MAP: Design and Implementation of a
Mobile Agents Platform

Antonio Puliafito, Orazio Tomarchio, Lorenzo Vita

Istituto di Informatica e Telecomunicazioni
Universita di Catania
Viale A. Doria 6, 95025 Catania - Italy

E-mail:{ap,tomarchio,lvita}@iit.unict.it

Abstract

The recent development of telecommunication networks has contributed
to the success of applications such as information retrieval and electronic
commerce, as well as all the services that take advantage of communica-
tion in distributed systems. In this area, the emerging technology of mobile
agents aroused considerable interest. Mobile agents are applications that
can move through the network for carrying out a given task on behalf of
the user. In this work we present a platform (called MAP (Mobile Agents
Platform)) for the development and the management of mobile agents.
The language used both for developing the platform and for carrying out
the agents is Java. The platform gives the user all the basic tools needed
for creating some applications based on the use of agents. It enables us to
create, run, suspend, resume, deactivate, reactivate local agents, to stop

their execution, to make them communicate each other and migrate.

Keywords: mobile agents, distributed computing, Java, network manage-

ment.

1 Introduction

During the last few years, a considerable development in telecommunication
networks, which has contributed to the success of distributed systems, has been
observed. Computers are no longer considered devices able to access only their
own resources, and to communicate with each other only occasionally. Con-
versely, they are now part of a global environment where local and remote

resources can be shared. The development of telecommunication networks has

therefore encouraged the development of services such as e-mail, the access
to remote databases, the Web, electronic commerce, and in general all those
applications that take advantage from the communication among different dis-
tributed environments.

In this area, the development of so-called mobile agents was particularly
interesting. Mobile agents are software modules able to move through the net-
work autonomously, in order to carry out the task that they were given by the
user [CHK95, GK94, EW95]. As the word itself suggests, an agent is an entity
acting on behalf of someone else. It helps a user to run a specific task, either
by communicating with the user who launched it, or with other agents, or with
the environment in which it is. The main aspects that contributed the success
of agents are their ability to operate autonomously and intelligently, and their
ability to migrate. In fact, agents are applications able to carry out the task
for which they were created autonomously, moving (if necessary) from a node
of the network to the other, in order to obtain the information they need. We
can therefore speak of mobile agents that, if necessary, carry the state (in which
they were at the time of the suspension) with them, that is the set of the values
taken by some variables inside the agent itself.

The first agent systems developed were based on languages not widely used,
and anyway they were almost produced in the environment of academic re-
search. The first commercial agent system was Telescript [Whi94, Whi95] by
General Magic, which developed their own language and a development envi-
ronment for agents. The use of Java [Gos95, Ham96, SJRK97] favoured the
design and the creation of several platforms for agents. Some of the mobile
agent systems developed in Java are Aglets [LO97] by IBM, Odyssey [Mag97]
by General Magic, Voyager [Obj97] by ObjectSpace, and other systems pro-
duced by university research such as Mole [SBH96], and JavaToGo [LM96]. We
can refer to the work [KS97], for a comprehensive review of such platforms.
The main features common to such systems include some agent servers that, in
each host, create the environment of execution for agents. Such servers supply
the basic services to agents. Agents of such systems can move from a server to
the other by using several mechanisms, and carrying a part of their state with
them.

In this work we present MAP (Mobile Agents Platform), a platform for the
development and the management of mobile agents, which was completely de-
veloped by using Java. This platform gives the user all the basic tools needed
for the creation of applications based on the use of agents. It enables us to
create, run, suspend, resume, deactivate, reactivate local agents, to stop their

execution, to make them communicate with each other and migrate. The use

of Java (thanks to its independence from hw and sw architectures) enabled
us to develop a platform able to operate in heterogeneous environments. Be-
sides, Java is equipped with mechanisms that facilitate the dynamic execution
of parts of code that can be downloaded through the network from remote
nodes [WWR97]. Agents can move from a node to the other, taking a part of
their state with them. In particular, we used the mechanisms of Object Seri-
alization [Mic97] present in the latest version of Java Development Kit (JDK
1.1).

The rest of this paper is organized as follows: in section 2 we make a com-
parison between the traditional techniques of distributed computing and pro-
gramming paradigms based on mobile code, and we examine the advantages
introduced by the latter. In section 3 we describe the architecture and some
key concepts of the design of MAP; besides, we describe the management mech-
anisms of the system. In section 4 we present some notes concerning the imple-
mentation of the system. An application to distributed network management is
presented in section 5. Finally, in section 6 we present the conclusions, together

with the future working directions for the development of the platform created.

2 Mobile Code Paradigms versus Traditional Dis-
tributed Computing

Traditional distributed computing has been based on the well known client/server
paradigm. The mechanism on which such paradigm is based is RPC (Remote
Procedure Call). This mechanism extends the traditional procedure call, and
enables a process in a computer to call a procedure in another one. A com-
munication channel between the client application and the server process is
established; through this channel the client sends a request including the pa-
rameters of the procedure called. The server, after processing, sends the results
back to the client. Of course, the client and the server need "to agree” on
the procedures that can be accessed in remote, on their arguments and on the
returned result. In such approach, each interaction between client and server
requires of two messages to be sent through the network; this means that the
connection must be kept open during the whole interaction. The code of the
procedure to be executed is on the machine that runs it.

An alternative to such traditional mechanisms has recently been spreading,
and is based on the use of environments that give a sort of ”code mobility”. By
this term we mean the possibility to change dynamically at run-time the binding
between the software components of an application and their physical location

within a network of computers. Even though the research about code mobility

is not totally new [BHJL88, SG90], the possibility of applying such mechanisms
to distributed environments on a wide range[CPV97, MRK96], aroused our
interest.

Several levels of mobility can be considered. First of all, we make a distinc-
tion between code mobility and agent mobility. In the first paradigm we can
include the mechanisms of remote execution and code on demand.

In the case of remote execution, the code is transferred to a remote node,
where it is run up to the end; the results are therefore returned to the node that
sent the code. The transferred information include both the code to be run and
the parameters needed; the node on which the code must be run is defined by
who starts the whole operation. The program on the remote node, once it has
been activated, can use the same mechanism for activating other executions on
several nodes; the recursive application of such model leads therefore to a tree
processing structure.

