
MAP: Design and Implementation of aMobile Agents PlatformAntonio Pulia�to, Orazio Tomarchio, Lorenzo VitaIstituto di Informatica e TelecomunicazioniUniversit�a di CataniaViale A. Doria 6, 95025 Catania - ItalyE-mail:fap,tomarchio,lvitag@iit.unict.itAbstractThe recent development of telecommunication networks has contributedto the success of applications such as information retrieval and electroniccommerce, as well as all the services that take advantage of communica-tion in distributed systems. In this area, the emerging technology of mobileagents aroused considerable interest. Mobile agents are applications thatcan move through the network for carrying out a given task on behalf ofthe user. In this work we present a platform (called MAP (Mobile AgentsPlatform)) for the development and the management of mobile agents.The language used both for developing the platform and for carrying outthe agents is Java. The platform gives the user all the basic tools neededfor creating some applications based on the use of agents. It enables us tocreate, run, suspend, resume, deactivate, reactivate local agents, to stoptheir execution, to make them communicate each other and migrate.Keywords: mobile agents, distributed computing, Java, network manage-ment.1 IntroductionDuring the last few years, a considerable development in telecommunicationnetworks, which has contributed to the success of distributed systems, has beenobserved. Computers are no longer considered devices able to access only theirown resources, and to communicate with each other only occasionally. Con-versely, they are now part of a global environment where local and remoteresources can be shared. The development of telecommunication networks has1



therefore encouraged the development of services such as e-mail, the accessto remote databases, the Web, electronic commerce, and in general all thoseapplications that take advantage from the communication among di�erent dis-tributed environments.In this area, the development of so-called mobile agents was particularlyinteresting. Mobile agents are software modules able to move through the net-work autonomously, in order to carry out the task that they were given by theuser [CHK95, GK94, EW95]. As the word itself suggests, an agent is an entityacting on behalf of someone else. It helps a user to run a speci�c task, eitherby communicating with the user who launched it, or with other agents, or withthe environment in which it is. The main aspects that contributed the successof agents are their ability to operate autonomously and intelligently, and theirability to migrate. In fact, agents are applications able to carry out the taskfor which they were created autonomously, moving (if necessary) from a nodeof the network to the other, in order to obtain the information they need. Wecan therefore speak of mobile agents that, if necessary, carry the state (in whichthey were at the time of the suspension) with them, that is the set of the valuestaken by some variables inside the agent itself.The �rst agent systems developed were based on languages not widely used,and anyway they were almost produced in the environment of academic re-search. The �rst commercial agent system was Telescript [Whi94, Whi95] byGeneral Magic, which developed their own language and a development envi-ronment for agents. The use of Java [Gos95, Ham96, SJRK97] favoured thedesign and the creation of several platforms for agents. Some of the mobileagent systems developed in Java are Aglets [LO97] by IBM, Odyssey [Mag97]by General Magic, Voyager [Obj97] by ObjectSpace, and other systems pro-duced by university research such as Mole [SBH96], and JavaToGo [LM96]. Wecan refer to the work [KS97], for a comprehensive review of such platforms.The main features common to such systems include some agent servers that, ineach host, create the environment of execution for agents. Such servers supplythe basic services to agents. Agents of such systems can move from a server tothe other by using several mechanisms, and carrying a part of their state withthem.In this work we present MAP (Mobile Agents Platform), a platform for thedevelopment and the management of mobile agents, which was completely de-veloped by using Java. This platform gives the user all the basic tools neededfor the creation of applications based on the use of agents. It enables us tocreate, run, suspend, resume, deactivate, reactivate local agents, to stop theirexecution, to make them communicate with each other and migrate. The use2



of Java (thanks to its independence from hw and sw architectures) enabledus to develop a platform able to operate in heterogeneous environments. Be-sides, Java is equipped with mechanisms that facilitate the dynamic executionof parts of code that can be downloaded through the network from remotenodes [WWR97]. Agents can move from a node to the other, taking a part oftheir state with them. In particular, we used the mechanisms of Object Seri-alization [Mic97] present in the latest version of Java Development Kit (JDK1.1).The rest of this paper is organized as follows: in section 2 we make a com-parison between the traditional techniques of distributed computing and pro-gramming paradigms based on mobile code, and we examine the advantagesintroduced by the latter. In section 3 we describe the architecture and somekey concepts of the design of MAP; besides, we describe the management mech-anisms of the system. In section 4 we present some notes concerning the imple-mentation of the system. An application to distributed network management ispresented in section 5. Finally, in section 6 we present the conclusions, togetherwith the future working directions for the development of the platform created.2 Mobile Code Paradigms versus Traditional Dis-tributed ComputingTraditional distributed computing has been based on the well known client/serverparadigm. The mechanism on which such paradigm is based is RPC (RemoteProcedure Call). This mechanism extends the traditional procedure call, andenables a process in a computer to call a procedure in another one. A com-munication channel between the client application and the server process isestablished; through this channel the client sends a request including the pa-rameters of the procedure called. The server, after processing, sends the resultsback to the client. Of course, the client and the server need "to agree" onthe procedures that can be accessed in remote, on their arguments and on thereturned result. In such approach, each interaction between client and serverrequires of two messages to be sent through the network; this means that theconnection must be kept open during the whole interaction. The code of theprocedure to be executed is on the machine that runs it.An alternative to such traditional mechanisms has recently been spreading,and is based on the use of environments that give a sort of "code mobility". Bythis term we mean the possibility to change dynamically at run-time the bindingbetween the software components of an application and their physical locationwithin a network of computers. Even though the research about code mobility3



