
Hashing Lazy NumbersM.O. Benouamer, P. Jaillon, D. Michelucci, J-M. MoreauD�epartement Infa, E.M.S.E., 158, Cours FaurielF 42023 Saint-�Etienne, Cedex 02e-mail: author@emse.frAbstractThis paper describes an extension of the \lazy" rationalarithmetic (LEA) presented in [1]. A lazy arithmetic isan optimized version of the usual exact arithmetics used inSymbolic Calculus, in Computational Geometry or in manyother �elds. We present a method originating from mod-ular arithmetic to compute e�cient hash values for lazynumbers. Hashing is frequently used in geometric algo-rithms for fast searching purposes.1 IntroductionFinite precision often introduces inconsistencies inthe results of otherwise correct algorithms. At theother end of the spectrum, exact arithmetics guaran-tee error-free computations, but they require consid-erable amounts of time and memory resources, andhence have a rather restricted domain of application.An optimized rational arithmetic library is pre-sented in [1]; it is based on the so-called \lazy evalu-ation" paradigm, in that it always delays exact com-putations until they are inevitable.A lazy number is a rational represented as a recordwith two �elds: One for an approximation and an-other for a symbolic de�nition of the number (to be de-tailed later). In most cases, the approximations carryenough information to operate \consistently" on num-bers. When this is no more true, the library decides toperform exact evaluations to either \refresh" approxi-mations or to obtain the exact expression of the resultor test that caused trouble.The lazy arithmetic module is implemented as anindependent library which may be used by all sortsof application programs. Because \laziness" is inher-ent to the library, it is not necessary to know { whena computation is called for { whether it will involveexact operations or whether �nite precision will su�ce.To give but one example of application, solving alinear system involves giving a
oating point value toeach unknown. All known pivot-based solvers produce

well-behaved answers in most cases, but are extremelysensitive to matrix conditioning.Using �nite-precision all along would be extremelyhazardous (what with the risk of never �nding out thatthe results are erroneous). Using exact arithmetic onlymight prove irrelevant 9 times out of 10. A solutionbased on lazy arithmetic will only perform the nec-essary operations, using either �nite and=or in�niteprecision, according to each case.The major goal of lazy exact arithmetics is to leavethe decision of switching from �nite-precision to exactcalculus (and then possibly back to �nite-precision)to the library itself. Lazy schemes, such as the onedescribed here, statistically save a large amount ofunnecessary evaluations, and thus guarantee consis-tent computations (which is not true of �nite-precisionmethods) at a much lower cost than purely exact so-lutions, in most situations.In this paper, we shall focus on hash-coding meth-ods ([4]) for lazy numbers. There are basically twomotivations for introducing such a notion:1. Geometric algorithms often require to retrieveobjects from their coordinates, a process thatis made possible by appropriate hash code tech-niques.2. The lazy library itself may use such a schemeto discriminate numbers with close approxima-tions, in which case �nite-precision cannot be ofany help: Since di�erent hash keys necessarilydesignate di�erent numbers, a certain amount ofevaluations { although not all of them { may beavoided.We shall see how modular arithmetic allows to de-�ne e�cient hash keys from the symbolic de�nitionof lazy numbers. In Section 2, we brie
y review howlazy numbers are represented and manipulated (see [3]for a detailed account). Sections 3 and 4 present twomethods to compute hash keys for lazy numbers. Per-formance issues, future research and open problemsare presented in Section 5.1

