric solution. We show in the nextthree steps how a Datalog query can try all possible substitutions that may yield a parametricsolution. The proof will follow from Remarks i-ii above.(2) We create two unary EDB database relations A(x) and B(x) to store all A's and B'srespectively.We also create a unary IDB relation Aexpr(e), which when evaluated bottom-up will containin it all the terms of the algebra which can be written with only 0; 1,A's and the booleanoperators ^;_;0 in them. Aexpr(e) :| e =Bm 044

Aexpr(e) :| e =Bm 1Aexpr(e) :| A(e)Aexpr(e) :| Aexpr(e1); Aexpr(e2); e =Bm e1 ^ e2Aexpr(e) :| Aexpr(e1); Aexpr(e2); e =Bm e1 _ e2Aexpr(e) :| Aexpr(e1); e =Bm e01The relation Aexpr has many elements. In fact it will consist of all elements that can bewritten using the boolean operators and the boolean constant symbols A1, . . . , Ap. There are22p distinct elements because there are that many disjunctive normal forms of boolean formulasover those constant symbols. This is large, but still a �nite number.(3) Our main relation for replacement is the IDB relation Replace(a;B; c; d), whose intendedmeaning is that if in term a all occurrences of constant B are substituted by a term c whichhas only 0; 1, A's and the boolean operators ^;_;0 in it, then we get the term d.The actual bottom-up replacement can be done recursively as follows:Replace(b; b; c; c) :| B(b); Aexpr(c)Replace(a; b; c; a) :| A(a); B(b); Aexpr(c)Replace(0; b; c; 0) :| B(b); Aexpr(c)Replace(1; b; c; 1) :| B(b); Aexpr(c)Replace(o; x; y; n) :| Replace(o1; x; y; n1); Replace(o2; x; y; n2); o =Bm o1 ^ o2; n =Bm n1 ^ n2Replace(o; x; y; n) :| Replace(o1; x; y; n1); Replace(o2; x; y; n2); o =Bm o1 _ o2; n =Bm n1 _ n2Replace(o; x; y; n) :| Replace(o1; x; y; n1); o =Bm o01; n =Bm n01(4) To make the substitutions in sequence for each Bi, we order the B constants, using EDBpredicates Next and Last, and the database facts:Next(0;B1)Next(Bi;Bi+1)Last(Bn)The next two rules using IDB predicate Parametric show how in sequence each Bi can besubstituted by terms containing only 0; 1, A's and boolean operators ^;_;0.Parametric(expr; 0) :| Top(Gtop);Value(Gtop; expr)Parametric(new; j) :| Parametric(old; i);Next(i; j); Replace(old; j; y; new)When the last B constant is replaced, there are only A constants present within expr. Hence,we may have one last rule:Output(YES) :| Last(k); Parametric(expr; k); expr =Bm 045

As shown in Lemma 5.9 deciding whether expr =Bm 0 is equivalent to checking whetherfor each 0; 1 substitution into the A constants, the constraint expr =B0 0 has a solution.Since all possible substitutions of terms containing only 0; 1, A's and the boolean operators^;_;0 for the B's are tried by the bottom-up evaluation, there is any output i� there is aparametric solution i� 8y9x (x; y) = 0 is true in B0. This completes the reduction. 26 Discussion and Open QuestionsIn this paper, we have presented many examples of \declarative and e�ciently evaluable" con-straint database query languages. Our framework is based on a study of quanti�er eliminationprocedures combined with a use of data complexity.A number of technical questions remain open. For example: What is the precise datacomplexity of Datalog with �nite boolean equality constraints? Also, is it possible to develop asimilar framework for discrete linear order with constants? Note that, progress has been maderecently on this question in [44]. Discrete order can be used to model temporal databases.For recent developments of constraint-based approaches to temporal databases we refer to[4, 11, 26]. In Section 2.2, we left open the complexity of tableau containment with dense linearorder inequalities. This has been recently shown �p2-complete in [54].It would be very interesting to study the implementation of the \declarative and e�cientlyevaluable" languages outlined in this paper. The results presented here should be properlyviewed as positive arguments for the feasibility of such an e�ort. However, some critical researchquestions remain:(1) Although they do not appear as part of the relational data model, many physical accessstructures, e.g., B-tree indexes, extendible hashing etc, are critical in the implementation ofrelational databases. In Section 1.1, we argued that there are analogous simple access struc-tures in the more general CQL setting (provided intervals are constraints of the CQL and theprojection of any generalized tuple on x is an interval). Is it possible to perform 1-dimensionalsearching on generalized database attribute x in the same secondary memory access boundsthat one uses for 1-dimensional searching on relational database attribute x? Note that, whenthis problem reduces to on-line interval maintenace, the in-core performance of priority searchtrees is linear space and logarithmic time. In general, how can grid-�les, R-trees, quad-treesand other such structures be used to speed-up CQL evaluation strategies?(2) The technology of algorithms for logical theories is still rather complex, but much progresshas been accomplished in recent years. For example, see [43] for the state-of-the-art in realclosed �elds. Are there interesting special cases, for which simple algorithmic techniques can beused? These would be analogous to the special treatment of project-select-join query programsin the relational model. In particular, linear inequality constraints should be investigated in aCQL framework.(3) How do various optimization methods combine with our framework? This would involveextending [42]. For some recent research in this direction we refer to [22, 35, 40, 49].46