is not totally new [BHJL88, SG90], the possibility of applying such mechanismsto distributed environments on a wide range[CPV97, MRK96], aroused ourinterest.Several levels of mobility can be considered. First of all, we make a distinc-tion between code mobility and agent mobility. In the �rst paradigm we caninclude the mechanisms of remote execution and code on demand.In the case of remote execution, the code is transferred to a remote node,where it is run up to the end; the results are therefore returned to the node thatsent the code. The transferred information include both the code to be run andthe parameters needed; the node on which the code must be run is de�ned bywho starts the whole operation. The program on the remote node, once it hasbeen activated, can use the same mechanism for activating other executions onseveral nodes; the recursive application of such model leads therefore to a treeprocessing structure.In the case of code on demand, the client on which the code will be runcan require a speci�c software module from a remote server. Java applets area very common example of such type of technology.However, in both cases, the code is transferred before being activated. Con-versely, by agent mobility we mean the possibility of transferring a softwaremodule (agent) after starting its execution. An agent starts its execution on amachine, and then can stop it, move to another machine and continue its exe-cution there. An agent can also move several times during its execution, unlikethe mechanisms of code mobility described before, in which the program, afterstarting its execution on the remote site, no longer moves.Two levels of agent mobility are distinguished in literature ([CPV97, GV97]):strong migration and weak migration. An agent in execution consists of: thecode (program state), the contents of variables (data state), and the stack (exe-cution state). Strong migration is the highest level of mobility; all of the threecomponents of the state are captured and transferred to the destination ma-chine, where this state is restored and the agent continues its execution fromthe exact point where it had stopped. Even though such feature is very power-ful and interesting from a programmer's point of view, few systems implementa complete strong migration [Whi95, BHJL88, JvRS95]. If we work in hetero-geneous environments, such as the ones where the agent systems will operate,we need to adopt a representation of the state that could be moved amongthe di�erent architectures. This operation is very di�cult to carry out, so thesystems that implement a strong migration are carried out in a homogeneousenvironment that is speci�cally created [Whi95, BHJL88, JvRS95]. Besides, inagent systems we often deal with multi-threading languages, so this operation4



might reveal much more expensive and time-consuming.For these reasons, the most common operation in agent systems is what wascalled weak migration, in which the execution state is not transferred. It meansthat the agent, once it has reached the node of destination, will not be able tocontinue its execution from the point in which this had been stopped, but willstart from the beginning, and will keep the value of the state variables as theone before the transfer. But in this scheme the programmer must expressly savethe information needed for a correct restarting of the execution within variableswhich are part of the data state. By examining such variables, the agent (onceit has reached the node of destination) will be able to restart the executioncorrectly. In an agent system, unlike a system of migration of processes wheremigration is imposed from outside (for example for load balancing purposes), anagent migrates on its own iniziative, and the programmer can do the operationsof preparation to the migration of the agent.This load imposed to the programmer is however balanced by the fact thatthe state information to be transferred is much smaller than in the case ofstrong migration.The use of an agent-based approach while carrying out a distributed appli-cation, gives some advantages than a traditional solution. In this case, whiledeveloping a distributed application, the interaction among the components isgenerally considered not dependent on their location. In some cases, it is �xedby the programmer during the implementation phase. In distributed object sys-tems such as CORBA [TM95], the location of the components is deliberatelyhidden to the user, who does not need to take care, nor can see where the ser-vice required is done. In such environments there is no distinction between theinteraction of objects resident on the same host and objects on di�erent hosts.But in some situations, we need (in the phase of design) to consider the exis-tence of di�erent locations and of di�erent resources in each location. As it isreported in [WWWK94], hiding or not considering that the interaction betweentwo software components can greatly depend on their mutual location can leadto unforeseen problems of performances or of reliability of the application itself.For example, using a scheme based on agents can therefore be useful ev-erytime we need to use resources strictly connected to a machine. In fact, ifnecessary, an agent can move to the site of another agent or where a �xed re-source is resident, to do the operations required without generating any tra�cin the network, by using only local communications. A typical case concernsclient/server applications in which the client must retrieve some data from theserver and operate complex �ltering operations on such data; by moving anagent containing the procedures that deal with �ltering, only the data that5



actually concern the client are sent through the network, with a considerablereduction of communication costs. Besides, a permanent connection betweenclient and server is not necessary in such scheme; the agent, once it is sent tothe site of destination, can continue doing its operations and can communicatethe results as soon as the client connects to the network again.The use of mobile agents can therefore be useful in several �elds of ap-plication, although none of the following applications requires the use of mo-bile agents: in fact, each application can be run with the existing technolo-gies [CHK95, MRK96]. However, as we said in precedence, the use of mobileagents can contribute to build these distributed applications more simply ande�ectively, at the same time.These are some of the areas in which such technology can actually give apositive contribution:� Information retrieval: mobile agents can be an e�ective tool for retrievinginformation within a distributed system; in fact, an agent containing theuser's query can migrate to the place(s) where the information is actuallystored; here the agent can do the necessary operations of research and�ltering, and give the user only the useful information [EW94];� Electronic commerce: electronic commerce is an increasingly developingarea in the Internet; mobile agents can help the user to research the prod-ucts that meet his (her) requirements, to search for the most conveniento�ers, etc. [Way95, Whi94];� Mobile computing: mobile agents can be an e�ective tool for mobile com-puting: in fact, users want to access network resources from any position,notwithstanding the band limits due to the present wireless technologies.Users submit their requests through an agent, which runs their requestwithin the network, and enables the user to obtain the results in anothermoment (so the user does not need to remain logged in, waiting for theresults). Besides, this enables us to exploit the �xed calculation resourceswithin the network, avoiding the use of mobile devices, whose calculationpower and operation autonomy are often limited [CGH+95];� Distributed Management: mobile agents enable us to delegate some man-agement functions from a central station to remote nodes, thus reducingthe workload on the central station, and improving the exploitation of theavailable band [GYM+95, PTV97];� Distributed Computation: thanks to the possibility to pilot the node on6



which mobile agents are run, they are a new paradigm for parallel calcu-lation on a distributed network of workstations [BFD96];� Collaborative Applications: this is a growing area of development: in thisarea, mobile agents might be an e�ective support for sharing data andany kind of documents; they can give a 
exible architecture and enableusers to work by sharing various network resources [WPW+94].3 MAP: Mobile Agents PlatformIn this section we introduce the agent system MAP 1 that we developed andimplemented. MAP is a platform for the development and the management ofmobile agents that gives all the primitives needed for their creation, execution,communication, migration, etc.3.1 Reference ArchitectureThe MAP basically consists of agents that can move to the various nodes of anetwork, and of servers that constitute the environment in which the agents willrun. The architecture of the MAP is shown in Fig. 1, in which the constituentparts of the platform, which will be described later, are pointed out.
Agent Daemon