2 Laziness fundamentalsAny rational quantity r with exact value % may berepresented as a lazy number by a two-�eld record:1. an approximation { in our setting, a
oating-point interval that contains % { and2. a symbolic de�nition for r, specifying a methodto retrieve its exact value %, when desired. Moreprecisely, it is either a rational (evaluated) quan-tity, or a symbolic (unevaluated) expression rep-resenting the sum, the product, the opposite (ad-ditive inverse) or reciprocal (multiplicative in-verse) of other lazy numbers.Each time an elementary arithmetic operation(+; �; inv+; inv�) is requested, the library computesa consistent interval for the result, and then creates anew symbolic de�nition record for it.In most situations, intervals will convey su�cientinformation to allow consistent computations1. Letus illustrate this with a simple example. Suppose wewish to compare two lazy numbers a and b. If theirbounding intervals Ia and Ib are disjoint, it su�ces tocompare the
oating point bounds of Ia and Ib to inferthe relative positions of a and b. Conversely, if Ia\Ib 6=;, the intervals for the two numbers have grown toolarge, and only an exact (rational) comparison willsettle the matter. Let us now investigate the basictools required by the lazy library.2.1 IntervalsInterval techniques ([4], [5], [7]) make it possible toderive the interval for the result of an arithmetic op-eration directly from those of the operand(s). Forinstance, the interval for the sum of two lazy num-bers x and y with bounding intervals Ix = [ax; bx] andIy = [ay; by] is, in general (cf. [3]), given by:[5(ax � ay);4(bx � by)]where 5(�) (resp. 4(�)) is the machine number im-mediately below (resp. above) number �, and � de-notes the addition on machine numbers.2.2 DagsOn the other hand, the resulting symbolic de�nitionfor the sum of x and y is obtained by creating a sym-bolic node (to hold the + operator), with two pointersto the operands.1To clarify this, suppose � and � are the machine represen-tations of two real numbers, r and s. These numbers may resultfrom any sequence of rational computations. � and � are saidto be consistent results i� they lie in the same order as r and s.Clearly, no consistent statement may be made when j � � � jis smaller than machine precision!

In general, the underlying data structure is a tree-like representation in which internal nodes are \un-evaluated" numbers { i.e. unary or binary operators2{ and terminal nodes (\leaves") are evaluated num-bers { i.e. with known rational values. This structureis a directed acyclic graph (dag, for short) rather thana tree, since any lazy number may be referred to bymore than one node.Thus, the generation (interval, de�nition) of anyelementary lazy arithmetic operation takes constanttime and space, and requires no evaluation.2.3 EvaluationIndeed, the exact rational value of a given lazy numbermay even never be computed, depending on the sub-sequent operations it will be subjected to. The onlyoccasions when a lazy number should be evaluated are:1. Each time the sign of a number whose intervalcontains zero is requested, or more generally, eachtime two numbers with overlapping intervals areto be compared.2. Each time the reciprocal of a number whose in-terval contains zero is required.3. Each time an \ancestor" of (i.e. containing in itsown de�nition dag) the lazy number in questionmust itself be evaluated.Evaluation is based on a simple recursive mechanism.Di�erent strategies and heuristics are liable to reducethe computational cost of this operation. See [3] for adiscussion.2.4 Putting it all togetherThe lazy exact arithmetic library (LEA) is writ-ten in C++, mainly because this language allowsclasses and operator overloading. Consider any Cprogram using Number as a synonym for float,for instance \typedef float Number;". Schemati-cally, it now su�ces to replace this de�nition with\typedef LazyNumber Number;" to compile the pro-gram and link it with the library. As a consequence,all standard
oating point operators and syntax con-structs are directly available, and the mechanisms ofthe lazy library are completely transparent to the user.To illustrate this in a typical situation fromCompu-tational Geometry, suppose A(x;y); B(x;y), and C(x;y)2(inv+, inv�) and (+, �), respectively. There is no restric-tion on the arity of the operators: It is quite legitimate to wantto provide for built-in, specialized functions to compute suchthings as the determinant of a 3�3 matrix, and so forth: : : Thelarger the number of basic operations available, the more ver-satile the library.2

