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ABSTRACT

In games like chess, the node-expansion strategy significantly affects the performance of a game-
playing program. In this article we propose a new game-tree search algorithm that uses the realiza-
tion probabilities of nodes for deciding upon the range of the search. The realization probability
of a node represents the probability that the moves leading to the node will actually be played. Our
algorithm expands nodes as long as the realization probability of a node is greater than the thresh-
old. Therefore, it spends little computational resource on unrealistic moves, resulting in a more
effective search. We have implemented this algorithm in a Shogi-playing program. Experimental
results show that the proposed algorithm achieves state-of-the-art performance on a standard test
suite for computer Shogi. Moreover, its performance gain is equivalent to a speed-up of more than
two.

1. INTRODUCTION

Shogi is a chess-like game, which is very popular in Japan. In the context of game-tree searching, the biggest
difference between chess and Shogi is the reuse of pieces. In Shogi, once you have captured an opponent’s
piece, you can reuse the piece by dropping it on any empty square in any subsequent turn. This rule makes the
branching factor of Shogi considerably larger than that of chess, especially in endgames where players usually
have a large amount of pieces in hand. Today, the majority of strong Shogi programs use many forward-
pruning techniques (Iida, Sakuta, and Rollason, 2002). Due to the larger branching factor of Shogi, one can
hardly achieve state-of-the-art performance with the brute-force (full-width) search, which once dominated the
computer-chess scene. Since those forward-pruning techniques heavily rely on knowledge-intensive heuristics,
they require a huge amount of tuning effort and domain-specific knowledge.

In games like chess, the node-expansion strategy significantly affects the performance of a game-playing
program. Most world-class chess programs use ‘depth’ as the primary criterion for determining the range
of the search and incorporate many pruning and extension techniques, such as null-move forward pruning
(Donninger, 1993), fail-high reductions (Feldmann, 1994), check extensions, recapture extensions and so on.
Alternative search strategies are theoretically promising but the results have still to be demonstrated in prac-
tice (for example, Conspiracy Number Search (McAllester, 1988; Schaeffer, 1990; Lorenz et al., 1995), B*
Probability based search (Berliner and McConnell, 1996)). The situation is similar in the world of computer
Shogi. Almost all the top-level Shogi programs adopt this depth-based strategy.

In this article we propose a new node-expansion strategy based on the realization probabilities of nodes. While
the depth-based search expands nodes to a given depth, this algorithm expands nodes as long as the realization
probability of a node is estimated to be greater than the given threshold. Therefore, this algorithm spends little
computational resource on unrealistic moves, resulting in more effective search.

This article is organized as follows. Section 2 presents the game-tree search algorithm based on realization
probability. Section 3 describes the experimental results using a standard test suite and matches against the

1Tsujii Laboratory, Department of Information Science, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo,
113-0033, Japan. Email:{tsuruoka,yokoyama}@logos.t.u-tokyo.ac.jp, chikayama@klic.org.



ICGA 147

1.0

0.5 0.3

0.150.10.35

0.7 0.2

0.5 0.3

0.5

Transition probability

Realization probability

Figure 1: Realization probability and transition probability.

conventional depth-based search. Section 4 discusses the relationship between the proposed algorithm and
related work. Finally, Section 5 offers some concluding remarks.

2. SEARCH ALGORITHM BASED ON REALIZATION PROBABILITY

The development of our algorithm was motivated by the observation that expert Shogi players do not determine
the range of the search (i.e., node expansion) by depth. Although no one has revealed the node-expansion
mechanism in the brains of expert Shogi players, there are some observations suggesting that they use a
kind of ‘likelihood’ of a position as a criterion of whether they should further investigate the position. The
experts carefully examine the positions that would be realized by a series of moves such as a sequence of
re-captures. Conversely, they give little thought to the positions where important pieces have been lost without
compensation.

In order to express such ‘likelihood’ numerically and make computers search in a similar way to human expert
players, we consider the realization probabilities of positions.

2.1 Realization Probability

The realization probability of a node represents the probability that the moves leading to the node will actually
be played. By definition, the realization probability of the root node is 1. Given transition probabilities, we
can calculate the realization probability of a node in a recursive manner:

Px = Pm · Px′ (1)

where Px is the realization probability of a node x, Px′ is the realization probability of the parent node x
′,

and Pm is the transition probability by a move m, which changes the position x
′ into x. Figure 1 shows an

example of realization probabilities in a search tree.