Agent

Agent

Instancer

Instancer

Context

CodeServer

Server

Network
ClassLoader

MessageFigure 1: MAP architectureA node belonging to the platform MAP consists of an object called Serverthat contains, all the entities needed for the operation of the platform itself. Ina host there can be more than one Server, each identi�ed by the DNS addressof the host and by the TCP port number on which the server is listening foraccepting agents or messages coming from the network.1MAP is available at the following Web site: http:/sun195.iit.unict.it/MAP/map.html7



Server The Server is the main object of a MAP server, in which the entitiesDaemon and Context and local agents are instanced. The presence of a Serveron a node characterizes it as belonging to the platform MAP. Its activationenables the node to accept and have agents coming from the network run, aswell as to activate other agents locally.Daemon The Daemon is the entity of the MAP that listens on a certainport, waiting for agents coming from other nodes and for messages to be de-livered to local agents. Both messages and agents travel in a serialized form.Each time a stream arrives from the network, the Daemon creates a speci�centity called Instancer, whose task is to instance the serialized object, both ifit is an agent and a message. In both cases, the object, once it is instanced, ispassed to the Context, whose task will be to make it run (if it is an agent), orto send it to the receiver agent (if it is a message).Context The Context is one of the basic objects in a MAP server. Infact, it knows all the agents present on the server, saved on an appropriate list,and gives the user all the functionalities needed for their management. TheContext, puts some methods at disposal, which enable to create an agent, tomake it run, even on a server in which its code is not present, to suspend it, todeactivate it, to resume its execution, and even to kill it, if necessary. Besides,the Context gives an agent that is running on a speci�c server the possibility toobtain some information about the agents that are running on the same serveror on a remote server.The Context is the element of the MAP that manages the communicationamong the agents. It can take place both in a synchronous and asynchronousway, and both among agents resident on the same MAP server and on di�erentMAP servers.Each object coming from the network in serialized form, is passed to theContext, after having been instanced by the Instancer. If such object is anagent, the Context initializes it, by giving it a reference to the Context, andlater, starts its execution, and consequently updates the list of local agents.Conversely, if the object is a message, the Context makes sure to deliver it tothe receiver agent, of course after checking the agent's availability to receivesuch message, or of its actual presence on the server.NetworkClassLoader The NetworkClassLoader of the platform MAP isused for enabling the agents to run on a speci�c MAP server, even when theirclass is not present there, and to exchange (through messages) also objects ofclasses not de�ned locally. The Daemon, in order to use such classes transpar-ently, once a stream of data comes from the network, creates a new Instancerobject by loading it with the NetworkClassLoader. From now on, each object8



to which the Instancer will refer will be automatically instanced with the sameNetworkClassLoader. Thus, if one of the classes to which the agent or the mes-sage refers is not actually present locally, the NetworkClassLoader will searchfor it in the network, in a list of MAP servers �xed within the Context. Oncethe class is found, it is loaded from the remote site and saved in a cache memorymanaged by the Context, so that it can be accessed and used, if necessary, alsoby of the other agents of the server.CodeServer The CodeServer is an internal entity of the Context, dy-namically created; in fact, the Context of a platform instances a new objectCodeServer each time it is requested a class by a NetworkClassLoader, eitherlocal or remote. The CodeServer is given a table of the Context in which allthe classes available in the platform are saved.As we have already described before, one of the most important featuresof the platform MAP is the possibility to make an agent migrate or to sendmessages through the network even to servers whose classes to which suchobjects refer are not present. In order to permit this, each time a speci�c objectreaches a new server, the corresponding Daemon loads a new Instancer objectwith a NetworkClassLoader that deals with the loading of such classes. If theyare not available locally, the NetworkClassLoader interrogates the CodeServerof some remote sites saved on an appropriate vector (within the Context andthat can be updated dynamically), searching for the classes required. If it�nds them, they are loaded from the remote site and saved in the local tableof classes; from now on, they can also be accessed by all of the other agentspresent in the server.3.2 Agents' StructureAs we have already said before, agents represent the entities of the platformMAP that can move in the network for carrying out a task assigned by the userwho created them.Within our platform, an agent is able to:� suspend itself and another agent: to suspend an agent means to stop itsexecution temporarily, by keeping all the references to the agent active;� resume a suspended agent: to wake up an agent means to resume itsexecution from the point where it had been suspended before;� deactivate itself and deactivate another agent: to deactivate an agentmeans to stop its execution, by downloading the agent to a disk in aserialized form, and by deleting all the references to it;9



� reactivate an agent: it means to deserialize an agent that had been deacti-vated before, by giving all references back to it and restarting its executionfrom the beginning;� create a new agent: to create an agent means to instance a new Agentobject (by setting its Context, its Identi�er, etc) and to make it run;� kill an agent: it means to stop the execution of an agent, by deleting allits references and cancelling its entry from the list of the agents in theserver;� migrate to a new server: to migrate an agent means to move it to anothernode, where it will start its execution from the beginning;� communicate with other agent, through messages, both in a synchronousand in an asynchronous way.From an implementation point of view, an agent is an object obtained byinstancing a class deriving from the Agent class supplied by the platform. Thisenables the agent to take advantage from the methods put at our disposal bysuch class.3.3 Managing the platformThe platform MAP enables the user to take advantage from a graphic interface(shown in Fig. 2) that permits an easier management of the agents in a MAPserver. The graphic interface shows a window where all the agents runninglocally are listed, and the following information is given for each of them:� the identi�er of the agent� the name of the class of the agent� the current state.If we select an agent from the list, we can do on it any operations availablein the platform, through the buttons present in the upper toolbar (suspend,resume, deactivate, activate, dispose, go).Conversely, by using the button Run, we can make an agent run (resident ona speci�c MAP server, not necessarily local) to a di�erent MAP server, wherethe class of the agent can even be absent. Figure 3 helps us to explain thisfeature better. The user has activated the MAP User Interface on the machinepc10a, and can make an agent run on any node where the MAP server is active.To do this, we only need to indicate the name of the class that implements the10