are three points in the euclidian plane. The triple(A;B;C) is said to form a right turn (left turn) ifthe measure of the angular sector (~BA; ~BC) aroundB is smaller (greater) than �. Of course, A;B;C arealigned i� the angle is null.Now consider the following function to discriminateall three cases:int LeftRight? (LazyNumber Ax;Ay;Bx;By; Cx; Cy)f LazyNumber �;� = (Bx � Ax) � (Cy �By)� (Cx �Bx) � (By � Ay);if (� > 0:0)return LeftTurn;if (� < 0:0)return RightTurn;return Aligned;gNote that (cf. [8], p. 43):� � ������ 1 1 1Ax Bx CxAy By Cy ������represents twice the signed area of triangle4ABC , andthus gives the sign of the cross product ~AB � ~BC .Each time the function is called, an interval I� iscomputed for the local lazy variable, and a de�nitionis constructed for it, as explained above. Dependingon the \real values" of the lazy parameters, 0:0 willsometimes lie outside I� { in which case �nite pre-cision is su�cient to determine �'s sign {, and willsometimes lie inside this interval { in which case exactevaluation is in order. However, all these situationsare potentially encompassed in the unique standard Cexpression of LeftRight? sketched above!All initial (raw) data are assigned an interval con-taining them. It may happen that two initial val-ues are so close that their bounding intervals overlap;in a way, it is as if �nite-precision was not su�cientfrom the start, but this happens extremely rarely, andmakes no di�erence for the library.Interval amplitudes grow with operations. All is�ne until the library hits, say, a comparison test be-tween two lazy quantities, the intervals of which over-lap: Obviously, all computations made prior to thetest were consistent, but now the wind is turning. Thelibrary's �rst action is to try and contract intervals inthe hope of disconnecting them. This may be donewith the help of partial evaluations in the dags (fromthe \leaves" upwards). If the (refreshed) intervals aredisjoint after this, the \interval" comparison may besafely carried out; otherwise, the rational expressionsof both quantities must be compared using straight-forward rational arithmetic methods.

3 Computing hash keysFrequently, geometric algorithms use hash-tables tospeed up searching over elements ([6]) such as points,lines, or planes ([2]). Each element is assigned a hashkey derived from the numerical data (i.e. coordinates,line or plane coe�cients, etc.) that de�ne it. In thiscontext, the user of a lazy arithmetic library will beconfronted with the problem of computing hash keysfor lazy numbers, the exact values of which are notnecessarily available. The interested reader is referredto [4] for a thorough treatment of hash methods andtheir performance, the distribution of hash keys, andthe techniques for solving collision problems, as thesetopics are not relevant here. Our goal simply is toexhibit an e�cient way to produce keys in the presenceof lazy numbers, on the basis of well-known results inhash-coding theory.Notations and preliminariesLet Z denote the set of all integers and p 2 Z�+ bea (large) positive prime. In this section, we shall seehow each lazy number z may be assigned a hash key	(z) 2 [0; p[such that 	(z) 6= 	(z0)) z 6= z0, forany two lazy numbers z and z0.The binary relation de�ned in Z by x � y [p] (i.e.9 k 2 Z such that x � y = k � p) induces the �eldZp = Z=pZ. From now on, we shall denote by x% pthe unique integer in [0; p[de�ned as the remainder inthe Euclidian division of x by p. GCD will stand forGreatest Common Divisor.3.1 Hash keys for evaluated lazy numbersBy de�nition, each integer x 2 Z is assigned the hashkey 	(x) = x% p. Rational numbers will be repre-sented in the canonical form xy where x 2 Z; y 2 Z�+,and GCD(x; y) = 1. The hash key 	(xy) is de�ned asfollows:1. If GCD(y; p) = 1; 9! y�1 2]0; p[(the reciprocalof y in Zp) such that (y � y�1)% p = 1.In this general case, we de�ne	(xy) = (x � y�1)% p � [(x% p) � (y% p)�1]% p:Note that the second form is used in practice, forthe sake of e�ciency, and that this de�nition alsoapplies to a fraction with reducible numeratorand denominator, provided their GCD is not amultiple of p. The computation of reciprocals inZp is detailed in 3.3.3

