Hashing Lazy Numbers

M.O. Benouamer, P. Jaillon, D. Michelucci, J-M. Moreau
Département Infa, E.M.5.E., 158, Cours Fauriel
F 42023 Saint-Etienne, Cedex 02

e-mail: author@emse.fr

Abstract

This paper describes an extension of the “lazy” rational
arithmetic (LEA) presented in [1]. A lazy arithmetic is
an optimized version of the usual exact arithmetics used in
Symbolic Calculus, in Computational Geometry or in many
other fields. We present a method originating from mod-
ular arithmetic to compute efficient hash values for lazy
numbers. Hashing is frequently used in geometric algo-
rithms for fast searching purposes.

1 Introduction

Finite precision often introduces inconsistencies in
the results of otherwise correct algorithms. At the
other end of the spectrum, exact arithmetics guaran-
tee error-free computations, but they require consid-
erable amounts of time and memory resources, and
hence have a rather restricted domain of application.

An optimized rational arithmetic library is pre-
sented in [1]; it is based on the so-called “lazy evalu-
ation” paradigm, in that it always delays exact com-
putations until they are inevitable.

A lazy number is a rational represented as a record
with two fields: One for an approximation and an-
other for a symbolic definition of the number (to be de-
tailed later). In most cases, the approximations carry
enough information to operate “consistently” on num-
bers. When this is no more true, the library decides to
perform exact evaluations to either “refresh” approxi-
mations or to obtain the exact expression of the result
or test that caused trouble.

The lazy arithmetic module is implemented as an
independent library which may be used by all sorts
of application programs. Because “laziness” is inher-
ent to the library, it is not necessary to know — when
a computation is called for — whether it will involve
exact operations or whether finite precision will suffice.

To give but one example of application, solving a
linear system involves giving a floating point value to
each unknown. All known pivot-based solvers produce

well-behaved answers in most cases, but are extremely
sensitive to matrix conditioning.

Using finite-precision all along would be extremely
hazardous (what with the risk of never finding out that
the results are erroneous). Using exact arithmetic only
might prove irrelevant 9 times out of 10. A solution
based on lazy arithmetic will only perform the nec-
essary operations, using either finite and/or infinite
precision, according to each case.

The major goal of lazy exact arithmetics is to leave
the decision of switching from finite-precision to exact
calculus (and then possibly back to finite-precision)
to the library itself. Lazy schemes, such as the one
described here, statistically save a large amount of
unnecessary evaluations, and thus guarantee consis-
tent computations (which is not true of finite-precision
methods) at a much lower cost than purely exact so-
lutions, in most situations.

In this paper, we shall focus on hash-coding meth-
ods ([4]) for lazy numbers. There are basically two
motivations for introducing such a notion:

1. Geometric algorithms often require to retrieve
objects from their coordinates, a process that
is made possible by appropriate hash code tech-
niques.

2. The lazy library itself may use such a scheme
to discriminate numbers with close approxima-
tions, in which case finite-precision cannot be of
any help: Since different hash keys necessarily
designate different numbers, a certain amount of
evaluations — although not all of them — may be
avoided.

We shall see how modular arithmetic allows to de-
fine efficient hash keys from the symbolic definition
of lazy numbers. In Section 2, we briefly review how
lazy numbers are represented and manipulated (see [3]
for a detailed account). Sections 3 and 4 present two
methods to compute hash keys for lazy numbers. Per-
formance issues, future research and open problems
are presented in Section 5.

2 Laziness fundamentals

Any rational quantity r with exact value ¢ may be
represented as a lazy number by a two-field record:

1. an approximation — in our setting, a floating-
point interval that contains ¢ — and

2. a symbolic definition for r, specifying a method
to retrieve its exact value ¢, when desired. More
precisely, it is either a rational (evaluated) quan-
tity, or a symbolic (unevaluated) expression rep-
resenting the sum, the product, the opposite (ad-
ditive inverse) or reciprocal (multiplicative in-
verse) of other lazy numbers.

