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ABSTRACT
Modern computer hardware offers an elaborate hierarchy of
storage subsystems with different speeds, capacities, and
costs associated with them. Furthermore, processors are
now inherently parallel offering the execution of several di-
verse threads simultaneously. This paper proposes StreamSVM,
the first algorithm for training linear Support Vector Ma-
chines (SVMs) which takes advantage of these properties by
integrating caching with optimization. StreamSVM works
by performing updates in the dual, thus obviating the need
to rebalance frequently visited examples. Furthermore we
trade off file I/O with data expansion on the fly by gen-
erating features on demand. This significantly increases
throughput. Experiments show that StreamSVM outper-
forms other linear SVM solvers, including the award winning
work of [38], by orders of magnitude and produces more ac-
curate solutions within a shorter amount of time.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodlogy—Classi-
fier design and evaluation

General Terms
Algorithm, Experimentation, Performance

Keywords
Support Vector Machines, Optimizatation, Coordinate De-
scent

1. INTRODUCTION
In this paper we propose StreamSVM an efficient method

for large scale single machine linear Support Vector esti-
mation, yielding the fastest currently available solver which
runs on general purpose hardware by over an order of mag-
nitude. To the best of our knowledge, this is the first work
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on training linear Support Vector Machines (SVMs) which
takes explicit advantage of different storage subsystems on
a computer to achieve very high data throughput. In par-
ticular, our optimization algorithm is co-designed to take
advantage of the fact that memory access is much faster
than disk access. Our approach is entirely generic and can
be extended to a more fine-grained storage hierarchy and a
larger class of convex optimization problems.

1.1 Solvers for Training SVMs
Support Vector Machines (SVMs) have arguably revolu-

tionized machine learning over the past decade. Fueled by
their impressive performance in a number of real-world ap-
plications, there have been numerous efforts to scale SVMs
to large data sets. Some notable contributions include Se-
quential Minimal Optimization (SMO) [28, 10], SVMLight
[19], LaSVM [4], and gradient projection based solvers [39].

Much of the initial success of SVMs was attributed to
the so-called kernel trick wherein training data is implicitly
mapped to a high dimensional feature space, and a mar-
gin maximizing linear classifier is learned in this mapped
space. In contrast, linear SVMs do not employ the kernel
trick explicitly.1 As massive, high-dimensional data sets are
becoming commonplace, there is a recent surge of interest in
linear SVMs. Some recent papers [20, 18, 17, 35] tackle this
problem with great success, and provide algorithms with
convergence guarantees. The above solvers either assume
that the data resides in memory or that a cluster of ma-
chines with appropriate communication and synchronization
facilities are available.

In an award winning paper [38] revisited the problem of
training linear SVMs when the data does not fit into mem-
ory [29, 27, 19]. In a nutshell, the key idea is to split the data
into manageable blocks, compress and store each block on
disk, and perform dual coordinate descent by loading each
block sequentially. This basic idea was improved upon by
[11] who observed that the block minimization (BM) algo-
rithm of [38] does not retain important points before dis-
carding each block. They therefore, propose to retain some
important points from the previous blocks in the RAM. This
simple idea leads to significant speed-ups, and [11] demon-
strate that their selective block minimization (SBM) algo-
rithm outperforms BM. Here we propose a new algorithm
StreamSVM, and show that it outperforms both BM and
SBM on a number of publicly available datasets.

1They may, however, use the kernel trick implicitly by hash-
ing and direct feature expansion as described in [31].
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1.2 Exploiting the Storage Hierarchy
StreamSVM takes advantage of the different characteris-

tics inherent in the storage hierarchy of modern computers.
That is, while hard disks excel at storing large amounts of
data, they have typically mediocre data transfer rates and
are outright slow at random access operations. Compared
to that, main memory comes at a hundredfold premium in
terms of space but offers two to three orders of magnitude
faster data transfer rates. CPU caches are yet faster again.
Similar considerations hold for solid state drives, PCI inter-
connects, and graphics subsystems.

This suggests that algorithms which require streaming
through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with different capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOPs

Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104

RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already affords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if buffer full then evict random (x′, y′) from memory
insert new (x, y) into ring buffer in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter α
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities offered by single
computers in terms of both storage and computation. This
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Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to efficient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [2, 32]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.

