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ABSTRACT 
Building an accurate emerging pattern classifier with a high-
dimensional dataset is a challenging issue. The problem becomes 
even more difficult if the whole feature space is unavailable 
before learning starts. This paper presents a new technique on 
mining emerging patterns using streaming feature selection. We 
model high feature dimensions with streaming features, that is, 
features arrive and are processed one at a time. As features flow in 
one by one, we online evaluate each coming feature to determine 
whether it is useful for mining predictive emerging patterns (EPs) 
by exploiting the relationship between feature relevance and EP 
discriminability (the predictive ability of an EP). We employ this 
relationship to guide an online EP mining process. This new 
approach can mine EPs from a high-dimensional dataset, even 
when its entire feature set is unavailable before learning. The 
experiments on a broad range of datasets validate the 
effectiveness of the proposed approach against other well-
established methods, in terms of predictive accuracy, pattern 
numbers and running time. 

Categories and Subject Descriptors 
I.5.2 [Computing Methodologies]: Design Methodology- 
classifier design and evaluation, feature evaluation and selection 
General Terms 
Algorithms, Experimentation 

Keywords 
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1. INTRODUCTION 
An emerging pattern (EP for short) is a pattern whose support 
value changes significantly from one class to another [9]. Highly 
accurate classifiers can be built by aggregating the differentiating 
power of EPs [7, 10].   
    Mining EPs is still a daunting problem when the number of 
feature dimensions can be in the thousands, as it is difficult to 
store, retrieve, prune, and sort them efficiently for classification 
with a huge number of candidate EPs. With the advent of 
emerging massive datasets involved with hundreds of thousands 
of features, such as in image processing, gene expression data, 
text data, and so on, this pattern search space is rather huge and 
even smoothing the full feature space sometimes becomes very 
costly or simply impossible. Therefore, mining EPs from such a 
space has to face two challenging research issues: (1) how to 
efficiently mine a small set of strongly predictive EPs from a 

high-dimensional dataset; and (2) how to mine strongly predictive 
EPs from a large feature space as exhaustive search over it is 
either very time-consuming or simply infeasible. 
    In this paper, we propose a new approach to battle these two 
challenging issues. A novel contribution of our approach is that it 
uses streaming features to model a high-dimensional feature 
space, and then integrates streaming feature selection into the EP 
mining process to help efficient and effective discovery of a small 
set of strongly predictive EPs in a large feature space yet to get 
promising performances.  