Since transition probabilities are less than 1, the probability of a node gets smaller as the search goes deeper.
When the realization probability of a node becomes smaller than the predefined threshold, the node becomes
a leaf. In other words, the cut-off test is done by checking whether the realization of the node is smaller than
the threshold.

It should be noted that if you take the logarithm of Equation (1), you see that the calculation can be conducted
by adding the logarithms of probabilities. This is done in our actual implementation. However, we use the
notation of Equation (1) in the remainder of this article to emphasize that realization probabilities are calculated
as a result of the multiplication of transition probabilities.
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2.2 Transition Probability

The transition probability of a move is the probability that the move will actually be played. Obviously, when
there is only one legal move in a position, the transition probability of the move is 100%. This means such
moves do not reduce the realization probability and the lines including such moves are searched more deeply.

However, we usually have multiple legal moves in a position. In such cases, we calculate the transition
probabilities of moves according to the category to which the moves belong. The categories include captures,
re-captures, escape moves, promotion moves, checks, and so on. The probability of each category is calculated
from actual game records played by professional Shogi players 2 . The probability of a category Pc is calculated
as,

Pc =
np

nc

(2)

where nc is the number of positions in which moves of the category c are legal, and np is the number of
positions in which one of the moves of this category was actually played.

We use the probability of a category as the transition probability of a move that belongs to the category. When
a move belongs to multiple categories, we use the category which has the highest probability. However, it
should be noted that the probability of a category does not directly correspond to the transition probability of
a move. The reason is that, if a category contains multiple legal moves at a position, the probability that one
particular move in this category is played is smaller than the probability of the category. Nevertheless, the
probability of the category gives an upper bound of the transition probability of a move. Currently, we have
no better alternative to obtain the transition probability of a move.

Table 1 shows some representative categories and their probabilities. The category with the highest proba-
bility is ‘re-captures with material gain3’, whose probability reaches as much as 89 percent. Therefore, lines
including ‘re-captures with material gain’ are more deeply searched in our algorithm, while lines including,
for instance, ‘capture with material loss’ are searched shallowly .

2.3 Re-Search

If you simply implement the cut-off criterion based on the realization probability described above, you would
face a serious problem. The problem is a kind of the horizon effect caused by the moves with a low transition
probability. Because such moves can turn a node into a leaf very easily, the root node is prone to select such
moves when the position is actually disadvantageous and deeper search would reveal it.

To avoid this problem, our algorithm performs a deeper search for the moves that have updated the current best
value (re-search). The question here is: what transition probability value should be used? From the standpoint
of transition probability, we should use the probability that the move which updates the current best value will
actually be played. However, such a probability cannot be obtained from game records. Therefore we simply
set the value to 0.5.

2.4 Algorithm

Except for the cut-off test and the procedure of re-search, the algorithm is identical with the normal alpha-
beta search. Figure 2 shows the algorithm in C++ like code. The cut-off test checks whether the realization
probability of the node is smaller than the predefined threshold. For moves with probability smaller than 0.5,
the algorithm first conducts a preliminary search. Since the purpose of the preliminary search is to see whether
the move will update the current best value, null-window search suffices. If the returned value indicates an
update, the algorithm next conducts a re-search by which it obtains the exact value of the move. For moves
with probability larger than 0.5, it conducts a normal search.

2We used 600 games contained in the CD-ROM “The collection of games played by Yoshiharu Habu (in Japanese).”
3Material gain is computed by considering re-captures only.
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Category Material gain Transition probability

recapture + 58%∼89% ∗

0 22%
- 5%

capture + 16%∼42% ∗

0 9%
- 2%

check + 43%
0 25%
- 4%

promote Rook + or 0 21%
- 1%

promote Bishop + or 0 20%
- 1%

promote Silver + or 0 10%
- 2%

promote Knight + or 0 19%
- 2%

promote Lance + or 0 10%
- 4%

promote Pawn + or 0 22%
- 5%

move an attacked piece + or 0 12%∼69% ∗∗

attack two pieces simultaneously + or 0 8%∼62% ∗∗∗

attack King by Pawn + or 0 25%
attack King by Knight + or 0 20%
attack Rook by Pawn + or 0 23%
attack Gold by Pawn + or 0 11%
attack Silver by Pawn + or 0 11%

move Pawn + or 0 23%
- 4%

move promoted Bishop + or 0 18%
- 3%

move Silver + or 0 16%
- 1%

move promoted Rook + or 0 15%
- 1%

move King + or 0 5%
: : :

∗ The probability depends on the material gain.
∗∗ The probability depends on the value of the attacked piece.
∗∗∗ The probability depends on the value of the attacked pieces.