Fortunately much of what is commonly known as gener-
alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed effi-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [7, 36, 9, 16] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [40] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [25] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [40] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as efficiently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [40] was invested into proving
that the stochastic gradient descent solutions on subsets are
sufficiently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [26] to see that averag-
ing is beneficial: in particular, [26] show that the parameter
distribution of a penalized empirical risk minimizer w∗|X,Y
conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-
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ous subsets of data via w∗|Xi, Yi, we will be able to aggregate
this to an improved joint estimate via 1

n

∑n
i=1 w

∗|Xi, Yi.
Consequently, in the present paper we are primarily con-

cerned with step 2 of the above approach — to find the most
efficient way of solving a convex optimization problem on a
single machine. While we primarily focus on linear SVMs in
this paper, our ideas are fairly generic and can be applied
to other convex losses including losses used in structured
prediction [3].

Outline. We will briefly review dual descent algorithms
for linear Support Vector Machines in Section 2. Subse-
quently Section 3 gives a detailed description of the nested
loop used in traversing through data in core memory and
streaming from disk. Experimental results are provided in
Section 4 and we conclude with a discussion in Section 5.

2. DUAL COORDINATE DESCENT

2.1 Support Vector Classification
In the following we assume that we are given n exam-

ples xi ∈ X and labels yi ∈ {±1} drawn independently and
identically from some distribution (xi, yi) ∼ p(x, y). It is
our goal to find some function f : X → R which minimizes
the misclassification error, e.g. by minimizing the probabil-
ity that yf(x) ≤ 0. This constitutes the most basic of all
estimation problems, namely that of binary classification.
We simplify things further by assuming that X = Rd. This
assumption will be relaxed subsequently when we discuss
how to expand features on the fly. The primal formulation
of a linear SVM can be written as follows2 [13]:

minimize
w∈Rd

1

2
‖w‖2 + C

n∑
i=1

max{0, 1− w>yixi} (1)

Using standard convex optimization tools [8] the above prob-
lem can be rewritten in its dual form

minimize
α

D(α) :=
1

2
α>Qα− α>1 (2a)

subject to 0 ≤ α ≤ C1. (2b)

Here, Q is an n×n matrix whose entries are given by Qij =
yiyjx

>
i xj , and 1 is the vector of all ones. The minimizer w∗

of (1) and the minimizer α∗ of (2) are related by the primal
dual connection: w∗ =

∑n
i=1 α

∗
i yixi. The dual problem

(2) is a Quadratic Programming (QP) with box constraints,
and the i-th coordinate αi corresponds to the i-th example
(xi, yi).

2.2 Dual Updates
The following coordinate descent scheme can be used to

minimize the dual [18]:

• Initialize α1 = 0.
• At iteration t select coordinate it
• Update αt to αt+1 via

αt+1
it

= argmin
0≤αit

≤C
D(αt + (αit − α

t
it)eit) (3a)

αt+1
i = αti if i 6= it

(3b)

2We omit an explicit bias term since this greatly simplifies
the dual problem while remaining entirely general since the
bias can be introduced easily as an additional coordinate in
the data.

Here, ei denotes the i-th standard basis vector. Since D(α)
is a QP, the one-variable subproblem (3a) can be solved
exactly (see [18] for details):

αt+1
it

= min

{
max

{
0, αtit −

∇itD(αt)

Qitit

}
, C

}
. (4)

Here, ∇iD(α) denotes the i-th coordinate of the gradient.
The above updates are also closely related to implicit up-
dates of [21, 22, 12] and the passive aggressive updates of
[14]. If we maintain wt :=

∑n
i=1 α

t
iyixi, then the gradient

∇itD(α) can be computed efficiently using

∇itD(α) = e>it(Qα− 1) = wt>yitxit − 1. (5)

wt+1 is kept related to αt+1 by computing

wt+1 = wt + (αt+1
it
− αtit)yitxit . (6)

A naive choice for it is to traverse examples periodically,
which means that it = t mod n. We call an iteration from
αnk to αn(k+1) an outer iteration, contrasted with an inner
iteration from αt to αt+1. An alternative is to randomly
permute the index and to access examples in arbitrary or-
der. In that case, it = σk(t mod n) where σk ∈ Sn is a
permutation.