(4) Constraint query languages should be designed in an extendible way. For example, thiswould make it possible to integrate a select set of computational geometry algorithms as prim-itives in a bottom-up evaluation.(5) Finally, constraint query languages should be designed with features, such as databasetypes and complex objects. Using such features it might be possible to pose queries about therepresentation itself and not only about the unrestricted relations represented.Acknowledgements: We would like to thank Jean-Louis Lassez for his constant encour-agement. We would also like to thank Moshe Vardi and Allen Van Gelder for their manyconstructive comments on the material presented here, as well as Raghu Ramakrishnan andTerry Smith for numerous helpful discussions.References[1] S. Abiteboul, V. Vianu. Procedural and Declarative Database Update Languages. Proc.7th ACM PODS, 240{250, 1988.[2] A.V. Aho, Y. Sagiv, J.D. Ullman. Equivalences among Relational Expressions. SIAM J.of Computing, 8:2:218{246, 1979.[3] A.K. Aylamazyan, M.M. Gilula, A.P. Stolboushkin, G.F. Schwartz. Reduction of the Re-lational Model with In�nite Domain to the Case of Finite Domains. Proc. USSR Acad. ofScience (Doklady), 286(2):308{311, 1986.[4] M. Baudinet, M. Niezette, P. Wolper. On the Representation of In�nite Temporal Dataand Queries. Proc. 10th ACM PODS, 280{290, 1991.[5] R. Bayer, E. McCreight. Organization of Large Ordered Indexes. Acta Informatica, 1:173{189, 1972.[6] M. Ben-Or, D. Kozen, J. Reif. The Complexity of Elementary Algebra and Geometry.JCSS, 32:251{264, 1986.[7] A.H. Borning. The Programming Language Aspects of ThingLab, A Constraint-OrientedSimulation Laboratory. ACM TOPLAS 3:4:353{387, 1981.[8] W. Buttner, H. Simonis. Embedding Boolean Expressions into Logic Programming. Journalof Symbolic Computation, 4:191{205, 1987.[9] A.K. Chandra, D. Harel. Structure and Complexity of Relational Queries. JCSS, 25:1:99{128, 1982.[10] A.K. Chandra, P.M. Merlin. Optimal Implementation of Conjunctive Queries in RelationalDatabases. Proc. ACM STOC, 77{90, 1976.[11] J. Chomicki. Polynomial Time Query Processing in Temporal Deductive Databases. Proc.9th ACM PODS, 379{391, 1990. 47