Each time an elementary arithmetic operation
(4, *, invy, inv,) is requested, the library computes
a consistent interval for the result, and then creates a
new symbolic definition record for it.

In most situations, intervals will convey sufficient
information to allow consistent computations’. Let
us 1llustrate this with a simple example. Suppose we
wish to compare two lazy numbers a and 6. If their
bounding intervals I, and I are disjoint, it suffices to
compare the floating point bounds of 7, and I to infer
the relative positions of @ and b. Conversely, if I,NI;, #
(), the intervals for the two numbers have grown too
large, and only an exact (rational) comparison will
settle the matter. Let us now investigate the basic
tools required by the lazy library.

2.1 Intervals

Interval techniques ([4], [5], [7]) make it possible to
derive the interval for the result of an arithmetic op-
eration directly from those of the operand(s). For
instance, the interval for the sum of two lazy num-
bers # and y with bounding intervals I, = [ag, b;] and
I, = [ay, by] is, in general (cf. [3]), given by:

[V(ae @ ay), Abe © by)]

where 7(x) (resp. A(y)) is the machine number im-
mediately below (resp. above) number y, and @ de-
notes the addition on machine numbers.

2.2 Dags

On the other hand, the resulting symbolic definition
for the sum of # and y is obtained by creating a sym-
bolic node (to hold the + operator), with two pointers
to the operands.

1To clarify this, suppose p and o are the machine represen-
tations of two real numbers, r and s. These numbers may result
from any sequence of rational computations. p and ¢ are said
to be consistent results iff they lie in the same order as r and s.
Clearly, no consistent statement may be made when | p — o |
is smaller than machine precision!

In general, the underlying data structure is a tree-
like representation in which internal nodes are “un-
evaluated” numbers — i.e. unary or binary operators?
— and terminal nodes (“leaves”) are evaluated num-
bers — i.e. with known rational values. This structure
is a directed acyclic graph (dag, for short) rather than
a tree, since any lazy number may be referred to by
more than one node.

Thus, the generation (interval, definition) of any
elementary lazy arithmetic operation takes constant
time and space, and requires no evaluation.

2.3 Evaluation

Indeed, the exact rational value of a given lazy number
may even never be computed, depending on the sub-
sequent operations it will be subjected to. The only
occasions when a lazy number should be evaluated are:

1. Each time the sign of a number whose interval
contains zero 1s requested, or more generally, each
time two numbers with overlapping intervals are
to be compared.

2. Each time the reciprocal of a number whose in-
terval contains zero is required.

3. Each time an “ancestor” of (i.e. containing in its
own definition dag) the lazy number in question
must 1tself be evaluated.

Evaluation is based on a simple recursive mechanism.
Different strategies and heuristics are liable to reduce
the computational cost of this operation. See [3] for a
discussion.

2.4 Putting it all together

The lazy exact arithmetic library (LEA) is writ-
ten in C++, mainly because this language allows
classes and operator overloading. Consider any C
program using Number as a synonym for float,
for instance “typedef float Number;”. Schemati-
cally, it now suffices to replace this definition with
“typedef LazyNumber Number;” to compile the pro-
gram and link it with the library. As a consequence,
all standard floating point operators and syntax con-
structs are directly available, and the mechanisms of
the lazy library are completely transparent to the user.

To illustrate this in a typical situation from Compu-
tational Geometry, suppose A(; y), Bz y), and Cig y)

2(énv4, invs) and (+, *), respectively. There is no restric-
tion on the arity of the operators: It is quite legitimate to want
to provide for built-in, specialized functions to compute such
things as the determinant of a 3 x 3 matrix, and so forth... The
larger the number of basic operations available, the more ver-
satile the library.

are three points in the euclidian plane. The triple
(A, B,C) is said to form a right turn (left turn) if
the measure of the angular sector (B_}l, B_C') around
B is smaller (greater) than w. Of course, A4, B, C' are
aligned iff the angle is null.