3. PROPOSED METHOD
We assume that the entire dataset cannot fit in RAM,

therefore there must exist an Ω < n, which is an upper
bound for the number of training data which can be stored
in the RAM. Our algorithm, StreamSVM, maintains a set of
indices A cotaining the indices of the data points in memory
and ensures that |A| ≤ Ω at all times. The major challenge
is to select the working set carefully. Towards this end, we
use a strategy that is inspired by shrinking[19, 18].

A remarkable property of the dual problem is that we
can potentially reduce the size of optimization problem by
carefully choosing the subset of the data. This property was
first observed by [19] and is widely used in popular solvers
such as SVMLight[19], LibSVM [10], and Liblinear [17]. We
also aim to utilize the property and solve the entire problem
efficiently. First we look at the following fact:

Fact 1. Let α∗ be the optimal solution of (2). Define
Ain and Abo as {i|α∗i = 0} and {i|α∗i = C} respectively.
Any optimal solution of

minimize
α

D(α)

subject to αi =

{
0 if i ∈ Ain

C if i ∈ Abo

is also an optimal solution of (2).

Ain is called the inactive set, Abo the bound set, and Aac :=
{i|0 < α∗i < C} the active set. If w∗ denotes the opti-
mal primal solution corresponding to α∗, then using the
KKT conditions [8] it follows that [29] i ∈ Ain implies that
w∗>yixi > 1. Similarly, w∗>yixi < 1 for all i ∈ Abo. Intu-
itively, what this means is that data which is in the inactive
set are well classified and the points in the bound set are
not. If these sets are known beforehand, the solver can con-
centrate on data in the active set by setting the other coordi-
nates to 0 or C accordingly and freezing them. Usually Aac

is a small fraction of the original dataset, and therefore it is
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advantageous to focus most of the attention of the solver on
identifying the coordinates in Aac and optimizing them.

One way to identify the active set is to use projected gra-
dients. For the bound constrained optimization problem (2)
the i-th component of the projected gradient ∇πi D(α) can
be computed via

∇πi D(α) :=


0 if αi = 0 and ∇iD(α) > 0

0 if αi = C and ∇iD(α) < 0

∇iD(α) otherwise .

(8)

The shrinking heuristic then works as follows: At the end of
each outer iteration we compute M+ = maxi∇πi D(α) and
M− = mini∇πi D(α). During the inner iteration, if a point
is found to satisfy αi = 0 and ∇iD(α) > M+ or αi = C and
∇iD(α) < M− then it is shrunk, that is, the corresponding
αi is frozen. If needed, the shrunk variables are visited at a
later stage of the optimization process.

Maintaining the Working Set.
Just like in shrinking, points which are very well classified

or very badly classified with respect to the current solution
are eliminated. However, unlike shrinking our criterion is
adaptive and also takes into account the size of the RAM.
Let α1, . . . , αn denote the intermediate solutions produced
by the trainer in the last n steps. We compute

ε := max
t=1,...,n

|∇πitD(αt)|. (9)

During the next n updates, a point is evicted from the RAM
if αi = 0 and ∇iD(α) > ε or αi = C and ∇iD(α) < −ε.
Furthermore, if the RAM is deemed to be full, that is, if
|A| > 0.9Ω then we set ε = βε for some β < 1. We find that
β = 0.9 works well in practice. In general, our criterion is
more aggressive than shrinking, but this is not a problem;
even if a point is evicted, it will subsequently be reloaded by
the reader into the RAM, and the trainer will get a chance
to update the corresponding αi.

Synchronization Issues.
Detailed pseudo-codes of our scheme are shown in Algo-

rithms 1 and 2. Our algorithm utilizes two threads namely
the reader and trainer. The reader thread, as the name
implies, is tasked with reading the data from disk and stor-
ing it into the RAM. If the RAM is full then the reader
randomly replaces a cached point with the new data. The
trainer thread randomly selects training points in the RAM
and performs updates.

A major advantage of our method is that there is very
little need for synchronization between the readervand the
trainer. The only process which needs to be accessed mu-
tually exclusively is the manimuplation of the working set.
In order to process the eviction and addition of data effi-
ciently with the thread safety, we can utilize a widely used
database manegement library. Then the only shared ob-
ject we have to manage explicitly is the set of indices, A.
This also means that our framework is fairly modular. For
instance, the reader can read data from the disk, and per-
form pre-processing such as computing a feature vector φ(x)
without affecting the trainer.