In the case of code on demand, the client on which the code will be run
can require a specific software module from a remote server. Java applets are
a very common example of such type of technology.

However, in both cases, the code is transferred before being activated. Con-
versely, by agent mobility we mean the possibility of transferring a software
module (agent) after starting its execution. An agent starts its execution on a
machine, and then can stop it, move to another machine and continue its exe-
cution there. An agent can also move several times during its execution, unlike
the mechanisms of code mobility described before, in which the program, after
starting its execution on the remote site, no longer moves.

Two levels of agent mobility are distinguished in literature ([CPV97, GV97]):
strong migration and weak migration. An agent in execution consists of: the
code (program state), the contents of variables (data state), and the stack (eze-
cution state). Strong migration is the highest level of mobility; all of the three
components of the state are captured and transferred to the destination ma-
chine, where this state is restored and the agent continues its execution from
the exact point where it had stopped. Even though such feature is very power-
ful and interesting from a programmer’s point of view, few systems implement
a complete strong migration [Whi95, BHJL88, JvRS95]. If we work in hetero-
geneous environments, such as the ones where the agent systems will operate,
we need to adopt a representation of the state that could be moved among
the different architectures. This operation is very difficult to carry out, so the
systems that implement a strong migration are carried out in a homogeneous
environment that is specifically created [Whi95, BHJL88, JvRS95]. Besides, in

agent systems we often deal with multi-threading languages, so this operation

might reveal much more expensive and time-consuming.

For these reasons, the most common operation in agent systems is what was
called weak migration, in which the execution state is not transferred. It means
that the agent, once it has reached the node of destination, will not be able to
continue its execution from the point in which this had been stopped, but will
start from the beginning, and will keep the value of the state variables as the
one before the transfer. But in this scheme the programmer must expressly save
the information needed for a correct restarting of the execution within variables
which are part of the data state. By examining such variables, the agent (once
it has reached the node of destination) will be able to restart the execution
correctly. In an agent system, unlike a system of migration of processes where
migration is imposed from outside (for example for load balancing purposes), an
agent migrates on its own iniziative, and the programmer can do the operations
of preparation to the migration of the agent.

This load imposed to the programmer is however balanced by the fact that
the state information to be transferred is much smaller than in the case of
strong migration.

The use of an agent-based approach while carrying out a distributed appli-
cation, gives some advantages than a traditional solution. In this case, while
developing a distributed application, the interaction among the components is
generally considered not dependent on their location. In some cases, it is fixed
by the programmer during the implementation phase. In distributed object sys-
tems such as CORBA [TM95], the location of the components is deliberately
hidden to the user, who does not need to take care, nor can see where the ser-
vice required is done. In such environments there is no distinction between the
interaction of objects resident on the same host and objects on different hosts.
But in some situations, we need (in the phase of design) to consider the exis-
tence of different locations and of different resources in each location. As it is
reported in [WWWK94], hiding or not considering that the interaction between
two software components can greatly depend on their mutual location can lead
to unforeseen problems of performances or of reliability of the application itself.

For example, using a scheme based on agents can therefore be useful ev-
erytime we need to use resources strictly connected to a machine. In fact, if
necessary, an agent can move to the site of another agent or where a fixed re-
source is resident, to do the operations required without generating any traffic
in the network, by using only local communications. A typical case concerns
client/server applications in which the client must retrieve some data from the
server and operate complex filtering operations on such data; by moving an

agent containing the procedures that deal with filtering, only the data that

actually concern the client are sent through the network, with a considerable
reduction of communication costs. Besides, a permanent connection between
client and server is not necessary in such scheme; the agent, once it is sent to
the site of destination, can continue doing its operations and can communicate
the results as soon as the client connects to the network again.

The use of mobile agents can therefore be useful in several fields of ap-
plication, although none of the following applications requires the use of mo-
bile agents: in fact, each application can be run with the existing technolo-
gies [CHK95, MRK96]. However, as we said in precedence, the use of mobile
agents can contribute to build these distributed applications more simply and
effectively, at the same time.

These are some of the areas in which such technology can actually give a

positive contribution:

e Information retrieval: mobile agents can be an effective tool for retrieving
information within a distributed system; in fact, an agent containing the
user’s query can migrate to the place(s) where the information is actually
stored; here the agent can do the necessary operations of research and

filtering, and give the user only the useful information [EW94];

o FElectronic commerce: electronic commerce is an increasingly developing
area in the Internet; mobile agents can help the user to research the prod-
ucts that meet his (her) requirements, to search for the most convenient
offers, etc. [Way95, Whi94];

e Mobile computing: mobile agents can be an effective tool for mobile com-
puting: in fact, users want to access network resources from any position,
notwithstanding the band limits due to the present wireless technologies.
Users submit their requests through an agent, which runs their request
within the network, and enables the user to obtain the results in another
moment (so the user does not need to remain logged in, waiting for the
results). Besides, this enables us to exploit the fixed calculation resources
within the network, avoiding the use of mobile devices, whose calculation

power and operation autonomy are often limited [CGHT95];

e Distributed Management: mobile agents enable us to delegate some man-
agement functions from a central station to remote nodes, thus reducing
the workload on the central station, and improving the exploitation of the
available band [GYM™'95, PTV97];

e Distributed Computation: thanks to the possibility to pilot the node on

which mobile agents are run, they are a new paradigm for parallel calcu-
lation on a distributed network of workstations [BFD96];

e Collaborative Applications: this is a growing area of development: in this
area, mobile agents might be an effective support for sharing data and
any kind of documents; they can give a flexible architecture and enable

users to work by sharing various network resources [WPWT94].

3 MAP: Mobile Agents Platform

In this section we introduce the agent system MAP ! that we developed and
implemented. MAP is a platform for the development and the management of
mobile agents that gives all the primitives needed for their creation, execution,

communication, migration, etc.

3.1 Reference Architecture

The MAP basically consists of agents that can move to the various nodes of a
network, and of servers that constitute the environment in which the agents will
run. The architecture of the MAP is shown in Fig. 1, in which the constituent

parts of the platform, which will be described later, are pointed out.