Now consider the following function to discriminate
all three cases:

int LeftRight? (LazyNumber A, Ay, Bs, By, C, Cy)
{ LazyNumber A;

A= (Bs— Ax)* (Cy — By) = (Ca — Ba) x (By — Ay);
if (A >0.0)

return LeftTurn;
if (A <0.0)

return RightTurn;
return Aligned;

}
Note that (cf. [8], p. 43):

1 1 1
A=| A, By C,
Ay By Gy

represents twice the signed area of triangle A 4p¢, and
thus gives the sign of the cross product AB x BC.

Each time the function is called, an interval Ia is
computed for the local lazy variable, and a definition
is constructed for it, as explained above. Depending
on the “real values” of the lazy parameters, 0.0 will
sometimes lie outside In — in which case finite pre-
cision is sufficient to determine A’s sign —, and will
sometimes lie inside this interval — in which case exact
evaluation is in order. However, all these situations
are potentially encompassed in the unique standard C
expression of LeftRight? sketched abovel!

All initial (raw) data are assigned an interval con-
taining them. It may happen that two initial val-
ues are so close that their bounding intervals overlap;
in a way, it is as if finite-precision was not sufficient
from the start, but this happens extremely rarely, and
makes no difference for the library.

Interval amplitudes grow with operations. All is
fine until the library hits, say, a comparison test be-
tween two lazy quantities, the intervals of which over-
lap: Obviously, all computations made prior to the
test were consistent, but now the wind is turning. The
library’s first action is to try and contract intervals in
the hope of disconnecting them. This may be done
with the help of partial evaluations in the dags (from
the “leaves” upwards). If the (refreshed) intervals are
disjoint after this, the “interval” comparison may be
safely carried out; otherwise, the rational expressions
of both quantities must be compared using straight-
forward rational arithmetic methods.

3 Computing hash keys

Frequently, geometric algorithms use hash-tables to
speed up searching over elements ([6]) such as points,
lines, or planes ([2]). Each element is assigned a hash
key derived from the numerical data (i.e. coordinates,
line or plane coefficients, etc.) that define it. In this
context, the user of a lazy arithmetic library will be
confronted with the problem of computing hash keys
for lazy numbers, the exact values of which are not
necessarily available. The interested reader 1s referred
to [4] for a thorough treatment of hash methods and
their performance, the distribution of hash keys, and
the techniques for solving collision problems, as these
topics are not relevant here. Our goal simply is to
exhibit an efficient way to produce keys in the presence
of lazy numbers, on the basis of well-known results in
hash-coding theory.

Notations and preliminaries

Let Z denote the set of all integers and p € Z7 be
a (large) positive prime. In this section, we shall see
how each lazy number z may be assigned a hash key
¥(z) € [0,p[such that ¥(z) # ¥(z') = z # 2/, for
any two lazy numbers z and z’.

The binary relation defined in Z by # = y[p] (i.e.
dk € Z such that x — y = k * p) induces the field
Z, = Z/pZ. From now on, we shall denote by =% p
the unique integer in [0, p[defined as the remainder in
the Fuclidian division of ¢ by p. GCD will stand for
Greatest Common Divisor.

3.1 Hash keys for evaluated lazy numbers

By definition, each integer & € Z is assigned the hash
key ¥(z) = « % p. Rational numbers will be repre-
sented in the canonical form 5 where x € Z,y € 77,
and GCD(x,y) = 1. The hash key \11(5) is defined as

follows:

1. If GCD(y,p) = 1,3y~ €]0, p[(the reciprocal
of y in Z,) such that (y*y=*)%p = 1.

In this general case, we define
z
\I!(Z) =(xxy H%p=[(c%p)*(y%p)~1%p.

Note that the second form is used in practice, for
the sake of efficiency, and that this definition also
applies to a fraction with reducible numerator
and denominator, provided their GCD is not a
multiple of p. The computation of reciprocals in

Z, is detailed in 3.3.

2. GCD(y,p) # 1 (i.e. if y = k*p forsome k € Z)
then y admits no reciprocal in Z,. However, we
may define 07! = Q and Q=' = 0, where Q is
any number outside [0, p[. (For convenience, we

shall choose Q = p.)