The concept of streaming features has been proposed to handle 
feature selection in a changing feature space over time [19, 24]. 
Unlike data streams, with streaming features, feature dimensions 
are modeled as a feature stream, and features flow in one by one 
and each feature is processed upon its arrival. Recent research has 
shown that streaming feature selection is effective and efficient 
with not only a huge feature space but also an unknown full 
feature space before learning [19]. However, if we consider 
streaming feature selection and EP mining as a whole, aggregating 
all features and samples to mine EPs is a hard research problem: 
    (1) Online data processing. Since feature dimensions flow in 
one by one, it is required to online transform, map and partition 
arriving features. Firstly, converting a real-world dataset into a 
desired encoded dataset of all items is infeasible before mining 
starts. Secondly, the mapping between the item numbers and real-
world features needs to be constructed and updated as features 
flow in one by one over time. Thirdly, as a feature is available, we 
must online divide the data of each class accordingly instead of 
dividing all data with all features in advance. 
     (2) Dynamical EP mining. With streaming features, one 
solution to mine EPs is to employ streaming feature selection to 
dynamically control the EP mining process. The problem is how 
to integrate streaming feature selection into this EP mining 
process to get an accurate EP classifier.    
    In this paper, we propose EPSF (mining Emerging Patterns by 
Streaming Feature selection). More specifically, EPSF assumes 
that features arrive one at a time, and each feature is online 
processed upon its arrival. With the online processing, a two-level 
framework is proposed to handle dynamical EP mining. In the 
first level, by exploiting the relations between feature relevance 
and EP discriminability (the predictive ability of an EP), EPSF 
online builds an influential feature pool by evaluating each 
arriving feature whether it is useful for mining strongly predictive 
EPs. In the second level, EPSF online builds a candidate EP pool 
by using this feature pool to online guide EP mining. As features 
flow in one by one, by interleaving the two levels, EPSF provides 
a natural way to integrate streaming feature selection and EP 
mining for the high feature dimension challenge in EP mining. 
   The rest of this paper is organized as follows. Section 2 reviews 
related work. Section 3 gives the preliminary and Section 4 
presents our approach. Section 5 reports our experimental results. 
Finally, Section 6 provides our conclusion and future work. 
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2. RELATED WORK 
Dong and Li [9] introduced EPs to represent strong contrasts 
between different classes of data. In addition, a Jump Emerging 
Pattern (JEP for short) is a special type of EPs whose support 
increases from zero in one class to non-zero in the other class 
[12]. Like other patterns composed of conjunctive combinations 
of elements, EPs can be easily understood and used directly in a 
wide range of applications, such as failure detection [16] and 
discovering knowledge in gene expression data [8, 18]. 
    One of the biggest challenges of mining EPs is the high 
computational cost due to an exponential number of candidate 
patterns [17]. A number of interestingness measures are defined to 
reduce the number of discovered EPs without sacrificing their 
discriminative power. Dong and Li [9] first proposed a border-
based approach inspired by the Max-Miner algorithm [2]. In their 
approach, borders are used to represent candidates and subsets of 
EPs and the border differentiation operation is used to discover 
EPs. The ConsEPMiner algorithm follows a level-wise, candidate 
generation-and-test approach to mine EPs [23]. Bailey et al. [3] 
proposed a fast algorithm for mining JEPs, which is much faster 
than the border-based approach. Later Bailey et al. [4] presented a 
new algorithm for efficiently mining EPs by computing minimal 
hypergraph transversals. Inspired by the FP-tree, a CP-Tree miner 
based on the CP-tree data structure was presented to improve EP 
mining performance [6]. Despite the significant improvement on 
EP mining, [17] demonstrated that those previous techniques were 
unable to handle more than sixty dimensions. They proposed a 
ZBDD EP-miner using Zero-Suppressed Binary Decision 
Diagrams (ZBDDs) for mining EPs from high-dimensional data. 
   Much research on EPs has largely focused on classification. 
Dong et al. [10] proposed the first EP classifier, called CAEP 
(Classification by Aggregating Emerging Patterns). Based on 
CAEP, Li et al. proposed a JEP-classifier which is distinct from 
the CAEP classifier [12].The JEP-classifier uses JEPs exclusively 
because JEPs discriminate between different classes more 
strongly than any other type of EPs. Both of these classifiers mine 
EPs by a border-based approach. Meanwhile, Li et al. [13] also 
presented a lazy EP classifier based on an instance-based EP 
discovery, called DeEPs, to improve the efficiency and accuracy 
of CAEP and JEP-classifier. In addition, Fan and Ramamohanarao 
[7] proposed a robust EP-classifier, called SJEP-classifier, using a 
strong jumping emerging pattern that is a special JEP whose 
support is zero in one class but non-zero and satisfying a minimal 
support threshold in the other class. The SJEP-classifier integrates 
the CP-tree miner into the EP classifier, and uses many fewer 
JEPs than the JEP-classifier.  
    Limited to the EP mining techniques, existing EP classifiers 
still cannot handle a dataset with more than sixty dimensions. 
Although the ZBDD EP-miner can deal with a high-dimensional 
dataset, like previous approaches, it still suffers from an explosive 
number of EPs, even with a rather high support threshold. It is still 
a challenging research issue to mine a small but strongly 
predictive EPs from a huge number of candidate EPs. In a recent 
study, Yu et al. addressed the concept of causal associative 
classification using Bayesian networks to help construct EP 
classifiers [21]. The study has shown that integrating causal-
structure learning into EP mining can efficiently extract a minimal 
set of strongly predictive patterns from high-dimensional data and 
get highly accurate EP classifiers. In comparison to [21], we 
propose a new approach on mining emerging patterns by 
streaming feature selection. The method is capable of dealing with 
an unknown or very large full feature space, while exhaustive 
search is either very time-consuming or simply infeasible. 

3. PRELIMINARY KNOWLEDGE 
Assume we have a dataset D defined upon a set of N features 
F=  and the class attribute C. For every feature , 

 we assume it is in a discrete domain . Let I 
be the set of all items, . An itemset X is a subset 
of I and its , where  is the 
number of instances in D containing X and  is the number of 
instances in D. Let  be a finite set of K distinct 
class labels. The dataset D can be partitioned into 

,where  consists of instances with class label 
. The Growth Rate (GR for short) of X from  to 

 and , is defined as follows. 
 
Definition 1. (GR: Growth Rate) [9]

. If  and , then 

; if  but , 
then . 

Definition 2. (EP: Emerging Pattern) [9] Given a threshold 
, an EP from  to  is an itemset X where 

.  
 
   An EP e from  to  is also called an EP of . If 

, e is called a Jumping EP (JEP). The goal of EP mining is to 
extract the EP set for each class which consists of EPs from 

 to , given a minimum growth rate threshold and a 
minimum support threshold.  

Definition 3. (Growth Rate Improvement) [23] Given an EP e, 
the growth rate improvement of e, , is defined as the 
minimum difference between its growth rate and the growth rates 
of all of its subsets, 
               

A positive growth rate improvement threshold ensures a 
concise and representative set of EPs which are not subsumed by 
one another and consist of items that are strong contributors to 
their predictive power. The growth rate improvement can also 
help to reduce the search space by eliminating EPs that are 
uninteresting or redundant.  

An illustrating example is given in Tables 1 and 2 using the 
Balloon dataset from the UCI machine learning repository [5]. 
Assuming the minimum support threshold is 0.2 and the growth 
rate threshold , the candidate EPs are of two classes T (the 
inflated class) and F (the not inflated class) with 20 samples and 4 
features: color, size, act and age.  