2. If GCD(y; p) 6= 1 (i.e. if y = k�p for some k 2 Z)then y admits no reciprocal in Zp. However, wemay de�ne 0�1 =
 and
�1 = 0, where
 isany number outside [0; p[. (For convenience, weshall choose
 = p.)Whenever GCD(y; p) 6= 1, let 	(xy) =
. Notethat the larger the value of p, the smaller theprobability (1p) of such an event to occur.3.2 Hash keys for unevaluated lazy num-bersRecall that a lazy number z may be either \evaluated"(i.e. the rational value of z is available), or \unevalu-ated". If the former case, 	(z) may be computed fromthe rational value, as shown in 3.1. In the latter case,z is represented by a symbolic expression like \a+ b",\a � b", \inv+(a)", or \inv�(a)", where a and b arereferences to lazy numbers.3.2.1 General rulesIn the general case, 	(z) is computed by recursivelyapplying the followingwell-known properties of Zp (seeexceptions in 3.2.2):	(z + z0) = ((z) + 	(z0))% p	(z � z0) = ((z) �	(z0))% p	(inv+(z)) = (�	(z))% p � p� 	(z)	(inv�(z)) = [(z)]�1% p;	(inv�(0)) =
.This scheme yields hash keys for unevaluated lazynumbers without computing their exact rational val-ues. Moreover, it always returns identical hash keysfor lazy numbers the evaluation of which would resultin the same rational quantity (e.g. 48 + 113 and 53 � 52).3.2.2 Special casesHowever, it was implicitly assumed that neither 	(z)nor 	(z0) is equal to
. If this is no longer true,we may still give consistent and easily justi�ed rulesfor computing hash keys using the key(s) of theoperand(s) in the following cases:
 �
 =
	 �
 =
 �	 =
, 8	 2 [1; p[+
 =
+ 	 =
, 8	 2 [0; p[�
 =
0�1 =
 and
�1 = 0.This only leaves two cases which lead to indetermi-nations and cannot be decided upon, as illustratedbelow:

1. 0 �
 =
 � 0 =?Consider the rational number a � b where a = p1 ,and b = kp for k 2 [1; p[. Clearly,	(a) = 0;	(b) =
; 	(a � b) � 	(k) = k:Therefore, 	(a�b) may take any value k in [1; p[.Moreover, choosing a = p and b = 1p2 yields	(a) = 0, 	(b) =
 and 	(a � b) = 	(1p) =
.2.
 +
 =?Consider the rational number a+ b where a = 1p ,and b = (k � 1p) for k 2 [0; p[. Clearly,	(a) = 	(b) =
; 	(a + b) � 	(k) = k:Therefore, 	(a+b) may take any value k in [0; p[.Moreover, choosing a = 1p and b = 1p yields	(a) =
;	(b) =
 and 	(a + b) = 	(2p) =
.In both cases, a simple way to compute the key is toevaluate the whole de�nition tree for z, and to deduce	(z) from the resulting rational value as shown in 3.1.As these indeterminate cases are not very frequent,they have little in
uence on the overall performanceof the library. But more about this in Section 4.3.3 Elementary arithmetic in ZpQuite naturally, the sum, the product and the oppositemay be found in constant time in Zp, using straight-forward properties of modular arithmetic.Let us now detail the computation of u�1, the re-ciprocal of any u such that GCD(u; p) = 1. This maybe done by applying:Fermat's theorem Given a prime number p, ifu is any integer such that GCD(p; u) = 1 (i.e. not amultiple of p), then up�1% p = 1.As a consequence, u�1 = up�2% p;which gives a �rst algorithm for computing recipro-cals. Another solution is given by:Bezout's theorem For any relatively prime num-bers u; v 2 Z; 9x; y 2 Z such that u � x+ v � y = 1.Applying Euclid's extended algorithm to computeGCD(u; v) with v = p yields x and y such thatu � x+ p � y = 1. Therefore (u � x)% p = 1, andu�1 = x% pwhich suggests the second algorithm.4