Whenever GCD(y,p) # 1, let \11(5) = Q. Note
that the larger the value of p, the smaller the
probability (%) of such an event to occur.

3.2 Hash keys for unevaluated lazy num-
bers

Recall that a lazy number z may be either “evaluated”
(i.e. the rational value of z is available), or “unevalu-
ated”. If the former case, ¥(z) may be computed from
the rational value, as shown in 3.1. In the latter case,
z is represented by a symbolic expression like “a + b7,
“ax b, “inuy(a)’, or “inv.(a)”, where a and b are
references to lazy numbers.

3.2.1 General rules

In the general case, ¥(z) is computed by recursively
applying the following well-known properties of Z,, (see
exceptions in 3.2.2):

Y(z+2) = (
U(z*2") =
Y(invy(2)) = (=
Y(inv(z)) = [

This scheme yields hash keys for unevaluated lazy
numbers without computing their exact rational val-
ues. Moreover, it always returns identical hash keys
for lazy numbers the evaluation of which would result

in the same rational quantity (e.g. % + % and g * g)

(2))%p=p—V(z)
U(2)] 7 %op, W(inv.(0)) =

3.2.2 Special cases

However, it was implicitly assumed that neither ¥(z)
nor ¥(z') is equal to €. If this is no longer true,
we may still give consistent and easily justified rules
for computing hash keys using the key(s) of the
operand(s) in the following cases:

QxQ=0Q

TxQ=0Qx¥=0Q VUelp]
T+Q=04+T=0Q, VIe0,p]
Q=0

07'=Qand Q! =0.

This only leaves two cases which lead to indetermi-
nations and cannot be decided upon, as illustrated
below:

1. 0xQ=Q+0="

Consider the rational number a * b where a = ’T’,

and b = f—) for k € [1, p[. Clearly,
U(a)=0,9(b)=Q, V(axb)=T(k)=k.
Therefore, ¥(a*b) may take any value k in [1, p[.
Moreover, choosing a = p and b = 1% yields
U(a) =0, ¥(b) = and ¥(axb) =V(3)=Q.

2. Q4+ Q=7

Consider the rational number a + b where a =

and b = (k — %) for k € [0, p[. Clearly,

U(a) = U(b)

Therefore, ¥(a+b) may take any value k in [0, p[.
Moreover, choosing a = zl? and b = zl? yields

U(a) =Q,¥(b)=Qand ¥(a+b) = \I!(ZZ—)) =Q.

In both cases, a simple way to compute the key 1s to
evaluate the whole definition tree for z, and to deduce
U(z) from the resulting rational value as shown in 3.1.
As these indeterminate cases are not very frequent,

1
1_7’

=Q, W(a+b)=U(k)=k.

they have little influence on the overall performance
of the library. But more about this in Section 4.

3.3 Elementary arithmetic in 7,

Quite naturally, the sum, the product and the opposite
may be found in constant time in Z,, using straight-
forward properties of modular arithmetic.

Let us now detail the computation of 4=, the re-
ciprocal of any w such that GC'D(u,p) = 1. This may
be done by applying:

Fermat’s theorem Given a prime number p, if
u is any integer such that GC'D(p,u) = 1 (i.e. not a
multiple of p), then w?~! % p = 1.

As a consequence,
u”t = w2 %p,
which gives a first algorithm for computing recipro-

cals. Another solution is given by:

Bezout’s theorem For any relatively prime num-
bers u,v € Z,dx,y € Z such that uxx +v*xy = 1.

Applying Fuclid’s extended algorithm to compute
GCD(u,v) with v = p yields z and y such that
ukx+p+y=1. Therefore (uxz)%p =1, and

ut=2%p

which suggests the second algorithm.