Server Context
Network
ClassL oader CodeServer
/ Instancer | -[-------=| Agent
Agent Daemon
\ Instancer Agent
Message

Figure 1: MAP architecture

A node belonging to the platform MAP consists of an object called Server
that contains, all the entities needed for the operation of the platform itself. In
a host there can be more than one Server, each identified by the DNS address
of the host and by the TCP port number on which the server is listening for

accepting agents or messages coming from the network.

'MAP is available at the following Web site: http:/sun195.iit.unict.it/ MAP/map.html

Server The Server is the main object of a MAP server, in which the entities
Daemon and Context and local agents are instanced. The presence of a Server
on a node characterizes it as belonging to the platform MAP. Its activation
enables the node to accept and have agents coming from the network run, as
well as to activate other agents locally.

Daemon The Daemon is the entity of the MAP that listens on a certain
port, waiting for agents coming from other nodes and for messages to be de-
livered to local agents. Both messages and agents travel in a serialized form.
Each time a stream arrives from the network, the Daemon creates a specific
entity called Instancer, whose task is to instance the serialized object, both if
it is an agent and a message. In both cases, the object, once it is instanced, is
passed to the Context, whose task will be to make it run (if it is an agent), or
to send it to the receiver agent (if it is a message).

Context The Context is one of the basic objects in a MAP server. In
fact, it knows all the agents present on the server, saved on an appropriate list,
and gives the user all the functionalities needed for their management. The
Context, puts some methods at disposal, which enable to create an agent, to
make it run, even on a server in which its code is not present, to suspend it, to
deactivate it, to resume its execution, and even to kill it, if necessary. Besides,
the Context gives an agent that is running on a specific server the possibility to
obtain some information about the agents that are running on the same server
or on a remote server.

The Context is the element of the MAP that manages the communication
among the agents. It can take place both in a synchronous and asynchronous
way, and both among agents resident on the same MAP server and on different
MAP servers.

Each object coming from the network in serialized form, is passed to the
Context, after having been instanced by the Instancer. If such object is an
agent, the Context initializes it, by giving it a reference to the Context, and
later, starts its execution, and consequently updates the list of local agents.
Conversely, if the object is a message, the Context makes sure to deliver it to
the receiver agent, of course after checking the agent’s availability to receive
such message, or of its actual presence on the server.

NetworkClassLoader The NetworkClassLoader of the platform MAP is
used for enabling the agents to run on a specific MAP server, even when their
class is not present there, and to exchange (through messages) also objects of
classes not defined locally. The Daemon, in order to use such classes transpar-
ently, once a stream of data comes from the network, creates a new Instancer

object by loading it with the NetworkClassLoader. From now on, each object

to which the Instancer will refer will be automatically instanced with the same
NetworkClassLoader. Thus, if one of the classes to which the agent or the mes-
sage refers is not actually present locally, the NetworkClassLoader will search
for it in the network, in a list of MAP servers fixed within the Context. Once
the class is found, it is loaded from the remote site and saved in a cache memory
managed by the Context, so that it can be accessed and used, if necessary, also
by of the other agents of the server.

CodeServer The CodeServer is an internal entity of the Context, dy-
namically created; in fact, the Context of a platform instances a new object
CodeServer each time it is requested a class by a NetworkClassLoader, either
local or remote. The CodeServer is given a table of the Context in which all
the classes available in the platform are saved.

As we have already described before, one of the most important features
of the platform MAP is the possibility to make an agent migrate or to send
messages through the network even to servers whose classes to which such
objects refer are not present. In order to permit this, each time a specific object
reaches a new server, the corresponding Daemon loads a new Instancer object
with a NetworkClassLoader that deals with the loading of such classes. If they
are not available locally, the NetworkClassLoader interrogates the CodeServer
of some remote sites saved on an appropriate vector (within the Context and
that can be updated dynamically), searching for the classes required. If it
finds them, they are loaded from the remote site and saved in the local table
of classes; from now on, they can also be accessed by all of the other agents

present in the server.

3.2 Agents’ Structure

As we have already said before, agents represent the entities of the platform
MAP that can move in the network for carrying out a task assigned by the user
who created them.

Within our platform, an agent is able to:

e suspend itself and another agent: to suspend an agent means to stop its

execution temporarily, by keeping all the references to the agent active;

e resume a suspended agent: to wake up an agent means to resume its

execution from the point where it had been suspended before;

e deactivate itself and deactivate another agent: to deactivate an agent
means to stop its execution, by downloading the agent to a disk in a

serialized form, and by deleting all the references to it;

e reactivate an agent: it means to deserialize an agent that had been deacti-
vated before, by giving all references back to it and restarting its execution

from the beginning;

e create a new agent: to create an agent means to instance a new Agent

object (by setting its Context, its Identifier, etc) and to make it run;

e kill an agent: it means to stop the execution of an agent, by deleting all
its references and cancelling its entry from the list of the agents in the

server;

e migrate to a new server: to migrate an agent means to move it to another

node, where it will start its execution from the beginning;

e communicate with other agent, through messages, both in a synchronous

and in an asynchronous way.

From an implementation point of view, an agent is an object obtained by
instancing a class deriving from the Agent class supplied by the platform. This
enables the agent to take advantage from the methods put at our disposal by

such class.

3.3 Managing the platform

The platform MAP enables the user to take advantage from a graphic interface
(shown in Fig. 2) that permits an easier management of the agents in a MAP
server. The graphic interface shows a window where all the agents running

locally are listed, and the following information is given for each of them:
e the identifier of the agent
e the name of the class of the agent
e the current state.

If we select an agent from the list, we can do on it any operations available
in the platform, through the buttons present in the upper toolbar (suspend,
resume, deactivate, activate, dispose, go).

Conversely, by using the button Run, we can make an agent run (resident on
a specific MAP server, not necessarily local) to a different MAP server, where
the class of the agent can even be absent. Figure 3 helps us to explain this
feature better. The user has activated the MAP User Interface on the machine
pcl0a, and can make an agent run on any node where the MAP server is active.