 
Table 1 The candidate EPs from class T to class F 

Candidate EP Support 
(class T) 

Support 
(class F) 

 

{act=dip} 0.33 1 3 
{age=child} 0.33 1 3 
{act=dip, age=child} 0 1 ∞ 

 
Table 2 The candidate EPs from class F to class T 

Candidate EP Support 
(class F) 

Support 
(class T) 

 

{act=stretch} 0 0.67 ∞ 
{age=adult} 0 0.7 ∞ 
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From Definition 2, in Table 2, both {act=stretch} and 
{age=adult} are EPs of class T. In Table 1, by Definition 3, we 
can see that {act=dip, age=child} is the EP of class F since both 
{act=dip} and {age=child} are subsumed by it. 

When applying EPs to classification, we get all the EPs of each 
class in a training set that are subsets of a test instance t to 
contribute to the final decision as to whether t should be labeled as 

. More specifically, we derive k scores for t, one score per class, 
by feeding the EPs of each class into a scoring function. Then 

. The following definition 
provides the scoring function of the EP-Classifier [10]. 

 
Definition 4 (Aggregate Score). Given an instance t and a set  
of EPs of class mined from the training data, the aggregate 
score of t for  is defined as 

            

   A potential problem in Definition 4 is that the number of EPs 
from different classes is likely unbalanced. If a class  contains 
more EPs than another class , a test instance tends to obtain a 
higher score for  than for , even when the test actually belongs 
to . To solve this problem, Dong et al. [10] presented the 
concept of a base score for each class  named baseScore( ), 
which is first calculated from the training instances of the class. 
With the base score, the new score of an instance t for , 
named , is defined as the ratio of the score 
calculated by Definition 4 and the base score of ,  
                  . 
The class with the highest normScore wins, and ties are broken by 
choosing the largest class as the winner. 

4. EMERGING PATTERN MINING BY 
STREAMING FEATURE SELECTION 
4.1 Feature Relevance and EP Discriminability 
It is infeasible to examine a search space covering all possible 
item combinations for a large high-dimensional dataset. The 
question is whether some feature values could be pruned before 
mining EPs. As illustrated in Tables 1 to 2, the final set of EPs 
does not contain features size and color, since they have no impact 
on the predictive ability of their corresponding EPs. We propose 
to integrate streaming feature selection to significantly improve 
EP mining in high-dimensional data to produce an accurate EP 
classifier, which otherwise would be impossible due to the large 
search space. In this section, we first analyze on the relationships 
between feature relevance and EP discriminability, and then 
evaluate the degree of features relevance with the discriminative 
power of EPs as the features flow over time.  
   An input feature can be in one of three disjoint categories, 
namely, strongly relevant, weakly relevant, and irrelevant, with 
respect to its relevance to the class attribute [11]. Weakly relevant 
features can be further divided into redundant features and non-
redundant features, and then an optimal feature subset should 
contain weakly relevant but non-redundant features and strongly 
relevant features [22]. In the following definitions, let  be a full 
set of features,  denote the ith input feature, C be the class 
attribute and P(C|S) is the probability distribution of different 
classes given a feature subset . 

Definition 5 (Strong Relevance) A feature  is strongly relevant 
to  iff  . 

Definition 6 (Weak Relevance) A feature  is weakly relevant to 
 iff it is not strongly relevant, and   

              . 

Definition 7 (Irrelevance) A feature  is irrelevant to  iff it is 
neither strongly nor weakly relevant, and 
                  . 

   As defined in Definitions 1 and 2, the discriminability of an EP 
is determined by its support value and growth rate. Proposition 1 
below establishes the relations between non-EPs and irrelevant 
features. 
 
Proposition 1 For , and , 

 holds iff  is irrelevant to C. 
Proof:  Assume a dataset D has two classes ,  
represents class data,  represents class data,  

 is the support value of the itemset  in , and 
 is its support value in .  Then  from 

 to  is calculated as follows. 

p n
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p n
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On the one hand, if the term  holds, then 

 

As  and
, we get       

(with  equivalent to ), as well as 
.  

      According to Definition 7, for any assignments   
and  to F and C,  holds, 
therefore  is irrelevant to C. Clearly, from  to , if 

, we can also prove that  is irrelevant to C. On the other 
hand, if  is irrelevant to C, we get 
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Thus, Proposition 1 is proven.                                                  □    

 Definition 8 (Markov Blanket) [11] Let   be a 
subset of features. If  is conditionally independent of 

 given , then  is a Markov blanket for . 

Definition 9 (Redundant Feature) [22] A feature is redundant 
hence should be removed from , if and only if it is weakly 
relevant and has a Markov blanket  within . 

 From Definition 3, as for an EP e, if we can find an  to 
make , then e is an uninteresting or redundant EP, 
and might be replaced by a subset. Thus, avoiding generation of 

62



 

those redundant EPs in advance will improve search efficiency. 
Proposition 2 below explains the relationship between feature 
redundancy and EP redundancy. 

Proposition 2 For
, and , 

 holds iff  is redundant to C conditioning 
on the subset S. 
Proof:   from  to  is calculated as follows.              