Both methods take O(log(p)) time. In practice, it is
more convenient to use a pre-computed table to store
all multiplicative inverses in Z,. Next, since

(=) =-("1),

it 1s sufficient to store only ¢ = ’%1 reciprocals:
1=t 27t gt

However, since p is a fixed prime, this table may
be computed independently once and for all — as a
O(plog(p))-time preprocessing — and included as data
at compile time into the library. Thus, all elemen-
tary arithmetic operations in Z, may be performed in
constant time, provided O(p) space for the table of
reciprocals.

Viel0,pl(p—i)~"t =

Choosing p The value of p is an important factor
in the performance of this technique, for obvious rea-
sons. On the one hand, p should be as large as possi-
ble, to reduce the frequency of indeterminations. But
on the other hand, p should be small enough to pre-
vent cumbersome overflow handling in Z,, and, most
important, to limit the amount of memory required to
store the table of reciprocals.

A reasonable choice; on 32-bit machines, is to set p
to the largest prime less than 2'¢ (i.e. 65,521). This
“only” consumes about 64Kb of memory resources.

4 A finer method

The main disadvantage of the former method is that
the space occupied by the table is proportional to p. In
order to rule this table out of the library altogether, let
us now introduce a new hashing technique. The idea is
to replace the keys with more manageable information,
thereby eliminating the need for their evaluation.

Let z be any lazy number, ¥(z) be its hash-key —
as defined earlier — and define couple (n,6) € ZZZ, SO
that

n = (¥(z)*68) % p, whenever § # 0.

Thus, all couples (k * 0,k * &),k # 0 represent the
same key ¥(z) modulo p, and all couples (k,0),k # 0
represent the “infinite key” €. Finally, define (0, 0) as
the special couple for indeterminations.

4.1 General rules

A natural way to define the couple associated

with an irreducible rational number % 1s to choose

(a % p,b% p). Note that this definition also applies to
a fraction with reducible numerator and denominator,

provided their GCD is not a multiple of p.

If the couples assigned to lazy numbers z and 2’ are
(n,6) and (1, 8"), we may define those associated with
+, *, tnvy, and nv, as follows:

(7,8) +(n',8") = ((n* 8" +n' *8)%p, (¢ *8)%p).

(n,8) *(n',8") = ((n*n") %op, (6% 8") %p).

invy(n,6) = (—n%p,8) = (p—n,96).

inv(n,8) = (6,n).
All these operations are carried out in constant time
and space, and division no more requires the computa-
tion of reciprocals, since it now consists in the simple
inversion of couple components.

4.2 Indeterminations

Of course, indeterminate cases have not disappeared
completely. They may indeed be seen to appear in
just two cases, exactly as before:

(n,0) + (n',0) = (0,0).

(1,0) +(0,6) = (0,0).
A simple way to solve indeterminations is yet again to
evaluate the underlying rational number.

4.3 Discussion

The lazy library may use keys — or rather couples —,
for its own proper needs. Suppose lazy numbers z and
z" are assigned couples (1, 8) and (5, ¢), respectively,
and we wish to compare keys ¥(z) and ¥(z’), as they
were defined in Section 3. There is no need to compute
their actual values for this purpose, since

U(z) =W) nxé =y *é

In the general case, the key corresponding to a couple
(n,6),6 #£0,is ¥ = (nx6=1) % p, and the computation
of 671 is required. As such requests are not likely
to be frequent, it is possible to use one of the above
mentioned O(log(p))-time algorithms.

Of course, on such occasions, couple (7,8) is re-
placed with the equivalent couple (n * 671 1). The
only special case is the computation of the key from a
couple (n,0),n # 0, where the key is Q.

This new solution is much simpler than the first
one. In particular, there is no special treatment for
the infinite key €2. The computation of reciprocals in
Z, is no more needed, except when the key is explicitly
requested by the user. Even in this case, the library
may do without of table for reciprocals.

Choosing p Larger values for prime p may be used
here, since overflow is the only concern! It is possible
to use, for instance on 32-bit machines, the Mersenne
prime

M =231 — 1 =2 147,483,647

as addition and multiplication overflows in Z oy may be
dealt with by standard techniques (cf. [4], p. 272 ff.).
As a consequence, the probability of indeterminations
() becomes negligible.