Table 1: Representative move categories and their transition probabilities.

3. EVALUATION

Below we briefly evaluate our ideas on realization probability. We therefore discuss the implementation (3.1),
the playing strength (3.2) and the test suite (3.3).

3.1 Implementation

The proposed algorithm has been implemented in a Shogi-playing program called GEKISASHI. We call this
version GEKISASHI-R to distinguish it from the version of conventional depth-based search, which is described
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int search(Board* board,
double realization_probability,
double min_realization_probability,
int alpha, int beta, Move& best_move)

{
// Cutoff test
if (realization_probability < min_realization_probability)

return leaf(board);

// Move generation
Move move[MAX_NUMBER_OF_MOVES];
int number_of_moves = generate_moves(board, move);

int best = alpha;
for (int i = 0; i < number_of_moves; i++) {

board->move(move[i]);

int value;
Move dummy;
if (move[i].transition_probability < 0.5) {

// Preliminary search (Null window)
value = -search(board,

realization_probability * move[i].transition_probability,
min_realization_probability,
-(best+1), -best, dummy);

if (value > best) {
// Re-search
value = -search(board,

realization_probability * 0.5,
min_realization_probability,
-beta, -best, dummy);

} else {
// Normal search
value = -search(board,

realization_probability * move[i].transition_probability,
min_realization_probability,
-beta, -best, dummy);

}
board->reverse();

if (value > best) {
best = value;
best_move = move[i];
if (best >= beta)

return best;
}

}
return best;

}

Figure 2: The realization probability based search algorithm.

later. The program performs quiescence searches in leaf nodes, where only re-captures, captures, promotions
and escapes are considered. Iterative deepening is performed using realization probabilities instead of depths.
At each iteration, while the depth-based algorithm increases the threshold depth, the program decreases the
threshold of realization probability by dividing it by 4. The PDS algorithm (Nagai, 1998) is used for checkmate
search. The program also uses common techniques to improve search efficiency, such as transposition tables,
killer heuristics, and internal iterative deepening.
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3.2 Playing Strength

In order to evaluate the playing strength of the proposed algorithm, we have also implemented the conventional
depth-based search algorithm on GEKISASHI. We call this version GEKISASHI-D, whose evaluation function
and quiescece-search procedure are identical to those of GEKISASHI-R. As stated before, one cannot achieve
state-of-the-art performance with full-width search because of the high branching factor of Shogi. Most of
the top-level Shogi programs use plausible move generators to narrow the search space. Unfortunately, there
is no literature which gives complete information about those heuristics. We thus constructed a plausible-
move generator by hand tuning. By using the plausible-move generator, GEKISASHI-D has achieved a win
percentage of 91 percent (in 200 matches) against the full-width version of GEKISASHI in our preliminary
experiments. The specification of the move generator is given below.

• Frontier nodes (remaining depth = 1)

Captures, promotions, escapes, checks and effective attacks (e.g., Double Attack) are generated.

• Pre-Frontier nodes (remaining depth = 2)

Adding to the above, moves of approaching the opponent King and castling moves are generated.

• Remaining depth = 3

Adding to the above, moves blocking the opponent’s long distance effects are generated.

• Remaining depth = 4

Adding to the above, all moves and attacks are generated.

We have tried several common forward-pruning and extension techniques on GEKISASHI-D, including null-
move forward pruning, fail-high reductions, check extensions, recapture extensions and their combinations.
In self-play experiments, the version which used null-move forward pruning, check extensions and recapture
extensions performed best. Therefore we used this version for the match against GEKISASHI-R.

wins draws losses win percentage
5 secs / move 109 0 91 55%

10 secs / move 137 8 55 71%

Table 2: Win percentage of GEKISASHI-R against GEKISASHI-D (GEKISASHI-D is given 10 seconds for each
move).