To do this, we only need to indicate the name of the class that implements the

10

¢ MLA.P. at http: / /pel0d.iit.unict.it:37000 of IIT

Suspend | Resume Deactivatel Acti\ratel Dispnselﬂl Runl

Id Agent Class Mame Statusz
onod searchagui active
Qoo4 zearch active
a0y myagent suzpended

Sener | it |

Figure 2: MAP User Interface

agent desired (in this case MyAgent), and the URL of the node where we want
to make it run (pc10e). The class that implements the agent does not need to
be resident in the node where there is the user (pc10a), or in the one where the
agent will run (pc10e): in fact, it only needs to be in a node where the MAP
server is active and that the user will have to indicate as source URL (pc10d
in figure 3).

Thanks to this functionality, the platform presented enables us to use at best

paradigms based on remote evaluation and code on demand described before.

G Run an Agent -
Class name I Mysgen] | I pCloa- pCJ-Od
Source URL I pc10E40000 I'1 MAP B MyAgent.class
User Interface
Destination URL | 1040000 L ~
' MAP Server |4 -------- = MAPServer|<-------- > MAP Server
QK| Cancel

Figure 3: Running an Agent on Different Machines

The button Server enables us to obtain some information about the MAP
servers active in the system, and about the agents in execution on such server.
The window that appears (Fig. 4), is divided into three columns; the first one
shows the list of the active MAP servers in the system. By selecting a server,
the second column will show the agents in the selected server and their state.

On the third column the classes available on the selected server are shown; they

11

are useful for an agent that must move to one of these nodes.
Besides, the user can add a new server to the list at any moment, through
the button Add New Server.

s Server List !E E
SRmer name I

ARl | [AgentClass Status Ayvailable Classes
sunt195.it. unict.it: 3801
pet0editunictit3?000 003 search active search
008 myagent suspended | searchoui
ryagent
finger
finggui

Add Mewy Benrerl Showy Agient Listl Close |

Figure 4: List of MAP Servers architecture

4 Implementation Notes

In this section we describe the main functionalities of platform MAP and some
implementation details. First we describe some fundamental design issues re-
garding the choiche of the implementation language, the serialization mecha-
nism for agent migration, the loading of classes from the network and commu-
nication issues among the agents. Then, we describe how the basic mechanisms

provided by MAP have been implemented.

4.1 Implementation language

A fundamental feature of such a system is the possibility for agents to move and
run on different architectures. For this reason, the choice of the environment
where to develop such platform is very important in the design phase, and not
only during the implementation phase.

The use of traditional compiled languages such as C is not convenient be-
cause they are generally machine-dependent languages, and therefore not suit-
able to be used in heterogeneous environments. Besides, since they are compiled
languages, a considerable effort is required for carrying out a platform whose
code must move from a node of the network to the other, dynamically linking
new code modules. The languages that are more suitable to the development
of mobile agents are interpreted and/or scripting languages, that can run on

several machines, provided that the corresponding interpreter is installed in

12

them. However, the scripting languages belonging to this category do not give
all the power and the flexibility required for developing a complete and effective
platform.

For such reasons, we chose to use Java for developing the whole architecture.
Java [Gos95] is an object-oriented, multithreaded language; it is portable on
different hw/sw architectures, and has had a considerable success thanks to the
possibility to build small applications (applets) which, integrated within Web
pages, allow their execution on the client machine within the browser. But the
potentialities of Java are much higher than this simple use [SJRK97, WWR97].
These are the main characteristics that, in our opinion, make it a good language

for the development of a platform for mobile agents:

e it is object-oriented (and so a modular development of the code is favoured,
and the user can write one’s agents with limited efforts, starting from the

classes provided by the platform);
e it is portable on an increasing number of hw/sw architectures;

e the presence of mechanisms for the dynamic loading of classes from dif-
ferent sources and for their dynamic linking at run-time in the current

application;

e possibility of serializing the objects thus enabling their transfer through

the network;

4.2 Agent migration

The platform implements a weak migration by relying on the mechanisms of
Object Serialization present in version 1.1 of Java [Mic97]. Object Serialization
is a mechanism that enables us to represent an object as a stream of bytes.
All the variables of the object are stored within the serialized representation
of an object, together with all the references to objects contained in it. In the
previous section we pointed out the main reasons why a strong migration can
be hardly implemented in a heterogeneous environment. Besides, in our case
the capture, the transfer and the restoration of the execution state can cause
considerable problems. In fact, Java is an interpreted language, so a part of the
execution state is included within the state of the interpreter; the capture of
such state becomes practically impossible without changing the interpreter. But
a modification of the interpreter, as well as the intrinsic problems, would lead
to the loss of portability, which (as we said before) is one of the fundamental

features of an agent system.

13

In our platform, when an agent must migrate, it is serialized and the stream
of bytes obtained is sent to the destination node through the network. Here
the stream is deserialized, and the execution of the agent is restarted with the

stored state.

4.3 Loading classes from the network

While serializing an object, the code of the class to which the object belongs
is not stored, but only a reference to it is stored. Thus, since in our system
the classes needed are not always in the arrival node, we had to take advantage
from another feature of Java: the possibility to load some classes dynamically in
runtime from different sources. This was done by using a NetworkClassLoader,
whose task is to load the classes that are necessary for the execution of an agent.
If the class needed is not present locally, the NetworkClassLoader searches for
it within the nodes contained in a list specified during the configuration and the
startup of the platform servers, but that can be updated in runtime, thanks to
some information brought by the agents. Such mechanism permits therefore to
exploit the network at best. The transfer of the bytecode of a class will occur
only when required (in case of migration of several instances of the same agent,
we do not need to transfer the same class); in any case, we can always do the
transfer from the ”closest” node, and not necessarily from the departure node
of the agent.

Thanks to such mechanisms for the dynamic loading of classes present in
Java, the paradigms of code on demand and remote execution that we de-
scribed before have been integrated within of our platform. Such mechanisms
are available for each agent, that can therefore change its behavior according
to the classes that it can load on each node. The designer can therefore inte-
grate the different paradigms of mobility that are more suitable to the specific

application, even if only one working environment is used.