� � � � � �f ,S s sup f ,S s sup f ,S sD Dp n
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      Using the same reasoning in proving Proposition 1, we can get 
two equations: and 

. By Definitions 8 
and 9, we can find a subset  as a Markov blanket of , and 
for any assignments ,  and  to 

, S and C,  holds, and 
so  is redundant to C given S.   
    On the other hand, if  is redundant to C, from  to , then  
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    Thus, we have proven Proposition 2.                     □ 
    Proposition 2 shows that if  is redundant to C given a subset 
S, then an itemset  together with itemsets 

 contains the same predictive information as the 
itemsets .   

According to Propositions 1 and 2, we can extract EPs without 
considering irrelevant and redundant features. We thus integrate 
streaming feature selection into the EP mining process to avoid 
generating non-EPs and redundant EPs. 

Since the irrelevant features can be easily identified, we face 
two challenges here: (1) how to identify redundant features when 
the features stream in; and (2) how to online extract EPs from the 

current feature pool. We give two more propositions below to 
handle redundant features. From Definition 8, since the Markov 
blanket of C subsumes the information that all of the other 
features have about C, we set a Markov blanket of C (MB(C) for 
short) as an empty set initially, and gradually build the MB(C) as 
features flow in one by one over time. Clearly, by Definition 9, 
we can get Proposition 3 to identify whether a new arriving 
feature is redundant for the time being.  

 
Proposition 3 As the features flow in one by one, a current 
Markov blanket of  at time t is denoted as . Assume an 
arriving feature   at time t+1 is weakly relevant to . If 

 such that , then  can be removed. 

     With Proposition 3, if the new feature  is added into 
CMB(C), we can get Proposition 4 to determine which of the 
features in CMB(C) become redundant as   is added. 

Proposition 4 With  at time t, as a new feature  arrives 
at time t+1, we suppose there does not exist any  within 

. If  and
, then  can be removed from 

.  

4.2 Mining Emerging Patterns with Streaming 
Feature Selection 
With the theoretical analysis in Section 4.1, we propose an 
algorithm EPSF (mining Emerging Patterns by Streaming Feature 
selection) in Fig. 1. 
       
1. Initialization of the minimum support threshold , growth rate 
threshold , , and setting C as the class attribute 
2.  Input a new feature  
3.  //Identify and remove irrelevant features  
4. If , discard and goto step 2; 
5. //Identify redundant features by Proposition 3    
6. If , go to step 2 
7. //Add  into the current feature pool  
8.   ; 
9. //Convert feature  into a set of itemsets 
10.     
11. //Map between and  
12.  
13.  For i=1: |C|  // |C| denotes the number of classes 
14. //Mine 1-itemset EPs for each class with the thresholds  
15.             
16. //Add  to the current EP pool CEP 
17.  
18.  Endfor 
19. //Update  by Proposition 4 
20.   For each feature  within  excluding   
21.         If  
22.                    
23. //Update CEP by removing EPs generated from feature Y 
24.                   For each    
25.                        if , then   endif 
26.                   Endfor 
27.                  //Update map_form 
28.         Endif 
29.  Endfor 
30.  Repeat steps 2 to 29 until all features have arrived 
31.  Find all EPs from CEP with map_form  
32.  Classify unlabeled instances by the mined EPs 
 
Fig. 1. The EPSF algorithm    
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     EPSF online builds two pools: a feature pool and an EP pool. 
The feature pool stores the influential features which are useful 
for mining predictive EPs and dynamically changes as the features 
flow in one by one, while the EP pool keeps candidate EPs which 
are mined from the feature pool and online updates as the feature 
pool changes over time. As a feature arrives, if it is a strongly 
relevant or non-redundant feature, EPSF adds it into the feature 
pool, online transforms it into a set of itemsets, and online mines 
EPs which are added into the EP pool. With the features flowing 
over time, the current EP pool online updates with the changing 
feature pool. In order to fast respond to this change, we only 
online mine 1-itemset EPs as features arrive one by one, and then 
mine all EPs with these 1-itemset EPs as all features have arrived. 
More specifically, EPSF consists of the following key stages: 
� Online mining 1-itemset EPs (steps 2 to 18). As a new 

feature  arrives, EPSF first assesses whether it is an 
irrelevant one; and if so, it is discarded. Otherwise, we 
evaluate whether it is redundant to C by Proposition 3; and if 
so, it is also discarded. If not, it is added to the feature pool 
CMB(C). And then, EPSF converts feature  into a set of 
itemsets  and has a mapping between and . This 
mapping can guarantee that itemsets contain items mapped 
from the same feature, and their supersets should be pruned. 
With  and the mapping, EPSF divides each class data, 
mines EPs for each class and stores the EPs in a candidate EP 
pool named CEP. 

� Online updating CEP and the map_form (steps 19 to 30). 
Due to  inclusion, EPSF updates the feature pool CMB(C) 
by removing redundant features. If some features are 
removed from CMB(C), then we update CEP and map_form. 

 The EPSF algorithm is relevant for large datasets with high 
feature dimensions, as it does not need to store the whole data in 
the memory to check whether a new feature is redundant and to 
update CMB(C) when a new feature is added. As a novel 
contribution, EPSF can mine EPs from a high dimensional dataset 
without knowing its entire feature set in advance. When the 
features flow in one by one, each feature is processed upon its 
arrival. Feature redundancy checking (step 6) and CMB(C) 
updating (steps 20-22) are both conducted within the current 
CMB(C), not in the whole feature set.   