Both methods take O(log(p)) time. In practice, it ismore convenient to use a pre-computed table to storeall multiplicative inverses in Zp. Next, since8 i 2]0; p[; (p� i)�1 � (�i)�1 � �(i�1);it is su�cient to store only q = p�12 reciprocals:1�1; 2�1; : : : ; q�1.However, since p is a �xed prime, this table maybe computed independently once and for all { as aO(p log(p))-time preprocessing { and included as dataat compile time into the library. Thus, all elemen-tary arithmetic operations in Zp may be performed inconstant time, provided O(p) space for the table ofreciprocals.Choosing p The value of p is an important factorin the performance of this technique, for obvious rea-sons. On the one hand, p should be as large as possi-ble, to reduce the frequency of indeterminations. Buton the other hand, p should be small enough to pre-vent cumbersome over
ow handling in Zp, and, mostimportant, to limit the amount of memory required tostore the table of reciprocals.A reasonable choice, on 32-bit machines, is to set pto the largest prime less than 216 (i.e. 65,521). This\only" consumes about 64Kb of memory resources.4 A �ner methodThe main disadvantage of the former method is thatthe space occupied by the table is proportional to p. Inorder to rule this table out of the library altogether, letus now introduce a new hashing technique. The idea isto replace the keys with moremanageable information,thereby eliminating the need for their evaluation.Let z be any lazy number, 	(z) be its hash-key {as de�ned earlier { and de�ne couple (�; �) 2 Z2p sothat � = ((z) � �) % p, whenever � 6= 0:Thus, all couples (k � �; k � �); k 6= 0 represent thesame key 	(z) modulo p, and all couples (k; 0); k 6= 0represent the \in�nite key"
. Finally, de�ne (0; 0) asthe special couple for indeterminations.4.1 General rulesA natural way to de�ne the couple associatedwith an irreducible rational number ab is to choose(a% p; b% p). Note that this de�nition also applies toa fraction with reducible numerator and denominator,provided their GCD is not a multiple of p.

If the couples assigned to lazy numbers z and z0 are(�; �) and (�0; �0), we may de�ne those associated with+, �, inv+, and inv� as follows:(�; �) + (�0; �0) = ((� � �0 + �0 � �)% p; (� � �0)% p).(�; �) � (�0; �0) = ((� � �0)% p; (� � �0)% p).inv+(�; �) = (��% p; �) � (p� �; �).inv�(�; �) = (�; �).All these operations are carried out in constant timeand space, and division no more requires the computa-tion of reciprocals, since it now consists in the simpleinversion of couple components.4.2 IndeterminationsOf course, indeterminate cases have not disappearedcompletely. They may indeed be seen to appear injust two cases, exactly as before:(�; 0) + (�0; 0) = (0; 0).(�; 0) � (0; �0) = (0; 0).A simple way to solve indeterminations is yet again toevaluate the underlying rational number.4.3 DiscussionThe lazy library may use keys { or rather couples {,for its own proper needs. Suppose lazy numbers z andz0 are assigned couples (�; �) and (�0; �0), respectively,and we wish to compare keys 	(z) and 	(z0), as theywere de�ned in Section 3. There is no need to computetheir actual values for this purpose, since	(z) = 	(z0), � � �0 = �0 � �:In the general case, the key corresponding to a couple(�; �); � 6= 0; is 	 = (����1)% p, and the computationof ��1 is required. As such requests are not likelyto be frequent, it is possible to use one of the abovementioned O(log(p))-time algorithms.Of course, on such occasions, couple (�; �) is re-placed with the equivalent couple (� � ��1; 1). Theonly special case is the computation of the key from acouple (�; 0); � 6= 0, where the key is
.This new solution is much simpler than the �rstone. In particular, there is no special treatment forthe in�nite key
. The computation of reciprocals inZp is no more needed, except when the key is explicitlyrequested by the user. Even in this case, the librarymay do without of table for reciprocals.Choosing p Larger values for prime p may be usedhere, since over
ow is the only concern! It is possibleto use, for instance on 32-bit machines, the Mersenneprime M = 231 � 1 = 2; 147; 483;6475