4.4 Communication among agents

The ability of an agent to communicate with other agents is another basic
characteristics that must be given by such a system. Several communication
mechanisms are possible. In the MAP the communication among the agents
takes place through the exchange of messages that may be synchronous or
asynchronous. In our opinion, this solution (unlike some mechanisms based on
RPCQC) is very flexible and enables us to implement several schemes of communi-
cation and synchronization among agents. Anyway, the platform gives the basic

mechanisms for the communication: any advanced schemes of communication

14

and co-operation (see for example KQML/KIF [FMFM94]) can be implemented
beyond the primitives supplied.

The encoding of messages takes place in the same way as the migration of
agents. In fact, the mechanism that we selected for transferring messages is the
Object Serialization, in order to permit the sending of complex objects among
different agents.

In the case of a synchronous message, we obtain a behavior similar to a
RPC. In fact, the agent sender invokes an appropriate primitive, by giving the
message and the identifier of the agent recipient, and stops, waiting for a reply
message. Conversely, in the case of an asynchronous message, the agent sender
invokes another primitive and, after sending the message, continues with its

execution. Further details of such mechanism will be given later, in section 4.

4.5 Basic Mechanisms

Information about an agent

We can obtain some information about the agents instanced on a node of the
system, by recalling the methods getList and getAgentList, which give us
a list containing the Identifiers of all the agents in the local server and a list
containing all the information concerning them, respectively. Each element of

the list consists of:
1. a reference to the corresponding agent;

2. the identifier of the agent. Even though it is already contained in the
agent, we needed to introduce it as another attribute for searching and
finding the agent in the platform (and therefore in the list), also when the
agent is deactivated. In fact, in this case the reference to the agent is set

to null;
3. the name of the class of the agent;
4. a short description;
5. the name of the owner user;

6. two boolean values, susp and deact, which indicate whether an agent is

currently suspended or deactivated, respectively.

Creation of an agent
The creation of an agent can be carried out with the method runAgent of the
Context. It needs three parameters: the name of the class to be instanced,

the URL (interpreted as the couple consisting of the host name and listening

15

port) of the MAP server where the class has to be found (Source URL) and
the URL of the MAP server where the agent has to run (Destination URL). If
Source URL and Destination URL are both the same as the URL of the local
MAP server (Home), the class has to be searched locally (both in the directory
agent and in the global cache of the Context) and run there. Conversely, when
the Source URL is the same as the local URL but the Destination URL is
different, the agent is instanced locally but, before it is run, it migrates to the
Destination URL. Finally, if the Source URL is different than Home, a system
agent, called Mover, is launched. It automatically migrates to the Source URL
and, once it reaches its destination, recalls the method runAgent of the Local
Context, whose Source URL is the same as Home and whose Destination URL
is the same as the previous one. If the graphic interface has been activated,
the method runAgent of the Context can be recalled by pressing the button
Run. Tt enables us to specify (in an appropriate window) the three parameters
described before.

Suspension of an agent
The platform MAP enables us to suspend the execution of an agent at any
moment, and to resume it later from the point where it was suspended. An
agent can be suspended by recalling the primitive suspend. It searches for the
agent (for which we want to suspend the execution) within the list of agents
in the node, and, if the primitive finds it, stops it (with the method lock),
suspends its Thread, and later releases the agent and updates its state. We
need to point out that an agent can be suspended only if it is still active, that
is only if it has not already been suspended or deactivated, and if no one else
is already acting on it.

Resuming an agent
The primitive resume enables us to wake up an agent that had been suspended,
and to continue its execution from the exact point where it had been stopped.
The method resume searches for the agent which we are interested in (within
the list) and, once it has been found, stops it; then it searches and wakes up
the corresponding Thread of execution and, after that, releases the agent and
updates its state. Of course, we can resume an agent only if it is actually
suspended, and if no one is already acting on it.

Deactivation of an agent
An agent can be deactivated with the method deactivate. To deactivate an
agent means to download it to a disk in a serialized form and cancel the reference
to it in the corresponding entry of the agents list. The method deactivate works
the same way as the method suspend.

Reactivation of an agent

16

The method activate enables us to reactivate an agent that had been deacti-
vated before. Such method is similar to the method resume, but in this case
the agent is before loaded by the stream and then run from the beginning. Of
course, the reference to the agent cancelled before by deactivate is adequately
reassigned.

Killing an agent
If we do not want to continue the execution of an agent, it can be killed with the
method dispose, that stops its execution (stopping the corresponding Thread)
and cancels the corresponding entry from the list, so to delete all the references
to such agent.

Migration of an agent
It is the most important aspect of the platform MAP, because it enables ap-
plications deriving from the class Agent to migrate through the network. The
mechanisms needed for the migration of an agent (described before) are imple-
mented within the primitive go of the Context. When an agent or a user recalls
this method, the Context checks that the agent that must migrate is actually in
the node and, once the Context finds it, serializes it, sends it to the destination,
stops its Thread and deletes the corresponding entry in the vector of agents.
Once the agent has reached its destination, the Daemon of the receiver node
instances a new Instancer that reads the stream and recalls the appropriate
methods of the Context, to instance the agent. Even in this case an agent can
migrate only if it is not deactivated and if no other entity is acting on it.

Communication and Synchronization among agents
As we said before, the communication among agents takes place through mes-
sage passing. Messages, as well as agents, travel in a serialized form. The
Instancer, when receives a stream from the network, distinguishes whether it
is an agent or a message through a boolean value inserted at the beginning of
the stream, which takes a true value for the agent and false for the messages.
Besides, in the case of messages, the reading of two other booleans from the
stream enables us to make a distinction between synchronous and asynchronous
messages, and between messages and requests of classes.

Exchanging messages among the agents is always managed by the Context In
the case of asynchronous messages, the agent recalls the method sendMessage
of the Context it belongs to, passing the message to be sent and the identifier
of the receiver agent as parameters. At this point, the Context checks whether
the receiver agent is local or remote; if it is a local agent, the Context inserts
the message into the queue of messages of the agent. The receiver agent can
extract each time (when it likes) the messages in the queue. Conversely, if the

agent is remote, the Context sends the message to the remote platform that

17

contains that agent, whose address is specified in the message. Sent messages
will be inserted into a queue from which the receiver agent can take them by
using the method getMessage.