 

5. EXPERIMENTAL RESULTS 
5.1 Experimental Setup 
In order to thoroughly evaluate the proposed EPSF algorithm, 
thirty six datasets in Table 3 are selected from the UCI machine 
learning repository (the first 24 datasets), very high-dimensional 
biomedical datasets (hiva, ovarian-cancer, lymphoma, and breast-
cancer), NIPS 2003 feature selection challenge datasets (madelon, 
arcene, dorothea, and dexter), and four frequently studied public 
microarray datasets (the last 4 datasets), respectively.  
   Our comparative study involves three types of comparisons, 
using ten-fold cross-validation on all datasets.  
� Comparing against state-of-the-art EP classifiers, CAEP [10] 

and CE-EP [21].  
� Comparing EPSF with three well-known associative 

classifiers: CBA [15], CMAR [14] and CPAR [20].   
� Comparing the predictive accuracy of EPSF with state-of-

the-art non-associative classifiers, including Decision Tree 
J48, SVM, and AdaBoost using their Weka implementations 
with default parameters.  

    We use the method proposed by Aliferis et al. [1] to discretize 
continuous features for continuous datasets. In the experiments, 
we set the minimum confidence threshold to 0.8 for CBA and 
CMAR, and set the growth rate to 20 for EPSF, CAPE and CE-
EP. To test the impact of the minimum support threshold, we set 
seven minimum supports for EPSF, CE-EP, CAEP, CBA and 
CMAR, including 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4, 
respectively. The parameters for CPAR are set the same as those 
reported in [20]. CBA, CMAR, and CPAR are implemented in 
LUCS KDD Software Library, while EPSF, CAEP and CE-EP are 
implemented in C++. The experiments are performed on a 
Window 7 DELL workstation with an Intel Xeon 2.93 GHz 
processor and 12.0GB RAM.  

Table 3 Summary of 36 Datasets. 
   #: number of features, SIZE: number of instances 

Dataset # SIZE Dataset # SIZE 
australian 14 690 promoters 57 106 
breast-w 9 3,146 spect 22 267 
crx 15 690 spectf 44 267 
cleve 13 303 tictactoe 9 958 
diabetes 8 768 vote 16 435 
german 20 1,000 wdbc 30 569 
house-votes 16 230 madelon 500 2,000 
hepatitis 19 155 hiva 1,617 4,229 
horse-colic 22 368 ovarian-cancer 2,190 216 
hypothyroid 25 3,163 lymphoma 7,399 227 
heart 13 270 dexter 20,000 300 
infant 86 5,337 breast-cancer 17,816 286 
ionosphere 34 351 arcene 10,000 100 
kr-vs-kp 36 3,196 dorothea 100,000 800 
labor 16 57 colon 2,000 62 
liver 6 345 leukemia 7,129 72 
mushroom 22 8,124 lung-cancer 12,533 181 
pima 8 768 prostate 6,033 102 

     
5.2 Comparison of Predictive Accuracy 
Tables 4 to 6 report detailed results in terms of predictive 
accuracy of the proposed EPSF classifier and the other eight 
classifiers, including two EP, three associative and three non-
associative classifiers on the thirty six benchmark datasets. We 
select the best predictive accuracy under the seven minimum 
supports as the results for our comparative study. In Table 6, 
CBA, CMAR and CPAR only have results on the twenty four low 
dimensional datasets as they fail to deal with a high feature space. 
The best result is highlighted in bold face for each dataset and the 
symbol “/” denotes a classifier runs out of memory due to a huge 
number of candidate patterns.  
   To further investigate the classification results, we conduct 
paired t-tests at a 95% significance level and summarize the 
win/tie/loss counts of EPSF against the other algorithms in Table 
7 (note: if a classifier fails to run on a dataset while EPSF works, 
then EPSF wins).  