5 Conclusion

Performance Roughly speaking, the “lazy-and-
hash” version of an algorithm runs between 4 an 7
times slower than its floating point version (due to
interval and dag updates), and may run up to 150
times faster than its exact version, depending on data
pathology. It is worth noting that lazy versions only
make about twice the floating point operations than
finite-precision versions, but never one superfluous
exact operation, which means none when a finite-

precision version would yield consistent results!

Use Whenever precision and consistency are cru-
cial issues, laziness is a strong and powerful paradigm,
for which hashing techniques provide efficient comple-
mentary tools. As an example, the complete geometric
algorithm presented in [2] makes intensive use of hash
keys — as we have described them — for fast searching
in lazy context. It is clear that either method pre-
sented in this paper might be appropriate in different
situations. Favoring one or the other will depend, in
practice, on whether the actual values of keys must be
made available to the application programs or not.

Yet, application programs are not the only ones to
benefit from hashing: LEA| the lazy arithmetic library
itself, uses this technique (see [3] for a full description).
As already pointed out, hashing is exploited to speed
up discriminations between lazy numbers with over-
lapping intervals (obviously, ¥(z) # ¥(z') = z # 2/).
In the current version of the library, hash keys are
computed each time a new lazy number is created.
However, there is no particular difficulty in supplying
a function ¥ to be called at request (i.e. for the user’s
own needs).

Open problems From a practical point of view,
hashing lazy numbers widen the functionalities of the
lazy arithmetic library, in that it allows to solve a
certain number of problems related to our basic goal:
Handling precision issues without interfering with al-
gorithms.

Although lazy algebraic libraries are beyond the
scope of this paper, let us just point out that the prin-
ciple of hashing lazy numbers described above may be
extended to the algebraic case.

For instance, suppose we work in a quadratic exten-
sion @(y/a). To hash such numbers, it suffices to use

a finite field F, where a is a quadratic residue modulo
p, or else to use the quadratic extension of F},.

Finally, one may ask if more efficient hashing meth-
ods could be found. One may even wonder if more
powerful methods exist that would allow to detect
equality between lazy numbers as they are created —
be they defined by isomorphic expressions or not — via
some specialized mechanism (possibly union-find tech-
niques). To say the truth, detecting equality without
evaluating remains a crucial problem.

Acknowledgements The authors wish to thank
Jean-Michel Muller and all his colleagues from E.N.S.
and [.LN.P.G. for all their help.

References

[1] M.O. Benouamer, P. Jaillon, D. Michelucci, and
J-M. Moreau. A lazy arithmetic library. In Pro-
ceedings of the IEEE 11th Symposium on Com-
puter Arithmetic, Windsor, Ontario, June 30-July
2, 1993.

[2] M.O. Benouamer, D. Michelucci, and B. Péroche.
Boundary evaluation using a lazy rational arith-
metic. In Proceedings of the 2nd ACM/IEEE Sym-
postum on Solid Modeling and Applications, pages
115-126, Montréal, Canada, 1993.

[3] P. Jaillon. ‘LEA’, a lazy exact arithmetic: Imple-
mentation and related problems. Technical Re-

port in preparation, Ecole Nationale Supérieure
des Mines de Saint-Etienne, 1993.

[4] D.E. Knuth. Seminumerical Algorithms, volume 2.
Addison-Wesley, Reading, Mass., 1981.

[5] U.W. Kulisch and W.L. Miranker.
Arithmetic in Theory and Practice.
Press, New York, 1981.

[6] K. Mehlhorn. Data structures and Algorithms
3: Multidimensional Searching and Computational
Geometry. Springer-Verlag, Berlin, 1984.

[7] R.E. Moore. Interval Analysis. Prentice Hall, En-
glewood Cliffs; N.J.; 1966.

[8] F.P. Preparata and M.I. Shamos. Computational
Geometry — An Introduction. Springer-Verlag,
New York, N.Y., 1985.

Computer
Academic