Stopping Criterion.
If the data resides in main memory then one can use the

infinity norm of the projected gradient as an effective stop-

Algorithm 1 Reader

for k = 1, . . . ,max iter do
for i = 1, . . . , n do

read yi, xi from the Disk

calculate Qii = x>i xi
if |A| = Ω then

randomly select i′ ∈ A
lock mutex
A = A \ {i′}
unlock mutex
delete yi′ , Qi′i′ , xi′ from the RAM

end if
store yi, Qii, xi in the RAM

lock mutex
A = A ∪ {i}
unlock mutex

end for
if stopping criterion is met then

exit
end if

end for

ping criterion. However, in our case this is not possible.
Therefore, we use the following approximate scheme: Sup-
pose the trainer performs T updates in the time that it takes
the reader to perform one scan through the data. With some
abuse of notation let α1, . . . , αT denote the intermediate so-
lutions produced by the trainer. Then we compute

M+ := max
t=1,...,T

∇πitD(αt), M− := min
t=1,...,T

∇πitD(αt), (10)

and stop when the gap M+−M− falls below a pre-specified
threshold, which is set to a default value of 0.0001. Note that
since T is usually much larger than n the gap computed here
is usually a more stringent stopping criterion than that used
by either LibLinear, BM, or SBM. In our implementation,
the trainer is responsible for computing the gap. When the
gap is lower than the tolerance threshold or the number of
iterations exceeds the maximum, then both the threads exit.

3.1 Proof of Convergence (sketch)
Our analysis builds upon the results of [24] and [18].

Definition 1 (Luo and Tseng Problem). Consider the
following minimization problem

minimize
α

g(Eα) + b>α (11)

subject to Li ≤ αi ≤ Ui (12)

where α and b are n-dimensional vectors, E is a d×n dimen-
sional fixed matrix, Li ∈ [−∞,∞) and Ui ∈ (−∞,∞] are
upper and lower bounds respectively. The above optimiza-
tion problem is a Luo and Tseng problem if the following
conditions hold:

1. E has no zero columns
2. the set of optimal solutions A is non-empty
3. the function g is strictly convex and twice continuously

differentiable
4. for all optimal solutions α∗ ∈ A, ∇2g(Eα∗) is positive

definite.

The following result was implicitly shown in the proof of
Theorem 1 in [18].
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Algorithm 2 Trainer

α1 = 0, w1 = 0, ε = 9, εnew = 0, β = 0.9
while stopping criterion is not met do

for t = 1, . . . , n do
while |A| = 0 do

sleep
end while
if |A| > 0.9× Ω then
ε = βε // aggressively shrink ε

end if
randomly select i ∈ A
read yi, Qii, xi from the RAM

compute ∇iD := wt>yixi − 1
if (αti = 0 and ∇iD > ε) or (αti = C and ∇iD < −ε)
then
lock mutex
A = A \ {i}
unlock mutex
delete yi, Qii, xi from the RAM

continue
end if
αt+1
i = min{max{0, αti − ∇iD

Qii
}, C}

wt+1 = wt + (αt+1
i − αti)yixi

if εnew < |∇iD| then
εnew = |∇iD|

end if
end for
Update stopping criterion
ε = εnew

end while

Lemma 1. If no data xi = 0, then the SVM dual (2) is a
Luo and Tseng problem.

Proof. Set Eij = yix
>
i ej , b = 1, Li = 0, Ui = C and

g(·) = 1
2
‖ · ‖2. E has no zero columns because of our as-

sumption that xi 6= 0. Since the constraint set is bounded,
and g is a strictly convex function, the set of optimal so-
lutions A is non-empty. Since g is twice differentiable and
strongly convex, ∇2g is positive definite everywhere.

Definition 2 (Almost cyclic rule). There exists an
integer B ≥ n such that every coordinate is iterated upon at
least once every B successive iterations.

Theorem 2 (Theorem 2.1 of [24]). Let {αt} be a se-
quence of iterates generated by a coordinate descent method
(3) using the almost cyclic rule. The αt converges linearly
to an element of A.