In the case of synchronous messages, the agent uses the method sendSyncMessage
of the Context. The mechanism is the same as in the previous case. The differ-
ence is in the sender’s behavior: in fact, in this case the agent waits for a reply
message from the receiver agent. The receiver agent manages the messages sent

to it through the method receiveSyncMessage.

5 Application to Network Management

In this section we will show how the MAP platform described can be success-
fully used in network management, overcoming some of the limits typical of a
centralized approach. Current network management systems adopt a central-
ized paradigm according to which a protocol requires the management appli-
cation to periodically access the data collected by a set of software modules
located on network devices. There are, however, a large number of circum-
stances in which adoption of a distributed paradigm which can assign part of
the control and management functions to the various network nodes is more
appropriate [Gol93, GYM™195]. The basic idea is to reverse the logic according
to which the data produced by the network devices is periodically transferred
to the central network management station. If the management applications
are encapsulated into the agents, it is possible to port them onto the network
devices, thus performing a series of micromanagement operations locally and
reducing the workload on the network management station and the overhead on
the network as a whole. It is, in fact, reasonable to foresee the spread of network
devices equipped with increasingly powerful local resources which will be able
to reach a high degree of management sophistication, amply outperforming the
reference models imposed by the platform-centered paradigm [GY95].

The basic components of a current network management system are:

e one or more management stations (Network Management Station or NMS);

e a (potentially large) number of nodes, each of which running a module

called an agent, which monitors and collects the data for the node;

e a management protocol, used to transfer management information between

agents and management stations.

The NMSs execute management applications which monitor and control

network elements such as hosts, routers, terminal servers etc, by accessing their

18

management informaton. The latter is seen as a collection of managed objects,
stored in Management Information Bases (MIB) [MR91]. Sets of correlated
objects are defined in the MIB modules, which are specified using a subset of
the standard OSI notation Abstract Syntax Notation One (ASN.1), defined as
Structure of Management Information (SMI).

In the Internet environment, the Simple Network Management Protocol
(SNMP) [ea90, Ros91] has become the standard protocol for network man-
agement. A network management protocol has to provide the primitives for
the exchange of information between SNMP-agents and management stations.
The set of SNMP primitives is relatively simple and offers three types of op-
erations for the control of the various agents: the set and get operators to set
or read the value of a variable and the getnezt operator to examine the next
variable in the MIB. SNMP-agents have a very simple structure and normally
only communicate in response to requests for variables stored in the MIB. They
cannot perform any management action on their local data.

The centralized paradigm adopted by the SNMP is appropriate in various
network management applications, but the rapid increase in the size of networks
has posed the question of the scalability of this or any other centralized model.
At the same time, the calculation power of network nodes has also increased,
making it possible to entrust them with significant distributed managament
functions.

Centralization is generally appropriate for applications where the need for
distributed control is low, frequent polling of MIB variables is not required and
only a small amount of information is needed. A classical example is monitoring
and viewing a few MIB variables. The status of a router interface, for instance,
or the status of a link only entails querying and viewing a small number of MIB
variables and centralized management is therefore suitable.

At the other extreme we have applications which require frequent polling
of a large number of MIB variables, which have to perform calculations on a
vast amount of information. An example would be calculation of a function
indicating the level of functioning of the network, which requires very frequent
detection of variations in a large number of MIB variables. In such cases mon-
itoring and control should be performed as close as possible to the device in
question.

Using MAP we can go beyond this distribution of tasks: the various manage-
ment functions in our model do not have to reside statically on certain devices,
but can migrate and dynamically execute on the particular node involved in
the operation.

In order to use MAP for network management purposes, some additional

19

modules have been developed. As we are assuming that the platform is to be
integrated with current management protocols, each node will need a standard
SNMP agent to monitor the node. To use the data recorded by this agent, it
will be necessary to use a set of classes implementing the SNMP communication
protocol. These classes will thus be able to commmunicate with both local and
remote SNMP agents. If these classes are present on each node, higher-level
management applications can be constructed and implemented as agents. The
system thus obtained is easy to extend: if the need arises to introduce a new
management function specific to a certain subnetwork, it will be sufficient to
develop it as an agent and it will be ready to be executed on any node belonging
to MAP.

Application Example

Network management decisions have to be based on a vast amount of real-time
data relating to the various devices: much of this data has to be suitably com-
bined to give the system administrator all the available information regarding
the functioning of the network in a simple, concise form.

In order to evaluate the effectiveness of the approach proposed as a valid
support to the management decisions made by the system administrator, a
simple application for the calculation of a function known in literature as the
health function [GY95] has been implemented. In general the term health func-
tion refers to a linear aggregation of a number of management variables, each of
which gives a particular measure regarding the device. In the SNMP environ-
ment these functions are typically a linear combination of MIB variables and
the rate of exchange of these variables.

Such a function cannot be efficiently integrated in an SNMP-based network
management model as the SNMP does not have the flexibility and decentraliza-
tion required for its implementation. Although, in fact, it is possible to examine
approaches based on MIB metavariables, with which these aims can be achieved,
the functions to be calculated can often not be foreseen statically a priori. On
the contrary, the aim is to be able to insert various kinds of functions according
to the particular device to be monitored and its functioning conditions. Of the
various functions that can be implemented, only some will be suitable for a
particular device and will be used for limited periods during the functioning of
the system; there is therefore no need to have all the functions present in each
node in the network, nor do they need to be executed continuously.

Using MAP we are allowed to execute these functions directly on the node,
thus meeting one of the main requirements for which they were introduced,

i.e. compression of the amount of data to be processed directly at source. The

20

approach also allows the functions to be processed only when really necessary,
thus avoiding the collection of a vast amount of MIB variables which will never
be used completely.

The function used as an example is the following:

((ifInOctetsy + i f OutOctetss) — (if InOctetsy + i f OutOctetsy)) = 8
if Speed * (sysUptimey — sysUpTimey)/100

Ulty,ty) =

in which IfInOctets (IfOutOctets) represents the total number of bytes re-
ceived (sent), ifSpeed is the nominal speed of the interface and SysUp Time is
the time since the interface started working.