In Table 7, EPSF generally outperforms CAEP on all thirty six 
datasets and CBA, CMAR and CPAR on twenty four low 
dimensional datasets. EPSF is also superior to CE-EP which is a 
state-of-the-art EP classifier for handling high feature dimensions. 
Meanwhile, in comparison with the well-known non-associative 
classifiers, EPSF is significantly superior to J48 and AdaBoost 
and also very competitive with SVM as shown in Table 7. We 
have demonstrated in the experiments that the integration of 
streaming feature selection into EP mining can avoid generating 
non-EPs and redundant EPs. This enables EPSF to not only 
handle high-dimensional datasets such as the last twelve datasets 
in Table 3, but also produce very promising predictive accuracy. 
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Table 4 Comparison of predictive accuracy (%): EPSF, CAEP and CE-EP 
Dataset EPSF CAEP CE-EP Dataset EPSF CAEP CE-EP 
australian 87.50 84.71 83.97 promoters 71.00 / 72.00 
breast-w 96.88 96.88 96.88 spect 72.69 66.92 72.69 
crx 85.29 84.85 82.21 spectf 86.92 / 83.85 
cleve 82.76 85.52 84.83 tictactoe 72.11 82.95 69.58 
diabetes 72.11 68.95 72.11 vote 95.48 90.00 95.95 
german 69.10 72.80 71.50 wdbc 83.39 81.96 81.79 
house-votes 96.82 90.91 96.82 madelon 61.20 / 59.00 
hepatitis 82.67 86.00 85.33 hiva 95.17 / 93.70 
horse-colic 85.28 79.72 85.83 ovarian-cancer 93.81 / 92.86 
hypothyroid 73.03 67.78 72.82 lymphoma 76.82 / 77.73 
heart 85.56 85.93 83.70 dexter 89.67 / 88.33 
infant 91.46 / 94.92 arcene 80.00 / 86.67 
ionosphere 93.24 90.29 92.94 breast-cancer 92.96 / 92.22 
kr-vs-kp 92.42 83.49 92.23 dorothea 94.94 / 95.06 
labor 92.00 94.00 96.00 colon 91.67 / 95.00 
liver 61.76 57.65 61.76 leukemia 100.00 / 100.00 
mushroom 97.30 96.18 96.18 lung-cancer 98.89 / 99.44 
pima 72.11 68.95 72.11 prostate 95.00 / 94.00 

                    
Table 5 Comparison of predictive accuracy (%): EPSF, J48, SVM and AdaBoost 

Dataset EPSF J48 SVM AdaBoost Dataset EPSF J48 SVM AdaBoost 
australian 87.50 85.79 85.36 86.38 promoters 71.00 63.21 79.25 66.04 
breast-w 96.88 94.56 97.00 94.85 spect 72.69 65.54 70.04 69.66 
crx 85.29 84.20 85.51 85.36 spectf 86.92 62.57 81.25 75.40 
cleve 82.76 75.91 82.51 84.82 tictactoe 72.11 85.70 98.33 72.31 
diabetes 72.11 72.00 73.18 73.18 vote 95.48 94.01 94.93 82.87 
german 69.10 74.00 76.20 71.60 wdbc 83.39 75.92 79.61 76.27 
heart 85.56 77.03 83.33 81.11 madelon 61.20 57.50 56.35 60.50 
hepatitis 82.67 80.65 84.52 80.65 hiva 95.17 96.39 94.70 96.47 
horse-colic 85.28 81.79 81.79 83.70 lymphoma 76.82 70.93 77.53 60.79 
hypothyroid 73.03 95.64 95.57 95.23 breast-cancer 92.96 80.77 92.31 83.57 
house-votes 96.82 96.52 96.96 96.96 ovarian-cancer 93.81 89.35 93.52 90.74 
infant 91.46 95.39 95.41 95.43 dorothea 94.94 / / / 
ionosphere 93.24 92.02 91.74 89.46 arcene 80.00 56.00 81.00 71.00 
kr-vs-kp 92.42 99.31 94.99 93.84 dexter 89.67 82.67 91.33 81.33 
labor 92.00 92.98 85.96 87.72 colon 91.67 79.03 85.48 85.48 
liver 61.76 60.00 60.29 60.87 leukemia 100 90.28 98.61 100 
mushroom 97.30 100 99.11 98.44 lung-cancer 98.89 90.61 100 96.69 
pima 72.11 72.01 73.18 73.18 prostate 95.00 88.24 94.12 91.18 

                    
Table 6 Comparison of predictive accuracy (%): EPSF, CBA, CMAR and CPAR 

Dataset EPSF CBA CMAR CPAR Dataset EPSF CBA CMAR CPAR 
australian 87.50 86.96 86.96 85.51 ionosphere 93.24 88.88 90.58 88.88 
breast-w 96.88 94.09 90.82 92.95 kr-vs-kp 92.42 93.56 89.41 88.71 
crx 85.29 86.52 85.51 85.51 labor 92.00 54.33 89.17 80.33 
cleve 82.76 83.12 85.82 78.61 liver 61.76 60.90 4.12 58.14 
diabetes 72.11 73.18 64.24 73.31 mushroom 97.30 78.67 99.37 98.66 
german 69.10 74.50 71.00 65.70 pima 72.11 73.45 63.94 67.97 
house-votes 96.82 96.96 96.96 96.96 promoters 71.00 28.13 42.50 63.00 
hepatitis 82.67 49.50 83.33 72.34 spect 72.69 64.42 62.66 64.42 
horse-colic 85.28 83.69 83.91 82.02 spectf 86.92 55.84 80.07 54.74 
hypothyroid 73.03 94.78 90.00 89.56 tictactoe 72.11 100 99.26 71.43 
heart 85.56 84.07 84.07 77.41 vote 95.48 95.40 95.40 94.01 
infant 91.46 63.72 90.00 84.30 wdbc 83.39 95.79 95.61 92.91 

               
Table 7 Win/tie/loss counts of EPSF vs. the other 8 classifiers (pairwise t-test at 95% significance level) 