All that remains to establish the convergence our coordinate
descent scheme is to show it satisfies the almost cyclic rule.
If the trainer accesses the cached training data sequentially,
and the following conditions hold:

• The trainer is at most κ ≥ 1 times faster than the
reading thread, that is, the trainer performs at most κ
coordinate updates in the time that it takes the reader
to read one training data from disk.

• A point is never evicted from the RAM unless the αi
corresponding to that point has not been updated.

Then it is easy to see that this corresponds to the almost
cyclic rule with B = κn. In practice, the trainer randomly

accesses training points from the RAM, and if the RAM is
full then the reader evicts a random point. Therefore, there
is a very small probability that a point is evicted before the
corresponding αi is updated. However, in practice we find
that this does not affect convergence.

4. EXPERIMENTS
We performed experiments on some of the largest pub-

licly available data sets for binary classification to evaluate
the performance of our algorithm, and to compare it with
two existing methods namely SBM and BM. Since SBM was
shown to be competitive with other methods such as Vow-
pal Wabbit (VW), Stochastic Gradient Descent (SGD), or
Pegasos we do not explicitly compare against them here.

Datasets.
Table 1 summarizes the datasets used in our experiments.

The webspam trigram dataset webspam-t3, as well as the the
KDD cup 2010 dataset kddb4 are from the LibSVM binary
data collection5. The dna and ocr datasets were obtained
from the Pascal Large Scale Learning Workshop website [34].
For all the datasets we randomly selected 80% of the la-
beled data for training and the remaining 20% for testing.
Besides being massive, note that our datasets cover a vari-
ety of real-life scenarios. The dna dataset is dense, but is
heavily imbalanced in terms of the number of positive vs
negative examples. The ocr dataset is dense and balanced
while both kddb and webspam-t are very sparse but very
high dimensional.

Implementation Details.
Our code is implemented in portable C++ and uses POSIX

threads (pthreads) for multi-threaded programming. In or-
der to cache the data efficiently we use a thread safe in-
memory hash table (StashDB) provided by Kyoto Cabinet6.
We empirically find that the use of Kyoto Cabinet reduces
our memory footprint by approximately 25% compared to
SBM and BM. Open-source code as well as all the scripts
needed to reproduce our experimental results will be made
available for download from http://www.stat.purdue.edu/

~vishy.

Hardware.
All experiments were conducted on the Rossmann comput-

ing cluster at Purdue University7, where each node has two
2.1 GHz 12-core AMD 6172 processors with 48 GB physical
memory per node.

Experimental Setup.
We focused our study on the following two aspects: How

does StreamSVM compare with SBM and BM for different
values of C? How does the size of RAM Ω affect the per-
formance of StreamSVM? We also conducted an experiment

3Originally from http://www.cc.gatech.edu/projects/
doi/WebbSpamCorpus.html.
4This dataset was derived from KDD CUP 2010 second
problem bridge to algebra 2008 2009.
5http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html.
6http://fallabs.com/kyotocabinet/
7http://www.rcac.purdue.edu/userinfo/resources/
rossmann.
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Table 1: Summary of the datasets used in our experiments. n is the total # of examples, d is the # of
features, s is the feature density (% of features that are non-zero), n+ : n− is the ratio of the number of
positive vs negative examples, Datasize is the size of the data file on disk, Ω is the number of points in the
RAM, and each Blocks is the data split used for the corresponding method. M denotes a million.

dataset n d s(%) n+ :n− Datasize Ω SBM Blocks BM Blocks
ocr 3.5 M 1156 100 0.96 45.28 GB 150,000 40 20
dna 50 M 800 25 3e−3 63.04 GB 700,000 60 30
webspam-t 0.35 M 16.61 M 0.022 1.54 20.03 GB 15,000 20 10
kddb 20.01 M 29.89 M 1e-4 6.18 4.75 GB 2,000,000 6 3

where we expanded the features on the fly to demonstrate
the scalability and flexibility of our framework. Since the ob-
jective functions we are minimizing are strongly convex, all
optimizers will converge the same solution (within numerical
precision) and produce the same generalization performance
eventually. Therefore, what we are specifically interested in
is the rate at which the objective function decreases.