Figure 2: MAP User Interfaceagent desired (in this case MyAgent), and the URL of the node where we wantto make it run (pc10e). The class that implements the agent does not need tobe resident in the node where there is the user (pc10a), or in the one where theagent will run (pc10e): in fact, it only needs to be in a node where the MAPserver is active and that the user will have to indicate as source URL (pc10din �gure 3).Thanks to this functionality, the platform presented enables us to use at bestparadigms based on remote evaluation and code on demand described before.
MAP Server MAP Server MAP Server

pc10a pc10d pc10e

MyAgent.classMAP
User Interface

Execution

MyAgent
of

Figure 3: Running an Agent on Di�erent MachinesThe button Server enables us to obtain some information about the MAPservers active in the system, and about the agents in execution on such server.The window that appears (Fig. 4), is divided into three columns; the �rst oneshows the list of the active MAP servers in the system. By selecting a server,the second column will show the agents in the selected server and their state.On the third column the classes available on the selected server are shown; they11



are useful for an agent that must move to one of these nodes.Besides, the user can add a new server to the list at any moment, throughthe button Add New Server.

Figure 4: List of MAP Servers architecture4 Implementation NotesIn this section we describe the main functionalities of platform MAP and someimplementation details. First we describe some fundamental design issues re-garding the choiche of the implementation language, the serialization mecha-nism for agent migration, the loading of classes from the network and commu-nication issues among the agents. Then, we describe how the basic mechanismsprovided by MAP have been implemented.4.1 Implementation languageA fundamental feature of such a system is the possibility for agents to move andrun on di�erent architectures. For this reason, the choice of the environmentwhere to develop such platform is very important in the design phase, and notonly during the implementation phase.The use of traditional compiled languages such as C is not convenient be-cause they are generally machine-dependent languages, and therefore not suit-able to be used in heterogeneous environments. Besides, since they are compiledlanguages, a considerable e�ort is required for carrying out a platform whosecode must move from a node of the network to the other, dynamically linkingnew code modules. The languages that are more suitable to the developmentof mobile agents are interpreted and/or scripting languages, that can run onseveral machines, provided that the corresponding interpreter is installed in12



them. However, the scripting languages belonging to this category do not giveall the power and the 
exibility required for developing a complete and e�ectiveplatform.For such reasons, we chose to use Java for developing the whole architecture.Java [Gos95] is an object-oriented, multithreaded language; it is portable ondi�erent hw/sw architectures, and has had a considerable success thanks to thepossibility to build small applications (applets) which, integrated within Webpages, allow their execution on the client machine within the browser. But thepotentialities of Java are much higher than this simple use [SJRK97, WWR97].These are the main characteristics that, in our opinion, make it a good languagefor the development of a platform for mobile agents:� it is object-oriented (and so a modular development of the code is favoured,and the user can write one's agents with limited e�orts, starting from theclasses provided by the platform);� it is portable on an increasing number of hw/sw architectures;� the presence of mechanisms for the dynamic loading of classes from dif-ferent sources and for their dynamic linking at run-time in the currentapplication;� possibility of serializing the objects thus enabling their transfer throughthe network;4.2 Agent migrationThe platform implements a weak migration by relying on the mechanisms ofObject Serialization present in version 1.1 of Java [Mic97]. Object Serializationis a mechanism that enables us to represent an object as a stream of bytes.All the variables of the object are stored within the serialized representationof an object, together with all the references to objects contained in it. In theprevious section we pointed out the main reasons why a strong migration canbe hardly implemented in a heterogeneous environment. Besides, in our casethe capture, the transfer and the restoration of the execution state can causeconsiderable problems. In fact, Java is an interpreted language, so a part of theexecution state is included within the state of the interpreter; the capture ofsuch state becomes practically impossible without changing the interpreter. Buta modi�cation of the interpreter, as well as the intrinsic problems, would leadto the loss of portability, which (as we said before) is one of the fundamentalfeatures of an agent system. 13



In our platform, when an agent must migrate, it is serialized and the streamof bytes obtained is sent to the destination node through the network. Herethe stream is deserialized, and the execution of the agent is restarted with thestored state.4.3 Loading classes from the networkWhile serializing an object, the code of the class to which the object belongsis not stored, but only a reference to it is stored. Thus, since in our systemthe classes needed are not always in the arrival node, we had to take advantagefrom another feature of Java: the possibility to load some classes dynamically inruntime from di�erent sources. This was done by using a NetworkClassLoader,whose task is to load the classes that are necessary for the execution of an agent.If the class needed is not present locally, the NetworkClassLoader searches forit within the nodes contained in a list speci�ed during the con�guration and thestartup of the platform servers, but that can be updated in runtime, thanks tosome information brought by the agents. Such mechanism permits therefore toexploit the network at best. The transfer of the bytecode of a class will occuronly when required (in case of migration of several instances of the same agent,we do not need to transfer the same class); in any case, we can always do thetransfer from the "closest" node, and not necessarily from the departure nodeof the agent.Thanks to such mechanisms for the dynamic loading of classes present inJava, the paradigms of code on demand and remote execution that we de-scribed before have been integrated within of our platform. Such mechanismsare available for each agent, that can therefore change its behavior accordingto the classes that it can load on each node. The designer can therefore inte-grate the di�erent paradigms of mobility that are more suitable to the speci�capplication, even if only one working environment is used.4.4 Communication among agentsThe ability of an agent to communicate with other agents is another basiccharacteristics that must be given by such a system. Several communicationmechanisms are possible. In the MAP the communication among the agentstakes place through the exchange of messages that may be synchronous orasynchronous. In our opinion, this solution (unlike some mechanisms based onRPC) is very 
exible and enables us to implement several schemes of communi-cation and synchronization among agents. Anyway, the platform gives the basicmechanisms for the communication: any advanced schemes of communication14