This function represents a measure of the average utilization of the network
interface of a host, calculated during the interval to — t1 = sysUpTimes —
sysUpTime;. Taking measurements in which the time interval is minimal (i.e.
ta — t1), the value of U tends towards an instantaneous value for the utilization
of the interface.

By monitoring this function for the various network devices, the system
administrator can gain a picture of the traffic generated on the various nodes.
If, for example, the value for a specific node remains above a given threshold
for long periods of time, this might indicate the presence of congestion in the
network. By analyzing other functions, the administrator can understand the
causes of the phenomenon and take the appropriate action.

We wish to emphasize that the function used only is to be considered as an
example of application for our platform; it is clear that complete management
applications will require a large, complete set of functions of this kind. The fol-
lowing considerations comparing the classical SNMP-based approach and our
agent-based approach are of a general nature and do not depend on the partic-
ular function used.

In an approach based exclusively on the SNMP, to calculate the value taken
by the management function it is necessary to perform continuous polling of
the MIB variables involved. The traffic generated for a station will therefore be
given by:

Traf fic(byte/s) = nxl
At

where:
e n represents the number of MIB variables present in the function
e | represents the average length in bytes of the SNMP packets containing

the values of the MIB variables required

21

e At is the variable sampling interval: its value depends on the type of
function and the tradeoff between precision of the values calculated and

the need to avoid saturating the network with excessively frequent polling

Various observations and measurements have shown that the values involved

in the expression typically fall within the following ranges:
en=3+10
e [=50 = 400byte

e At =0.5+5s

Considering the worst case in which n = 10,1 = 400bytes and A = 0.5, we
would get a network traffic of Traf fic = 8 Kb/s which, as it refers to a single
station and a single management function, is far from negligible. However,
extreme values are only rarely reached: if we examine the most frequent values
for these magnitudes (n = 4,1 = 200bytes and A = 0.5) we get a value of
Traffic=16Kb/s.

Obviously if this function has to be monitored for various stations the traf-
fic generated by the management messages may be significantly high. If, for
example, there are N = 30 nodes to be monitored, the average traffic due to
the management processes would be N * Traf fic = 48Kb/s.

Use of our approach eliminates all of this traffic; once the agent containing
the application has been transferred on a remote node, the actual calculation
will be performed locally with no need for communication with the central
control station. Interaction between the agent on the remote node and the agent
on the management station will only occur if certain specific situations arise: for
example, in our particular case, if the function calculated exceeds a threshold
for a long period of time a notification message will be sent back, which the
manager can immediately examine or store in order to create a historical file of
network events.

The only traffic generated using our approach is due to the transfer of the
agent code from a node to another one on which it will be executed. The size of
this code is quite limited: in the application implemented here, for example, the
bytecode actually transferred is 4 Kbytes. Besides the small size of the code
to be transferred, there is also the fact that the transfer is only made when
necessary, and only for functions actually executed on remote nodes.

Use of MAP, however, does have a cost in terms of utilization of the com-
putational resources of the network nodes, as a consequence of the remote

execution of management functions.

22

The MAP server which always has to be active on the platform nodes execute
in the background and as with any other daemon process, the only resource it
consume in sleep periods is memory. It only becomes active when receives an
agent or a message to deliver to some local executing agent. Significant measures
for the processes involved in our platform are given in Table 1. They refer to
a Sun SparcStation with the Solaris 2.4 operating system. The first column
indicates CPU utilization, the second the percentage of system memory used
by the process, the third the resident set size and the fourth the total size of

the process.

CPU% | MEM% | RSS (Kb) | SIZE (Kb)
MAP Server 0.0 5.3 ~ 1600 ~ 2800
MAP Agent con- | 10+30 | 10+15 | = 4500 ~ 5500
taining a Typical

Application

Table 1: Calculation Resources Used by Processes

When an application is being executed on a node, the CPU workload fluc-
tuates with peaks reaching 20-30% utilization; the size in the memory grows
according to the type of application, but is never high and comparable with
common applications. In addition, subsequent applications on the nodes will
execute with the same interpreter, that is, a new application will be executed as
a new thread in the same process. This means that subsequent applications will
not require execution of a new interpreter instance, thus reducing the amount

of calculation resources consumed.

6 Future works and Conclusions

In this work we presented the design and the implementation of a platform
for the development of mobile agents. We discussed the main designs issues
concerning the mobility and the communication between agents, and we gave
some implementation details. The language used for the development of the
whole platform, as well as for the programming of agents, is Java. It was chosen
for its features of portability on different architectures, multithreading, dynamic
binding, possibility of dynamic loading of classes from different sources, etc.
We showed the different functionalities of the platform with the implemen-
tation of a fully distributed network management service. A comparison with

the classical centralized approach is also provided. We described the applica-

23

tion created for managing the agents in a distributed system simply: thanks
to such interface, we can easily create or suspend some agents, run them on
remote nodes, check the state of agents in any remote server.

We are currently working to equip the MAP with adequate mechanisms of
security and of access control. In particular, a SecurityManager will be placed
between the Context and the agents requiring the services. Since each agent in
MAP passes through the Context for accessing the system resources, the Secu-
rityManager will be able to check the single actions of each agent. Each agent
will have an owner and, according to this, will be associated with a list of au-
thorizations about the resources that can be used. In general, an ”anonymous”
agent will be able to be associated with a set of standard authorizations limiting
its actions, so not to allow the agent to do any action that might endanger the

integrity of the system or the unauthorized access to remote information.

References

[BFDY6] L.F. Bic, M. Fukuda, and M.B. Dillencourt. Distributed Comput-
ing Using Autonomous Objects. IEEE Computer, 29(8):55-61,
August 1996.

[BHJLSS] A. Black, N. Hutchinson, E. Jul, and H. Levy. Fine-Grained Mo-
bility in the Emerald System. ACM Transactions on Computer
Systems, 6(1):109-133, February 1988.

[CGH'95] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and
G. Tsudik. Itinerant agents for mobile computing. IEEFE Per-
sonal Communications, 2(5):34-49, October 1995.