Table 2 shows the result of the match between GEKISASHI-R and GEKISASHI-D 4. The match consists of 200
games from 100 unique starting positions. GEKISASHI-D is given 10 seconds for each move. Notice that win
percentage reaches 71 percent when both are given the same thinking time. Even when the thinking time of
GEKISASHI-R is half of GEKISASHI-D, the win percentage is still above 50 percent. The results suggest that
the proposed algorithm equivalently makes the depth-based search more than two times faster.

3.3 Test Suite

Matsubara and Iida (1998) provided a standard test suite for computer Shogi programs. This suite consists of
48 (mainly middle-game and endgame) positions extracted from game records played by professional Shogi
players.

Table 3 shows the results. The number of correct answers was counted regardless of whether the program
understood the objective of a move. The first seven rows show the results of our programs. The rest shows the
results of commercial Shogi programs as listed in Matsubara (2001). Considering the total time, GEKISASHI-R
exhibits comparable (or slightly better) performance to the commercial Shogi programs.

4The computer used in this experiment is equipped with a Pentium III 1GHz CPU.
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Program (Setting) Total time (secs) Corrects

GEKISASHI-R 2
−5 ∗ 133 24

2
−7 ∗ 346 23

2
−9 ∗ 802 25

2
−11 ∗ 2103 31

GEKISASHI-D 5 plies ∗ 96 21
6 plies ∗ 488 21
7 plies ∗ 3423 23

TODAI-SHOGI 3 (master level) 1159 27
GINSEI-SHOGI 2 (level 5) 3327 22

KAKINOKI-SHOGI 5 (level 7) 1638 22
AI-SHOGI 2001 (level 5) 825 24

∗ Cut-off threshold.

Table 3: Performance on a test suite.

4. DISCUSSION

The experimental results show a big performance improvement over conventional depth-based search. Two
possible reasons why our algorithm is effective are as follows.

• Forced lines are searched more deeply.

In computer chess, it has long been observed that forced moves should be search more deeply. In our
algorihm, when there is only one legal move at a position, the transition probability of the move is 100
percent and this move does not reduce the realization probability. Thus the lines including this move are
searched more deeply. Some chess programs extend the search when there is only one legal move. Our
algorithm has this extension intrinsically . In Shogi, recaptures with big material gain are mostly forced.
The lines including this type of moves are also searched more deeply (see Table 1).

• Little computational resource is spent on unrealistic positions.

Our algorithm spends little computational resource on unrealistic positions. For instance, it does so
when important pieces would be lost without compensation, because the moves which realize such
positions rarely exist in the game records of professional Shogi players. Although there is a chance
that the algorithm overlooks a tricky move which seems unrealistic at a first glance, the merit of being
able to spend more computational resources on other realistic positions is greater than the danger of an
overlook.

From the implementation point of view, the proposed algorithm is very similar to the depth-based search
using fractional plies (Levy, Broughton, and Taylor, 1989), in which the search allows non-integer depth
increments for some ‘active’ moves, such as recaptures, captures, and checks. If you take the logarithms of the
probabilities in our algorithm, the transition probabilities correspond to the fractional plies. Although there are
few literature sources that offer implementation specifics of fractional plies in chess programs, it is said that
many strong chess programs, for instance CRAFTY (Hyatt, 1996), use the technique. Björnsson and Marsland
(2001) presented a general framework for learning the weights of fractional plies. In the context of fractional
plies, our algorithm not only extends the search depth for ‘active’ moves but also shortens the search depth for
‘inactive’ moves. In Shogi, the majority of moves are ‘inactive’ moves. Therefore, controlling the amount of
the computational resource for such moves is significantly important. The latter is not done in the framework
of fractional plies.

5. CONCLUSION

In this article, we presented a new game-tree search algorithm based on the realization probability and we
evaluated it on a Shogi-playing program. While the depth-based search expands nodes to a certain depth, our
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algorithm expands nodes as long as the realization probability of a node is larger than the threshold. Therefore,
it spends little computational resources on unrealistic moves, resulting in more effective search.

Experimental results show that the proposed algorithm achieves state-of-the-art performance on a standard test
suite for computer Shogi and its performance gain is equivalent to a speed-up of more than two.
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