and co-operation (see for example KQML/KIF [FMFM94]) can be implementedbeyond the primitives supplied.The encoding of messages takes place in the same way as the migration ofagents. In fact, the mechanism that we selected for transferring messages is theObject Serialization, in order to permit the sending of complex objects amongdi�erent agents.In the case of a synchronous message, we obtain a behavior similar to aRPC. In fact, the agent sender invokes an appropriate primitive, by giving themessage and the identi�er of the agent recipient, and stops, waiting for a replymessage. Conversely, in the case of an asynchronous message, the agent senderinvokes another primitive and, after sending the message, continues with itsexecution. Further details of such mechanism will be given later, in section 4.4.5 Basic MechanismsInformation about an agentWe can obtain some information about the agents instanced on a node of thesystem, by recalling the methods getList and getAgentList, which give usa list containing the Identi�ers of all the agents in the local server and a listcontaining all the information concerning them, respectively. Each element ofthe list consists of:1. a reference to the corresponding agent;2. the identi�er of the agent. Even though it is already contained in theagent, we needed to introduce it as another attribute for searching and�nding the agent in the platform (and therefore in the list), also when theagent is deactivated. In fact, in this case the reference to the agent is setto null;3. the name of the class of the agent;4. a short description;5. the name of the owner user;6. two boolean values, susp and deact, which indicate whether an agent iscurrently suspended or deactivated, respectively.Creation of an agentThe creation of an agent can be carried out with the method runAgent of theContext. It needs three parameters: the name of the class to be instanced,the URL (interpreted as the couple consisting of the host name and listening15



port) of the MAP server where the class has to be found (Source URL) andthe URL of the MAP server where the agent has to run (Destination URL). IfSource URL and Destination URL are both the same as the URL of the localMAP server (Home), the class has to be searched locally (both in the directoryagent and in the global cache of the Context) and run there. Conversely, whenthe Source URL is the same as the local URL but the Destination URL isdi�erent, the agent is instanced locally but, before it is run, it migrates to theDestination URL. Finally, if the Source URL is di�erent than Home, a systemagent, called Mover, is launched. It automatically migrates to the Source URLand, once it reaches its destination, recalls the method runAgent of the LocalContext, whose Source URL is the same as Home and whose Destination URLis the same as the previous one. If the graphic interface has been activated,the method runAgent of the Context can be recalled by pressing the buttonRun. It enables us to specify (in an appropriate window) the three parametersdescribed before.Suspension of an agentThe platform MAP enables us to suspend the execution of an agent at anymoment, and to resume it later from the point where it was suspended. Anagent can be suspended by recalling the primitive suspend. It searches for theagent (for which we want to suspend the execution) within the list of agentsin the node, and, if the primitive �nds it, stops it (with the method lock),suspends its Thread, and later releases the agent and updates its state. Weneed to point out that an agent can be suspended only if it is still active, thatis only if it has not already been suspended or deactivated, and if no one elseis already acting on it.Resuming an agentThe primitive resume enables us to wake up an agent that had been suspended,and to continue its execution from the exact point where it had been stopped.The method resume searches for the agent which we are interested in (withinthe list) and, once it has been found, stops it; then it searches and wakes upthe corresponding Thread of execution and, after that, releases the agent andupdates its state. Of course, we can resume an agent only if it is actuallysuspended, and if no one is already acting on it.Deactivation of an agentAn agent can be deactivated with the method deactivate. To deactivate anagent means to download it to a disk in a serialized form and cancel the referenceto it in the corresponding entry of the agents list. The method deactivate worksthe same way as the method suspend.Reactivation of an agent 16



The method activate enables us to reactivate an agent that had been deacti-vated before. Such method is similar to the method resume, but in this casethe agent is before loaded by the stream and then run from the beginning. Ofcourse, the reference to the agent cancelled before by deactivate is adequatelyreassigned.Killing an agentIf we do not want to continue the execution of an agent, it can be killed with themethod dispose, that stops its execution (stopping the corresponding Thread)and cancels the corresponding entry from the list, so to delete all the referencesto such agent.Migration of an agentIt is the most important aspect of the platform MAP, because it enables ap-plications deriving from the class Agent to migrate through the network. Themechanisms needed for the migration of an agent (described before) are imple-mented within the primitive go of the Context. When an agent or a user recallsthis method, the Context checks that the agent that must migrate is actually inthe node and, once the Context �nds it, serializes it, sends it to the destination,stops its Thread and deletes the corresponding entry in the vector of agents.Once the agent has reached its destination, the Daemon of the receiver nodeinstances a new Instancer that reads the stream and recalls the appropriatemethods of the Context, to instance the agent. Even in this case an agent canmigrate only if it is not deactivated and if no other entity is acting on it.Communication and Synchronization among agentsAs we said before, the communication among agents takes place through mes-sage passing. Messages, as well as agents, travel in a serialized form. TheInstancer, when receives a stream from the network, distinguishes whether itis an agent or a message through a boolean value inserted at the beginning ofthe stream, which takes a true value for the agent and false for the messages.Besides, in the case of messages, the reading of two other booleans from thestream enables us to make a distinction between synchronous and asynchronousmessages, and between messages and requests of classes.Exchanging messages among the agents is always managed by the Context Inthe case of asynchronous messages, the agent recalls the method sendMessageof the Context it belongs to, passing the message to be sent and the identi�erof the receiver agent as parameters. At this point, the Context checks whetherthe receiver agent is local or remote; if it is a local agent, the Context insertsthe message into the queue of messages of the agent. The receiver agent canextract each time (when it likes) the messages in the queue. Conversely, if theagent is remote, the Context sends the message to the remote platform that17