 CAEP CE-EP CBA CMAR CPAR J48 SVM AdaBoost 
EPSF 28/3/5 13/15/8 13/3/8 13/6/5 17/3/4 24/5/7 14/9/13 20/7/9 
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Table 8 Comparison of running time (in seconds): EPSF, CAEP and CE-EP 
Dataset EPSF CAEP CE-EP Dataset EPSF CAEP CE-EP Dataset EPSF CAEP CE-EP 
australian 16 50 43 ionosphere 30 146 43 madelon 23 / 32 
breast-w 38 51 51 kr-vs-kp 43 481 48 hiva 163 / 36 
crx 17 42 31 labor 17 42 31 ovarian-cancer 68 / 34 
cleve 26 53 31 liver 10 10 10 lymphoma 44 / 32 
diabetes 26 48 31 mushroom 44 100 64 dexter 387 / 38 
german 28 129 31 pima 27 46 45 arcene 30 / 34 
house-votes 27 54 27 promoters 16 / 30 breast-cancer 958 / 47 
hepatitis 21 43 37 spect 16 87 30 dorothea 440 / 164 
horse-colic 20 51 31 spectf 17 / 31 colon 18 / 32 
hypothyroid 30 107 32 tictactoe 16 33 31 leukemia 22 / 50 
heart 26 50 45 vote 17 47 30 lung-cancer 117 / 42 
infant 41 / 50 wdbc 24 85 31 prostate 27 / 34 

 
 

5.3 Comparison of Numbers of Patterns  
Figures 2 to 4 compare the numbers of patterns mined by EPSF 
against CBA, CMAR, CAEP and CE-EP, since these five 
classifiers all focus on generating patterns with the support-
confidence framework. We report the average numbers of mined 
patterns over all seven minimum support thresholds. Since on 
wdbc, kr-vs-kp, ionosphere, horse-colic and german, CAEP 
cannot run using all the support thresholds due to huge numbers 
of patterns, the number of patterns on those datasets is averaged 
over the available support thresholds.  
     Fig.2 only plots 21 low-dimensional datasets since CAEP 
cannot run on the datasets of infant, promoters and spectf. In 
Fig.3, the X-axis denotes the twenty four datasets corresponding 
to the first twenty four datasets in Table 3 while in Fig.4 the X-
axis denotes all of thirty six datasets corresponding to Table 3. It 
is clear that EPSF selects many fewer patterns than CAEP, 
CBA, and CMAR on all low-dimensional datasets. 

In Fig. 4, EPSF also selects fewer patterns than CE-EP on 
most of the thirty six datasets. These results illustrate that both 
EPSF and CE-EP can select a small set of strongly predictive 
EPs from a very high dimensional dataset. In Fig.4, numbers 25 
to 36 correspond to the last twelve high-dimensional datasets in 
Table 3. We can see that even with very high feature 
dimensions, the numbers of patterns selected by CE-EP and 
EPSF do not change much in comparison with those on the 
twenty four low-dimensional datasets. 

 
5.4 Comparison of Running Time 
The running time (in seconds) of EPSF, CAEP and CE-EP 
contains all learning time, including importing datasets, ten-fold 
cross validation learning and testing. Table 8 shows the running 
time of EPSF against CAEP and CE-EP, respectively. In Table 
8, we can see that EPSF is faster than CAEP on all the datasets. 
Compared to CE-EP, on the first twenty four low-dimensional 
datasets, EPSF is faster than CE-EP. But on the last twelve high 
dimensional datasets, EPSF is not faster than CE-EP on some 
datasets. This is because at each fold cross-validation, EPSF 
takes all features into account to mine EPs while CE-EP 
discovers the direct causes and direct effects of the class 
attribute before EP mining, and then mines EPs in this reduced 
feature space at each fold cross-validation instead of all features. 
Thus, in Figures 5 to 6, we only plot the running time of EP 
mining (not including the time of training and testing classifiers) 
in one fold with the support threshold up to 0.2.  

In Fig.5, the X-axis denotes the same twenty one datasets as 
Fig. 2.  In Fig.6, on the X-axis, numbers 1 to 3 denote the 
datasets of infant, promoters and spectf respectively and 
numbers 4 to 15 denote the last twelve high-dimensional 

datasets in Table 3. From Fig.5, we can see that EPSF is still 
faster than CAEP and CE-EP on all twenty one low-dimensional 
datasets.  
 

 
Fig.2. Numbers of mined EPs:  EPSF vs. CAEP (the 21 datasets 
on the X-axis are: 1.australian, 2. breast-w, 3.crx, 4.cleve, 5.diabetes, 
6.german,7. house-votes, 8.hepatitis, 9.horse-colic,10. hypothyroid, 
11.heart, 12.ionosphere, 13.kr-vs-kp, 14.labor, 15. liver, 16.mushroom, 
17. pima, 18.spect, 19.tictactoe, 20. vote, 21. wdbc). 

 
Fig.3. Numbers of mined patterns: EPSF, CBA and CMAR 

 
Fig.4. Numbers of mined EPs:  EPSF against CE-EP   
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Fig.5. EP mining time: EPSF against CAEP and CE-EP 

In Fig.6, EPSF is only slower than CE-EP on 3 datasets: hiva, 
dexter and breast-cancer. In summary, EPSF is faster than CE-
EP on thirty three out of the thirty six datasets. 