[CHK95] D.M. Chess, C.G. Harrison, and A. Kershenbaum. Mobile Agents:
Are they a Good Idea? Technical Report RC19887, IBM T.J.
Watson Research Center, March 1995.

[CPV9T7] A. Carzaniga, G.P. Picco, and G. Vigna. Designing Distributed
Applications with Mobile Code Paradigms. In Proc. of the 19th
Int. Conf. on Software Engineering (ICSE’97), May 1997.

[ea90] J. D. Case et al. A Simple Network Management Protocol
(SNMP). RFC 1157, 1990.

[EW94] O. Etzioni and D. Weld. A Softbot-based interface to the Internet.
Communications of the ACM, 37(7), July 1994.

24

[EW95]

[FMFMO4]

[GK94]

[Gol93]

[Gos95]

[GV97]

[GY95]

[GYM+95]

[Ham96]

[JVRS95]

[KS97]

[L.M96]

O. Etzioni and D.S. Weld. Intelligent agents on the Internet: Fact,
Fiction, and Forecast. IEEE Ezpert, 10(4):44-49, August 1995.

T. Finin, D. McKay, R. Fritzon, and R. McEntire. The KQML
Information and Knowledge Exchange Protocol. In Third Int.
Conf. on Information and Knowledge Management (CIKM’9}),
November 1994.

M. Genesereth and S. Ketchpel. Software Agents. Communica-
tions of the ACM, 37(7):48-53, July 1994.

G. Goldszmidt. On Distributed System Management. Proceed-
ings of the IFIP International Symposium on Integrated Network
Management, 1993.

J. Gosling. The Java Language Environment: a White Paper.
Technical report, Sun Microsystems, May 1995.

C. Ghezzi and G. Vigna. Mobile Code Paradigms and Technolo-
gies: A Case Study. In Proceedings of the First Int. Workshop on
Mobile Agents (MA97), Berlin, Germany, April 1997.

G. Goldszmidt and Y. Yemini. Distributed Management by Dele-
gation. Proc. of the 15th International Conference on Distributed

Computing Systems, 1995.

G. Goldszmidt, Y. Yemini, K. Meyer, M. Erlinger, J. Betser, and
C. Sunshine. Decentralizing control and intelligence in network
management. In Proc. of the 4th International Symposium on
Integrated Network Management, May 1995.

M. A. Hamilton. Java and the Shift to Net-Centric Computing.
IEEE Computer, 29(8):31-39, August 1996.

D. Johansen, R. van Renesse, and F. Schneider. An Introduction
to the TACOMA Distributed System. Technical Report 95-23,
University of Troms and Cornell University, June 1995.

J. Kiniry and D. Simmermann. A hands-on look at Java Mobile
Agents. IEEE Internet Computing, 1(4):49-52, July 1997.

W.W. Li and
D.G. Messerschmitt. Java-To-Go: Itinerative Computing using
Java. hitp://ptolemy.eecs.berkeley.edu/dgm /javatools/java-to-go,
September 1996.

25

[LO97]

[Mag97]

[Mic97]

[MR91]

[MRK96]

[Obj97]

[PTV97]

[Ros91]

[SBHY6]

[SGY0]

[STRK97]

[TMY5]

D.B. Lange and M. Oshima. Programming Mobile Agents in Java
with the Java Aglet API. Technical report, IBM Tokyo Research
Division, 1997.

General Magic. Agent Technology: General Magic’s Odyssey.
http://www.genmagic.com/html/agent_overview.html, 1997.

Sun Microsystems. Java Object Serialization Specifications.
http://java.sun.com/products/jdk/rmi/serial, 1997.

K. McCloghrie and M. Rose. Management Information Base for
Network Management of TCP /IP-based Internets: MIB-II. RFC
1213, 1991.

T. Magedanz, K. Rothermel, and S. Krause. Intelligent Agents:
An Emerging Technology for Next Generation Telecommunica-
tions? In Proceedings of INFOCOM’96, San Francisco, CA, USA,
March 1996.

ObjectSpace. Voyager Core Technology: Technical Overview.
http://www.objectspace.com/voyager, 1997.

A. Puliafito, O. Tomarchio, and L. Vita. A Java-based Distributed
Network Management Architecture. Third International Con-
ference on Computer Science and Informatics, CSE&1'97, March
1997.

Marshall T. Rose. Network Management is Simple: you just need
the Right Framework. Proceedings of the IFIP Second Interna-
tional Symposium on Integrated Network Management, 1991.

M. Strasser, J. Baumann, and F. Hohl. MOLE - A Java Based
Mobile Agent System. In Proceedings of the 2nd ECOOP Work-
shop on Mobile Object Systems, July 1996.

J.W. Stamos and D.K. Gifford. Remote Evaluation. ACM Trans-
actions on Programming Languages and Systems, 12(4):537-565,
October 1990.

K. Srinivas, V. Jagannathan, Y.V.R. Reddy, and R. Karinthi.
Java and Beyond: Executable Content. IEEE Computer,
30(6):49-52, June 1997.

R. Zahavi T.J. Mowbray. The essential CORBA: Systems Inte-
gration Using Distributed Objects. John Wiley & Sons, Inc., 1995.

26

[Way95]

[Whi94]

[Whi95]

[WPW+94]

[WWR97]

[WWWEK94]

P. Wayner. Agents Unleashed: A Public Domain Look at Agent
Technology. AP Professional, 1995.

J.E. White. Telescript Technology: The Foundation for the Elec-
tronic Marketplace. Technical report, General Magic, 1994.

J. White. Mobile Agents White Paper. Technical report, General
Magic, October 1995.

D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and
B. Peet. Concordia: An Infrastructure for Collaborating Mo-
bile Agents. In Proceedings of the First Int. Workshop on Mobile
Agents (MA97), April 1994.

A. Wollrath, J. Waldo, and R. Riggs. Java-Centric Distributed
Computing. IEEE Micro, pages 44-53, June 1997.

J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note on Dis-
tributed Computing. Technical Report TR-94-29, Sun Microsys-

tems Laboratories, November 1994.

27