contains that agent, whose address is speci�ed in the message. Sent messageswill be inserted into a queue from which the receiver agent can take them byusing the method getMessage.In the case of synchronous messages, the agent uses the method sendSyncMessageof the Context. The mechanism is the same as in the previous case. The di�er-ence is in the sender's behavior: in fact, in this case the agent waits for a replymessage from the receiver agent. The receiver agent manages the messages sentto it through the method receiveSyncMessage.5 Application to Network ManagementIn this section we will show how the MAP platform described can be success-fully used in network management, overcoming some of the limits typical of acentralized approach. Current network management systems adopt a central-ized paradigm according to which a protocol requires the management appli-cation to periodically access the data collected by a set of software moduleslocated on network devices. There are, however, a large number of circum-stances in which adoption of a distributed paradigm which can assign part ofthe control and management functions to the various network nodes is moreappropriate [Gol93, GYM+95]. The basic idea is to reverse the logic accordingto which the data produced by the network devices is periodically transferredto the central network management station. If the management applicationsare encapsulated into the agents, it is possible to port them onto the networkdevices, thus performing a series of micromanagement operations locally andreducing the workload on the network management station and the overhead onthe network as a whole. It is, in fact, reasonable to foresee the spread of networkdevices equipped with increasingly powerful local resources which will be ableto reach a high degree of management sophistication, amply outperforming thereference models imposed by the platform-centered paradigm [GY95].The basic components of a current network management system are:� one or more management stations (Network Management Station or NMS);� a (potentially large) number of nodes, each of which running a modulecalled an agent, which monitors and collects the data for the node;� amanagement protocol, used to transfer management information betweenagents and management stations.The NMSs execute management applications which monitor and controlnetwork elements such as hosts, routers, terminal servers etc, by accessing their18



management informaton. The latter is seen as a collection of managed objects,stored in Management Information Bases (MIB) [MR91]. Sets of correlatedobjects are de�ned in the MIB modules, which are speci�ed using a subset ofthe standard OSI notation Abstract Syntax Notation One (ASN.1), de�ned asStructure of Management Information (SMI).In the Internet environment, the Simple Network Management Protocol(SNMP) [ea90, Ros91] has become the standard protocol for network man-agement. A network management protocol has to provide the primitives forthe exchange of information between SNMP-agents and management stations.The set of SNMP primitives is relatively simple and o�ers three types of op-erations for the control of the various agents: the set and get operators to setor read the value of a variable and the getnext operator to examine the nextvariable in the MIB. SNMP-agents have a very simple structure and normallyonly communicate in response to requests for variables stored in the MIB. Theycannot perform any management action on their local data.The centralized paradigm adopted by the SNMP is appropriate in variousnetwork management applications, but the rapid increase in the size of networkshas posed the question of the scalability of this or any other centralized model.At the same time, the calculation power of network nodes has also increased,making it possible to entrust them with signi�cant distributed managamentfunctions.Centralization is generally appropriate for applications where the need fordistributed control is low, frequent polling of MIB variables is not required andonly a small amount of information is needed. A classical example is monitoringand viewing a few MIB variables. The status of a router interface, for instance,or the status of a link only entails querying and viewing a small number of MIBvariables and centralized management is therefore suitable.At the other extreme we have applications which require frequent pollingof a large number of MIB variables, which have to perform calculations on avast amount of information. An example would be calculation of a functionindicating the level of functioning of the network, which requires very frequentdetection of variations in a large number of MIB variables. In such cases mon-itoring and control should be performed as close as possible to the device inquestion.Using MAP we can go beyond this distribution of tasks: the various manage-ment functions in our model do not have to reside statically on certain devices,but can migrate and dynamically execute on the particular node involved inthe operation.In order to use MAP for network management purposes, some additional19



modules have been developed. As we are assuming that the platform is to beintegrated with current management protocols, each node will need a standardSNMP agent to monitor the node. To use the data recorded by this agent, itwill be necessary to use a set of classes implementing the SNMP communicationprotocol. These classes will thus be able to commmunicate with both local andremote SNMP agents. If these classes are present on each node, higher-levelmanagement applications can be constructed and implemented as agents. Thesystem thus obtained is easy to extend: if the need arises to introduce a newmanagement function speci�c to a certain subnetwork, it will be su�cient todevelop it as an agent and it will be ready to be executed on any node belongingto MAP.Application ExampleNetwork management decisions have to be based on a vast amount of real-timedata relating to the various devices: much of this data has to be suitably com-bined to give the system administrator all the available information regardingthe functioning of the network in a simple, concise form.In order to evaluate the e�ectiveness of the approach proposed as a validsupport to the management decisions made by the system administrator, asimple application for the calculation of a function known in literature as thehealth function [GY95] has been implemented. In general the term health func-tion refers to a linear aggregation of a number of management variables, each ofwhich gives a particular measure regarding the device. In the SNMP environ-ment these functions are typically a linear combination of MIB variables andthe rate of exchange of these variables.Such a function cannot be e�ciently integrated in an SNMP-based networkmanagement model as the SNMP does not have the 
exibility and decentraliza-tion required for its implementation. Although, in fact, it is possible to examineapproaches based onMIB metavariables, with which these aims can be achieved,the functions to be calculated can often not be foreseen statically a priori. Onthe contrary, the aim is to be able to insert various kinds of functions accordingto the particular device to be monitored and its functioning conditions. Of thevarious functions that can be implemented, only some will be suitable for aparticular device and will be used for limited periods during the functioning ofthe system; there is therefore no need to have all the functions present in eachnode in the network, nor do they need to be executed continuously.Using MAP we are allowed to execute these functions directly on the node,thus meeting one of the main requirements for which they were introduced,i.e. compression of the amount of data to be processed directly at source. The20