4.1 Results

Varying C.
As C increases the effect of the regularizer decreases and

the non-smooth hinge loss dominates the primal objective.
Intuitively, this means that the problem becomes harder to
solve for large values of C. Therefore, it is important to test
an optimization algorithm across a range of C values.

We used C ∈ {0.0001, 0.001, . . . , 1000.0} to test the per-
formance of StreamSVM and contrast it with SBM and BM.
For this experiment we set the maximum number of itera-
tions for all algorithms to be 100; for StreamSVM an itera-
tion is defined as one complete pass through the data by the
reader thread. The stopping tolerance was set to be 10−3.
A job is killed by the queue manager on the cluster if it does
not finish within 48hrs. Besides the space required to store
the weight vector w and the coefficients α, both algorithms
were allowed to use up to 2GB of extra RAM.

In Figure 2 we used the dna dataset and plot the rela-
tive function value difference as function of wall clock time
for SBM, BM, and StreamSVM8 The relative function value
difference is defined as (D∗ −Dt)/D∗ where Dt is the dual
objective function output by the optimizer at the t-th iter-
ation, and D∗ is the largest dual objective function value
produced by either SBM, BM, or StreamSVM for the same
parameter settings. Note that since we are plotting the y-
axis on a log scale some points with relative function value
difference of 0 are not displayed.

In the top three plots in Figure 3 we used the same value
of C = 1.0, and plot the convergence behavior of SBM,
BM, and StreamSVM on kddb, ocr, and webspam-t datasets
respectively.

Note that in almost all cases, StreamSVM outperforms
SBM and BM comprehensively. In particular, on the dna,
ocr and webspam-t datasets, StreamSVM has converged to
a high accuracy solution even before BM and SBM have
managed to read and compress the data during the first
pass. Also, both SBM and BM do not converge for large
values of C on the dna dataset.

8Due to lack of space we plot only a subset of our results
here. Detailed results including the generalization error and
evolution of the gap can be found at http://www.r.dl.itc.
u-tokyo.ac.jp/~masin/Appendix.pdf.

On the kddb dataset, StreamSVM does not exhibit any
particular advantage over SBM. We investigated this fur-
ther and found that the major bottleneck here is the need
to frequently access random elements of w (29.89 million en-
tries) and α (20.01 million entries), both of which are stored
as dense vectors. This causes a number of cache misses and
consequently slows down the trainer. On the other hand,
since the data is very sparse (maximum 200 nonzero entries
per training example) the reader thread is very fast. Conse-
quently StreamSVM is not faster than SBM, although it is
very competitive as compared to BM.

Varying Ω.
Next we study the effect of varying the RAM size Ω on the

performance of StreamSVM. The same setup as the previous
experiment was used here but with two notable changes.
First, we fixed the value of C to be 1.0 for all datasets.
Second, we set the RAM size to 256MB, 1GB, 4GB, and
16GB respectively.

On all datasets, the performance with 256MB RAM was
inferior compared to higher RAM sizes. However, increas-
ing the RAM size beyond 4GB does not help much. In
fact, on the kddb dataset, increasing the size of RAM actu-
ally reduces performance. The reasons are as the same as
above. Even though we can cache a large number of training
points, the bottleneck here is in updating w and α. There-
fore, the increase in Ω does not significantly improve con-
vergence speed. For the ocr and webspam-t datasets there
is marginal improvement when moving from 4GB to 16GB.
This could potentially be explained by the fact that at the
final solution there were relatively few training examples in
the active set (675 for ocr and 1509 for webspam-t). We
conjecture that large RAM sizes help only if the number of
non-zero entries per training example are large, or of the
dataset is very high dimensional and noisy because of which
a large number of training examples are in the active set.

Expanding Features on the Fly.
In our final experiment, our aim is to show that explicit

feature expansion can be easily incorporated into our frame-
work. We computed an expanded feature φ(x) before the
reader stores an example in RAM. Following the work of [33],
we used dna dataset at http://sonnenburgs.de/soeren/

projects/coffin/splice_data.tar.xz and computed the
same feature corresponding to the feature referred to as
“WD d = 8 explicit”. This results in a sparse feature vector
of 12,495,240 dimensions. We examined the performances
with RAM size of 16GB and 32GB.