 

 
 Fig.6. EP mining time:  EPSF against CE-EP 

 
5.5 Analysis on the Predictive Accuracy 
under Different Growth Rate Thresholds 
To further explore the performance of EPSF, CE-EP, and 
CAEP, we conduct an analysis on the predictive accuracy of 
EPSF, CE-EP, and CAEP under seven minimum growth rate 
thresholds, as shown in Figures 7 to 9, where GR stands for 
Growth Rate thresholds and the minimum support threshold is 
fixed at 0.1. Since on infant, ionosphere, promoters and spectf, 
CAEP cannot run under all seven growth rate thresholds, Fig.7 
plots the predictive accuracy of the remaining 20 low-
dimensional datasets under seven growth rate thresholds. In 
Figures 8 and 9, the X-axis denotes all of the thirty six datasets 
corresponding to Table 3. From Figures 7 to 9, we can see that 
CAEP, CE-EP and EPSF are not sensitive to the minimum 
growth rate thresholds at all, especially for CE-EP and EPSF. 
  
5.6 Mining EPs without Smoothing through 
the Whole Feature Space 
In comparison with CE-EP, EPSF can handle not only a large 
feature space, but also a high-dimensional dataset without 
knowing its entire feature set in advance. Sometimes, if a feature 
space is so large that exhaustive search over this whole feature 
space is either very time-consuming or simply infeasible. EPSF 
provides a solution to this problem, by processing features one 
by one upon its arrival and stopping this process using the EPs 
seen so far with a user-specified criterion. CE-EP cannot deal 
with this situation since it needs all features in advance to 
identify the causes and effects of the class attribute. We evaluate 
this performance of EPSF on only four gene datasets in Fig. 10 
due to the page limit. For each dataset, we randomly select ten 

samples as the testing instances (five positive and five negative) 
and the rest for training. SVM and AdaBoost are used as 
baselines on the training and testing sets with all features. 
Without the knowledge of the whole feature space in advance, 
EPSF mines EPs on the training samples as the features flow in 
one by one and evaluates the current EPs on the testing samples.  
 

 
Fig.7. The impact of growth rate thresholds on CAEP (the 20 
datasets on the X-axis are: 1.australian, 2. breast-w, 3.crx, 4.cleve, 
5.diabetes, 6.german, 7. house-votes, 8.hepatitis, 9.horse-colic, 10. 
hypothyroid, 11.heart, 12.kr-vs-kp, 13.labor, 14. liver, 15.mushroom, 16. 
pima, 17.spect, 18.tictactoe, 19. vote, 20. wdbc).  

 
Fig.8. The impact of growth rate thresholds on CE-EP  

 
Fig.9. The impact of growth rate thresholds on EPSF   

   On the colon dataset, when the percentage of arrived 
features is up to 20% or 50%, the predictive accuracy of EPSF is 
the same as SVM. And when all features arrive, the accuracy of 
EPSF is up to 100%, and is better than SVM. For the remaining 
datasets, EPSF is never worse than AdaBoost and is also up to 
the accuracy of SVM without exhaustive search over the full 
feature space. This demonstrates that EPSF provides an 
effective and efficient solution to the EP mining problem when 
smoothing through the whole feature space is expensive or 
simply impossible. 
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Fig.10. Comparative performance of EPSF without knowing 
the entire feature set before learning starts 

5.7 A Summary of Experimental Results 
Based on the comparative study in Sections 5.2 to 5.6, we have 
the following observations: 
   (1) On all datasets, EPSF produces significantly smaller 
numbers of patterns. It is more accurate than the four associative 
classifiers (CAEP, CBA, CMAR, and CPAR) and the two state-
of-the-art non-associative classifiers (J48 and AdaBoost), and is 
very competitive with SVM. Moreover, as associative 
classifiers, CAEP, CBA, CMAR and CPAR cannot deal with 
high-dimensional datasets. As for the running time, EPSF is 
faster than CAEP on all datasets.  
  (2) EPSF vs. CE-EP. Both EPSF and CE-EP can handle very 
high feature dimensions yet get promising predictive accuracy. 
When the entire feature set is known in advance, on three 
evaluation metrics, accuracy, number of patterns and running 
time, EPSF is superior to CE-EP, although they are quite close. 
This empirically verifies the relationships between feature 
relevance and EP discriminability. In addition, with streaming 
feature selection, compared to CE-EP, EPSF deals well with not 
only a high feature dimension, but also an unknown full feature 
space before learning. It is possible that EPSF can avoid an 
exhaustive search over the full feature space. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we explored the relationships between feature 
relevance and EP discriminability. By employing the 
relationships, we integrated streaming feature selection to guide 
a dynamic EP mining process. This new approach can handle 
not only a large feature space, but also a high-dimensional 
dataset without knowing its entire feature set in advance. 
Experimental results have demonstrated the effectiveness and 
efficiency of our approach. We plan to apply our new approach 
to real planetary images that can generate infinite texture-based 
features.   
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