approach also allows the functions to be processed only when really necessary,thus avoiding the collection of a vast amount of MIB variables which will neverbe used completely.The function used as an example is the following:U(t2; t1) = ((ifInOctets2 + ifOutOctets2)� (ifInOctets1 + ifOutOctets1)) � 8ifSpeed � (sysUptime2 � sysUpT ime1)=100in which IfInOctets (IfOutOctets) represents the total number of bytes re-ceived (sent), ifSpeed is the nominal speed of the interface and SysUpTime isthe time since the interface started working.This function represents a measure of the average utilization of the networkinterface of a host, calculated during the interval t2 � t1 = sysUpT ime2 �sysUpT ime1. Taking measurements in which the time interval is minimal (i.e.t2 ! t1), the value of U tends towards an instantaneous value for the utilizationof the interface.By monitoring this function for the various network devices, the systemadministrator can gain a picture of the tra�c generated on the various nodes.If, for example, the value for a speci�c node remains above a given thresholdfor long periods of time, this might indicate the presence of congestion in thenetwork. By analyzing other functions, the administrator can understand thecauses of the phenomenon and take the appropriate action.We wish to emphasize that the function used only is to be considered as anexample of application for our platform; it is clear that complete managementapplications will require a large, complete set of functions of this kind. The fol-lowing considerations comparing the classical SNMP-based approach and ouragent-based approach are of a general nature and do not depend on the partic-ular function used.In an approach based exclusively on the SNMP, to calculate the value takenby the management function it is necessary to perform continuous polling ofthe MIB variables involved. The tra�c generated for a station will therefore begiven by: Traffic(byte=s) = n � l�twhere:� n represents the number of MIB variables present in the function� l represents the average length in bytes of the SNMP packets containingthe values of the MIB variables required21



� �t is the variable sampling interval: its value depends on the type offunction and the tradeo� between precision of the values calculated andthe need to avoid saturating the network with excessively frequent pollingVarious observations and measurements have shown that the values involvedin the expression typically fall within the following ranges:� n = 3� 10� l = 50 � 400byte� �t = 0:5� 5sConsidering the worst case in which n = 10; l = 400bytes and � = 0:5, wewould get a network tra�c of Traffic = 8Kb=s which, as it refers to a singlestation and a single management function, is far from negligible. However,extreme values are only rarely reached: if we examine the most frequent valuesfor these magnitudes (n = 4; l = 200bytes and � = 0:5) we get a value ofTraffic = 1:6Kb=s.Obviously if this function has to be monitored for various stations the traf-�c generated by the management messages may be signi�cantly high. If, forexample, there are N = 30 nodes to be monitored, the average tra�c due tothe management processes would be N � Traffic = 48Kb=s.Use of our approach eliminates all of this tra�c; once the agent containingthe application has been transferred on a remote node, the actual calculationwill be performed locally with no need for communication with the centralcontrol station. Interaction between the agent on the remote node and the agenton the management station will only occur if certain speci�c situations arise: forexample, in our particular case, if the function calculated exceeds a thresholdfor a long period of time a noti�cation message will be sent back, which themanager can immediately examine or store in order to create a historical �le ofnetwork events.The only tra�c generated using our approach is due to the transfer of theagent code from a node to another one on which it will be executed. The size ofthis code is quite limited: in the application implemented here, for example, thebytecode actually transferred is 4 Kbytes. Besides the small size of the codeto be transferred, there is also the fact that the transfer is only made whennecessary, and only for functions actually executed on remote nodes.Use of MAP, however, does have a cost in terms of utilization of the com-putational resources of the network nodes, as a consequence of the remoteexecution of management functions. 22



The MAP server which always has to be active on the platform nodes executein the background and as with any other daemon process, the only resource itconsume in sleep periods is memory. It only becomes active when receives anagent or a message to deliver to some local executing agent. Signi�cant measuresfor the processes involved in our platform are given in Table 1. They refer toa Sun SparcStation with the Solaris 2.4 operating system. The �rst columnindicates CPU utilization, the second the percentage of system memory usedby the process, the third the resident set size and the fourth the total size ofthe process. CPU% MEM% RSS (Kb) SIZE (Kb)MAP Server 0.0 5.3 � 1600 � 2800MAP Agent con-taining a TypicalApplication 10� 30 10� 15 � 4500 � 5500
Table 1: Calculation Resources Used by ProcessesWhen an application is being executed on a node, the CPU workload 
uc-tuates with peaks reaching 20-30% utilization; the size in the memory growsaccording to the type of application, but is never high and comparable withcommon applications. In addition, subsequent applications on the nodes willexecute with the same interpreter, that is, a new application will be executed asa new thread in the same process. This means that subsequent applications willnot require execution of a new interpreter instance, thus reducing the amountof calculation resources consumed.6 Future works and ConclusionsIn this work we presented the design and the implementation of a platformfor the development of mobile agents. We discussed the main designs issuesconcerning the mobility and the communication between agents, and we gavesome implementation details. The language used for the development of thewhole platform, as well as for the programming of agents, is Java. It was chosenfor its features of portability on di�erent architectures, multithreading, dynamicbinding, possibility of dynamic loading of classes from di�erent sources, etc.We showed the di�erent functionalities of the platform with the implemen-tation of a fully distributed network management service. A comparison withthe classical centralized approach is also provided. We described the applica-23



tion created for managing the agents in a distributed system simply: thanksto such interface, we can easily create or suspend some agents, run them onremote nodes, check the state of agents in any remote server.We are currently working to equip the MAP with adequate mechanisms ofsecurity and of access control. In particular, a SecurityManager will be placedbetween the Context and the agents requiring the services. Since each agent inMAP passes through the Context for accessing the system resources, the Secu-rityManager will be able to check the single actions of each agent. Each agentwill have an owner and, according to this, will be associated with a list of au-thorizations about the resources that can be used. In general, an "anonymous"agent will be able to be associated with a set of standard authorizations limitingits actions, so not to allow the agent to do any action that might endanger theintegrity of the system or the unauthorized access to remote information.References[BFD96] L.F. Bic, M. Fukuda, and M.B. Dillencourt. Distributed Comput-ing Using Autonomous Objects. IEEE Computer, 29(8):55{61,August 1996.[BHJL88] A. Black, N. Hutchinson, E. Jul, and H. Levy. Fine-Grained Mo-bility in the Emerald System. ACM Transactions on ComputerSystems, 6(1):109{133, February 1988.[CGH+95] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, andG. Tsudik. Itinerant agents for mobile computing. IEEE Per-sonal Communications, 2(5):34{49, October 1995.[CHK95] D.M. Chess, C.G. Harrison, and A. Kershenbaum. Mobile Agents:Are they a Good Idea? Technical Report RC19887, IBM T.J.Watson Research Center, March 1995.[CPV97] A. Carzaniga, G.P. Picco, and G. Vigna. Designing DistributedApplications with Mobile Code Paradigms. In Proc. of the 19thInt. Conf. on Software Engineering (ICSE'97), May 1997.[ea90] J. D. Case et al. A Simple Network Management Protocol(SNMP). RFC 1157, 1990.[EW94] O. Etzioni and D. Weld. A Softbot-based interface to the Internet.Communications of the ACM, 37(7), July 1994.24