We plot the relative function value difference vs wall clock
time in the bottom plot of Figure 3. The same figure also
shows how the gap is decreasing as a function of wall clock
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Figure 2: Relative function value difference vs wall
clock time on the dna dataset for various values of C

0 1 2 3 4

·104

10−6

10−5

10−4

10−3

10−2

10−1

100

Wall Clock Time (sec)

R
el

a
ti

v
e

F
u
n
ct

io
n

V
a
lu

e
D

iff
er

en
ce

kddb C = 1.0

StreamSVM

SBM

BM

0 1 2 3 4

·104

10−9

10−7

10−5

10−3

10−1

Wall Clock Time (sec)

R
el

a
ti

v
e

F
u
n
ct

io
n

V
a
lu

e
D

iff
er

en
ce

ocr C = 1.0

StreamSVM

SBM

BM

0 0.5 1 1.5 2

·104

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Wall Clock Time (sec)

R
el

a
ti

v
e

F
u
n
ct

io
n

V
a
lu

e
D

iff
er

en
ce

webspam-t C = 1.0

StreamSVM

SBM

BM

0 0.5 1 1.5

·105

10−12

10−9

10−6

10−3

100

Wall Clock Time (sec)

R
el

a
ti

v
e

F
u
n
ct

io
n

V
a
lu

e
D

iff
er

en
ce

dna expanded C = 1.0

32GB

16GB

0

2

4

6

8

10
G

a
p

(M
+
−
M
−

)

Figure 3: Top three figures: Relative function value
vs wall clock time on the kddb, ocr, and webspam-

t datasets for C = 1.0. The bottom figure: The red
solid curve is the relative function value vs wall clock
time and the blue dashed curve is the gap vs wall
clock time on the dna dataset expanded using the
“WD d = 8 explicit” feature with C = 1.0.
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Figure 4: Relative objective function value as a func-
tion of wall clock time for various datasets as the
RAM size Ω is varied.

time. In less than 10 hours StreamSVM could finish the
optimization in both cases. To put our results in perspec-
tive, contrast this which the recent work of [1] who use a
very similar feature representation as ours and train us-
ing LBFGS. Their algorithm requires around 30 iterations
with each iteration requiring approximately 1 hour when
distributed across 100 machines (total of 3000 CPU hours).

5. DISCUSSION
To conclude we would like to discuss some related work

and place our contributions in perspective. Perhaps the clos-
est in spirit to our work is the online version of SBM de-
scribed by [11]. Here, data is assumed to arrive in a stream-
ing fashion, and a dual coordinate descent procedure is used
on blocks of data. However, there are some important dif-
ferences between the two methods. First, online SBM only
looks at the data once, while our algorithm StreamSVM
performs multiple passes through the data. Second, the
reading and the training in SBM happen in a synchronous
fashion, while our reader thread asynchronously reads and
caches data. In our experiments, StreamSVM also achieves
near-optimal generalization performance after just one or
two passes through the data.

In order to speed up linear SVMs where the feature map-
ping can be computed explicitly, [33] introduced a compu-
tational framework for linear SVMs (COFFIN). Along the
same lines, one can use hash functions to map sparse high-
dimensional features into dense low-dimensional features.
This idea, first described in [31] and improved upon in [37] is
one of the important reasons why the Vowpal Wabbit learn-
ing frameworkis fast. These techniques are very naturally
incorporated into our framework as demonstrated in our ex-
periments.

A closely related alternative to dual coordinate descent is
stochastic gradient descent (SGD). Recently there have been
numerous variants of which have been studied both theoret-
ically [6, 30] as well as empirically [5]. However, SGD in
its most basic form is inherently serial, and therefore there
is a recent flurry of activity on developing parallel stochas-
tic gradient descent solvers [23, 40, 15]. As explained in
Section 1.3 we view our research as complimentary.

Our long term research goal is to design, analyze, and im-
plement novel optimization algorithms that take advantage
of modern hardware to enable learning on and mining of
massive datasets. With the increasing availability of many-
core processors, general-purpose graphics processing units,
and solid-state drives, we are witnessing a hardware revolu-
tion. The next generation of systems-aware, efficient, scal-
able machine learning algorithms need to take advantage of
these emerging computing paradigms. We view this paper
as a step towards that direction.
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