[12] J. Chomicki, T. Imielinski. Relational Speci�cations of In�nite Query Answers. Proc. ACMSIGMOD, 174{183, 1989.[13] E.F. Codd. A Relational Model for Large Shared Data Banks. CACM, 13:6:377{387, 1970.[14] J. Cohen. Constraint Logic Programming Languages. CACM, 33:7:52{68, 1990.[15] A. Colmerauer. An Introduction to Prolog III. CACM, 33:7:69{90, 1990.[16] D. Comer. The Ubiquitous B-Tree. Computing Surveys, 11:2:121{137, 1979.[17] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Berthier. The Con-straint Logic Programming Language CHIP. Proc. Fifth Generation Computer Systems,Tokyo Japan, 1988.[18] J. Ferrante, J.R. Geiser. An E�cient Decision Procedure for the Theory of Rational Order.Theoretical Computer Science, 4:227{233, 1977.[19] M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP{completeness. Freeman, 1979.[20] Y. Gurevich, S. Shelah. Fixed-Point Extensions of First-Order Logic. Annals of Pure andApplied Logic, 32, 265{280, 1986.[21] M.R. Hansen, B.S. Hansen, P. Lucas, P. van Emde Boas. Integrating Relational Databasesand Constraint Languages. Computer Languages, 14:2:63{82, 1989.[22] R. Helm, K. Marriott, M. Odersky. Constraint-based Query Optimization for SpatialDatabases. Proc. 10th ACM PODS, 181{191, 1991.[23] R. Hull, J. Su. Domain Independence and the Relational Calculus. Technical Report 88{64,University of Southern California.[24] N. Immerman. Relational Queries Computable in Polynomial Time. Information and Con-trol, 68:86-104, 1986.[25] J. Ja�ar, J.L. Lassez. Constraint Logic Programming. Proc. 14th ACM POPL, 111{119,1987.[26] F. Kabanza, J-M. Stevenne, P. Wolper. Handling In�nite Temporal Data. Proc. 9th ACMPODS, 392{403, 1990.[27] P.C. Kanellakis. Elements of Relational Database Theory. Handbook of Theoretical Com-puter Science, Vol. B, chapter 17, (J. van Leeuwen editor), North-Holland, 1990.[28] P. C. Kanellakis, G. M. Kuper, P. Z. Revesz. Constraint Query Languages. Proc. 9th ACMPODS, 299{313, 1990.[29] M. Kifer. On Safety, Domain Independence, and Capturability of Database Queries. Proc.International Conference on Databases and Knowledge Bases, Jerusalem Israel, 1988.[30] A. Klug. On Conjunctive Queries Containing Inequalities. JACM, 35:1:146{160, 1988.48

[31] P. Kolaitis, C.H. Papadimitriou. Why not Negation by Fixpoint? Proc. 7th ACM PODS,231{239, 1988.[32] D. Kozen. Complexity of Boolean Algebras. Theo. Comp. Sci., 10, 221-247, 1980.[33] D. Kozen, C. Yap. Algebraic Cell Decomposition in NC. Proc. 26th IEEE FOCS, 515{521,1985.[34] W. Leler. Constraint Programming Languages. Addison Wesley, 1987.[35] A. Levy, Y. Sagiv. Constraints and Redundancy in Datalog. Proc. 11th ACM PODS, 67{81,1992.[36] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.[37] Y.N. Moschovakis. Elementary Induction on Abstract Structures. North Holland, 1974.[38] U. Martin, T. Nipkow. Uni�cation in Boolean Rings. Journal of Automated Reasoning,4:381-396, 1988.[39] E. McCreight. Priority Search Trees. SIAM J. Computing, 14:257{276, 1985.[40] I. N. Mumick, S. J. Finkelstein, H. Pirahesh, R. Ramakrishnan. Magic Conditions. Proc.9th ACM PODS, 314{330, 1990.[41] F.P. Preparata, M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,1985.[42] R. Ramakrishnan. Magic Templates: A Spellbinding Approach to Logic Programs. Proc.5th International Conference on Logic Programming, 141{159, 1988.[43] J. Renegar. On the Computational Complexity and Geometry of the First-order Theoryof the Reals: Parts I{III. Journal of Symbolic Computation, 13:255{352, 1992.[44] P.Z. Revesz. A Closed Form for Datalog Queries with Integer Order. Proc. 3rd InternationalConference on Database Theory, 1990, (to appear in TCS).[45] H.L. Royden. Real Analysis. 2nd Ed., 1983.[46] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing,and GIS. Addison-Wesley, Reading MA, 1990.[47] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, ReadingMA, 1990.[48] V.A. Saraswat.Concurrent Constraint Programming Languages. PhD thesis, Carnegie Mel-lon University, 1989.[49] D. Srivastava, R. Ramakrishnan. Pushing Constraint Selections. Proc. 11th ACM PODS,301{316, 1992. 49

[50] G.L. Steele. The De�nition and Implementation of a Computer Programming LanguageBased on Constraints. Ph.D. thesis, MIT, AI-TR 595, 1980.[51] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of Cali-fornia Press, Berkeley, California, 1951.[52] J.D. Ullman. Principles of Database Systems. Computer Science Press, 2nd Ed., 1982.[53] J.D. Ullman, A. Van Gelder. Parallel Complexity of Logical Query Programs.Algorithmica,3:5-42, 1988.[54] R. van der Meyden. The Complexity of Querying Inde�nite Data about Linearly OrderedDomains. Proc. 11th ACM PODS, 331{346, 1992.[55] P. Van Hentenryck. A Logic Language for Combinatorial Optimization. Annals of Opera-tions Research, 21, 247{274, 1989.[56] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.[57] M.Y. Vardi. The Complexity of Relational Query Languages. Proc. 14th ACM STOC,137{146, 1982.

50