as addition and multiplication over
ows in ZM may bedealt with by standard techniques (cf. [4], p. 272 �.).As a consequence, the probability of indeterminations(1M) becomes negligible.5 ConclusionPerformance Roughly speaking, the \lazy-and-hash" version of an algorithm runs between 4 an 7times slower than its
oating point version (due tointerval and dag updates), and may run up to 150times faster than its exact version, depending on datapathology. It is worth noting that lazy versions onlymake about twice the
oating point operations than�nite-precision versions, but never one super
uousexact operation, which means none when a �nite-precision version would yield consistent results!Use Whenever precision and consistency are cru-cial issues, laziness is a strong and powerful paradigm,for which hashing techniques provide e�cient comple-mentary tools. As an example, the complete geometricalgorithm presented in [2] makes intensive use of hashkeys { as we have described them { for fast searchingin lazy context. It is clear that either method pre-sented in this paper might be appropriate in di�erentsituations. Favoring one or the other will depend, inpractice, on whether the actual values of keys must bemade available to the application programs or not.Yet, application programs are not the only ones tobene�t from hashing: LEA, the lazy arithmetic libraryitself, uses this technique (see [3] for a full description).As already pointed out, hashing is exploited to speedup discriminations between lazy numbers with over-lapping intervals (obviously, 	(z) 6= 	(z0)) z 6= z0).In the current version of the library, hash keys arecomputed each time a new lazy number is created.However, there is no particular di�culty in supplyinga function 	 to be called at request (i.e. for the user'sown needs).Open problems From a practical point of view,hashing lazy numbers widen the functionalities of thelazy arithmetic library, in that it allows to solve acertain number of problems related to our basic goal:Handling precision issues without interfering with al-gorithms.Although lazy algebraic libraries are beyond thescope of this paper, let us just point out that the prin-ciple of hashing lazy numbers described above may beextended to the algebraic case.For instance, suppose we work in a quadratic exten-sion Q(pa). To hash such numbers, it su�ces to use

a �nite �eld Fp where a is a quadratic residue modulop, or else to use the quadratic extension of Fp.Finally, one may ask if more e�cient hashing meth-ods could be found. One may even wonder if morepowerful methods exist that would allow to detectequality between lazy numbers as they are created {be they de�ned by isomorphic expressions or not { viasome specialized mechanism (possibly union-�nd tech-niques). To say the truth, detecting equality withoutevaluating remains a crucial problem.Acknowledgements The authors wish to thankJean-Michel Muller and all his colleagues from E.N.S.and I.N.P.G. for all their help.References[1] M.O. Benouamer, P. Jaillon, D. Michelucci, andJ-M. Moreau. A lazy arithmetic library. In Pro-ceedings of the IEEE 11th Symposium on Com-puter Arithmetic, Windsor, Ontario, June 30-July2, 1993.[2] M.O. Benouamer, D. Michelucci, and B. P�eroche.Boundary evaluation using a lazy rational arith-metic. In Proceedings of the 2nd ACM/IEEE Sym-posium on Solid Modeling and Applications, pages115{126, Montr�eal, Canada, 1993.[3] P. Jaillon. `LEA', a lazy exact arithmetic: Imple-mentation and related problems. Technical Re-port in preparation, �Ecole Nationale Sup�erieuredes Mines de Saint-�Etienne, 1993.[4] D.E. Knuth. Seminumerical Algorithms, volume 2.Addison-Wesley, Reading, Mass., 1981.[5] U.W. Kulisch and W.L. Miranker. ComputerArithmetic in Theory and Practice. AcademicPress, New York, 1981.[6] K. Mehlhorn. Data structures and Algorithms3: Multidimensional Searching and ComputationalGeometry. Springer-Verlag, Berlin, 1984.[7] R.E. Moore. Interval Analysis. Prentice Hall, En-glewood Cli�s, N.J., 1966.[8] F.P. Preparata and M.I. Shamos. ComputationalGeometry { An Introduction. Springer-Verlag,New York, N.Y., 1985.6