[EW95] O. Etzioni and D.S. Weld. Intelligent agents on the Internet: Fact,Fiction, and Forecast. IEEE Expert, 10(4):44{49, August 1995.[FMFM94] T. Finin, D. McKay, R. Fritzon, and R. McEntire. The KQMLInformation and Knowledge Exchange Protocol. In Third Int.Conf. on Information and Knowledge Management (CIKM'94),November 1994.[GK94] M. Genesereth and S. Ketchpel. Software Agents. Communica-tions of the ACM, 37(7):48{53, July 1994.[Gol93] G. Goldszmidt. On Distributed System Management. Proceed-ings of the IFIP International Symposium on Integrated NetworkManagement, 1993.[Gos95] J. Gosling. The Java Language Environment: a White Paper.Technical report, Sun Microsystems, May 1995.[GV97] C. Ghezzi and G. Vigna. Mobile Code Paradigms and Technolo-gies: A Case Study. In Proceedings of the First Int. Workshop onMobile Agents (MA97), Berlin, Germany, April 1997.[GY95] G. Goldszmidt and Y. Yemini. Distributed Management by Dele-gation. Proc. of the 15th International Conference on DistributedComputing Systems, 1995.[GYM+95] G. Goldszmidt, Y. Yemini, K. Meyer, M. Erlinger, J. Betser, andC. Sunshine. Decentralizing control and intelligence in networkmanagement. In Proc. of the 4th International Symposium onIntegrated Network Management, May 1995.[Ham96] M. A. Hamilton. Java and the Shift to Net-Centric Computing.IEEE Computer, 29(8):31{39, August 1996.[JvRS95] D. Johansen, R. van Renesse, and F. Schneider. An Introductionto the TACOMA Distributed System. Technical Report 95-23,University of Troms and Cornell University, June 1995.[KS97] J. Kiniry and D. Simmermann. A hands-on look at Java MobileAgents. IEEE Internet Computing, 1(4):49{52, July 1997.[LM96] W.W. Li andD.G. Messerschmitt. Java-To-Go: Itinerative Computing usingJava. http://ptolemy.eecs.berkeley.edu/dgm/javatools/java-to-go,September 1996. 25



[LO97] D.B. Lange and M. Oshima. Programming Mobile Agents in Javawith the Java Aglet API. Technical report, IBM Tokyo ResearchDivision, 1997.[Mag97] General Magic. Agent Technology: General Magic's Odyssey.http://www.genmagic.com/html/agent overview.html, 1997.[Mic97] Sun Microsystems. Java Object Serialization Speci�cations.http://java.sun.com/products/jdk/rmi/serial, 1997.[MR91] K. McCloghrie and M. Rose. Management Information Base forNetwork Management of TCP/IP-based Internets: MIB-II. RFC1213, 1991.[MRK96] T. Magedanz, K. Rothermel, and S. Krause. Intelligent Agents:An Emerging Technology for Next Generation Telecommunica-tions? In Proceedings of INFOCOM'96, San Francisco, CA, USA,March 1996.[Obj97] ObjectSpace. Voyager Core Technology: Technical Overview.http://www.objectspace.com/voyager, 1997.[PTV97] A. Pulia�to, O. Tomarchio, and L. Vita. A Java-based DistributedNetwork Management Architecture. Third International Con-ference on Computer Science and Informatics, CS&I'97, March1997.[Ros91] Marshall T. Rose. Network Management is Simple: you just needthe Right Framework. Proceedings of the IFIP Second Interna-tional Symposium on Integrated Network Management, 1991.[SBH96] M. Strasser, J. Baumann, and F. Hohl. MOLE - A Java BasedMobile Agent System. In Proceedings of the 2nd ECOOP Work-shop on Mobile Object Systems, July 1996.[SG90] J.W. Stamos and D.K. Gi�ord. Remote Evaluation. ACM Trans-actions on Programming Languages and Systems, 12(4):537{565,October 1990.[SJRK97] K. Srinivas, V. Jagannathan, Y.V.R. Reddy, and R. Karinthi.Java and Beyond: Executable Content. IEEE Computer,30(6):49{52, June 1997.[TM95] R. Zahavi T.J. Mowbray. The essential CORBA: Systems Inte-gration Using Distributed Objects. John Wiley & Sons, Inc., 1995.26



[Way95] P. Wayner. Agents Unleashed: A Public Domain Look at AgentTechnology. AP Professional, 1995.[Whi94] J.E. White. Telescript Technology: The Foundation for the Elec-tronic Marketplace. Technical report, General Magic, 1994.[Whi95] J. White. Mobile Agents White Paper. Technical report, GeneralMagic, October 1995.[WPW+94] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, andB. Peet. Concordia: An Infrastructure for Collaborating Mo-bile Agents. In Proceedings of the First Int. Workshop on MobileAgents (MA97), April 1994.[WWR97] A. Wollrath, J. Waldo, and R. Riggs. Java-Centric DistributedComputing. IEEE Micro, pages 44{53, June 1997.[WWWK94] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note on Dis-tributed Computing. Technical Report TR-94-29, Sun Microsys-tems Laboratories, November 1994.

27


