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ABSTRACT
In recent years, graph kernels have received considerable in-
terest within the machine learning and data mining com-
munity. Here, we introduce a novel approach enabling ker-
nel methods to utilize additional information hidden in the
structural neighborhood of the graphs under consideration.
Our novel structural cluster kernel (SCK) incorporates sim-
ilarities induced by a structural clustering algorithm to im-
prove state-of-the-art graph kernels. The approach taken
is based on the idea that graph similarity can not only be
described by the similarity between the graphs themselves,
but also by the similarity they possess with respect to their
structural neighborhood. We applied our novel kernel in a
supervised and a semi-supervised setting to regression and
classification problems on a number of real-world datasets
of molecular graphs. Our results show that the structural
cluster similarity information can indeed leverage the predic-
tion performance of the base kernel, particularly when the
dataset is structurally sparse and consequently structurally
diverse. By additionally taking into account a large num-
ber of unlabeled instances the performance of the structural
cluster kernel can further be improved.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Cluster Kernels, Graph Kernels, Structural Graph Cluster-
ing, Cheminformatics, QSAR
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The topic of graph similarity and in particular kernel ap-
proaches have attracted considerable interest in recent years
[13, 18, 20, 25]. To determine the similarity of two graphs,
most approaches decompose the graphs in different ways: ei-
ther into a potentially very large set of smaller subgraphs or
related graph features, or into one or more larger common
subgraphs (connected or disconnected). In this paper, we in-
vestigate the question whether the structural neighborhood
of two graphs can also contribute to similarity searches and
consequently to improve prediction performance. In our set-
ting, the structural neighborhood of a graph is determined
by a recently proposed structural graph clustering approach
called PSCG [21, 22].

In the work presented here, we propose a novel kernel
called structural cluster kernel (SCK) which, in addition to
existing kernel approaches, measures the similarity between
two graphs, by their assignment to structural clusters found
with PSCG. Our approach first employs the structural clus-
tering algorithm to determine small, structurally homoge-
neous regions in the input space, and then uses the pair-
wise similarities between these regions to define a similarity
measure for graphs. The approach taken here is to extend
two state-of-the-art graph kernels using this structural dis-
tance measure: the weighted decomposition kernel (WDK)
[18] and the neighborhood subgraph pairwise distance kernel
(NSPDK) [10].

To study the effectiveness of the SCK, we measured the
prediction performance in the regression and classification
setting, by employing several real-world datasets of molecu-
lar graphs within our experiments. To show the advantage of
combining graph similarity and structural cluster similarity,
we compare our approach with the base kernels using graph
similarity alone. Furthermore, we compare the SCK to a dif-
ferent approach also employing structural clustering during
model construction. We also investigate the performance of
the SCK approach in the semi-supervised setting, where the
base kernel is deformed by a cluster kernel encoding similar-
ities between both labeled and unlabeled examples.

This paper is organized as follows: After discussing related
work in Section 2, we introduce our proposed structural clus-
ter kernel in Section 3. Section 4 presents and discusses our
experimental results, before we conclude in Section 5.

2. RELATED WORK
The idea of combining kernels to improve prediction per-

formance has attracted attention recently. Several types of
cluster kernels, relying on different clustering algorithms,
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have been proposed by Chapelle et al. [6]. The authors
present a general framework for constructing cluster ker-
nels which implements the cluster assumption, i.e., the in-
duced distance depends on whether the points are in the
same cluster or not. Weston et al. [26] investigated the
use of cluster kernels for protein classification by developing
two simple and scalable methods for modifying a base ker-
nel. The neighborhood kernel uses averaging over a neigh-
borhood of sequences defined by a local sequence similarity
measure, and the bagged kernel uses bagged clustering of
the full sequence dataset to modify the base kernel. In both
the semi-supervised and transductive settings, these tech-
niques greatly improve the classification performance when
used with mismatch string kernels. In work by Bodo and
Csato [3] a kernel construction algorithm for supervised and
semi-supervised learning was proposed, which constitutes a
general framework for semi-supervised kernel construction.
The technique clusters the labeled and unlabeled data by
an agglomerative clustering technique, and uses the linkage
distances induced by the clustering hierarchy to construct
the kernel. Bodo and Csato [4] proposed two cluster kernel
methods for semi-supervised learning which can be used for
different types of datasets: one using hierarchical clustering,
and another kernel for reweighting an arbitrary base kernel
taking into account the cluster structure of the data.

Similar to Weston et al. [26] and Bodo and Csato [4], the
cluster kernel proposed in this paper leverages information
of a clustering algorithm to modify a base kernel. However,
our approach differs from existing work in several respects.
First, our structural cluster kernel can be applied in the
domain of graphs. Second, it builds on two state-of-the-
art graph kernels and a recently proposed structural graph
clustering algorithm to determine small, structurally homo-
geneous neighborhoods of the input space. The pairwise
similarities between these neighborhoods are used to define
a similarity measure for graphs which in turn is used to im-
prove a base kernel. Third, the proposed cluster kernel can
be used for both graph classification and regression, whereas
the above mentioned cluster kernels were only tested on clas-
sification tasks.

3. METHOD

3.1 Structural Graph Clustering
Parallel Structural Clustering of Graphs (PSCG) [21, 22]

investigates the problem of finding groups of graphs shar-
ing some structural similarity. Graphs with similar struc-
tures are expected to be in the same cluster provided that
their common substructures match to a satisfactory extent.
The common substructure of a cluster can be considered
as a scaffold present in all cluster members. Only connected
substructures are considered as common substructures. The
sizes of these common substructures are used as a measure
of similarity between the graphs. A graph is assigned to a
cluster provided that there exists at least one common sub-
structure whose size is equal or greater than a user-defined
threshold. In this way, a graph can simultaneously belong
to multiple clusters (overlapping clustering) if the size of at
least one common substructure with these clusters is equal
or greater than the defined threshold. If a graph does not
meet the threshold to share a common substructure with
any cluster, the graph is not included in any cluster (non-
exhaustive clustering). For one graph after the other, it is

decided whether it belongs to an existing cluster or whether
a new cluster should be created. Formally, the problem of
structural clustering is defined as follows: given a set of
graphs, X = {x1, . . . , xn}, we assign each graph xi to a
cluster Cj , such that the similarity between graphs is based
on their structural similarity, including multiple, or overlap-
ping cluster assignments. In graph clustering, one objective
considered is to maximize the average number of graphs con-
tained in a cluster, such that for each cluster Cj there exists
at least one common substructure that makes up a specific
proportion, θ, of the size of each cluster member. Consider-
ing the state of a cluster C = {x1, . . . , xm}1 at any point in
time, the criterion can formally be defined as:

∃ s ∈ cs({x1, . . . , xm})∀xi ∈ C : |s| ≥ θ|xi| (1)

where cs determines all common subgraphs of a set of graphs,
and θ ∈ [0, 1] is a user-defined similarity coefficient. If a new
graph xm+1 is to be tested for inclusion in cluster C, we can
thus infer a minimum size threshold for the substructures
shared by this graph and the graphs in the cluster:

minSize = θ max(|xmax|, |xm+1|), (2)

where θ ∈ [0, 1] and xmax is the largest graph in the cluster.
To obtain meaningful and interpretable results, the mini-
mum size of a graph considered for cluster membership is
further constrained by a minimum graph size threshold. It
excludes graphs that are too small from clustering. Thus,
the identification of the cluster scaffold will not be impeded
by the presence of a few graph structures whose shared com-
mon substructure is much smaller than the one the major-
ity of the cluster members share. For computing common
substructures in graphs, we modified the graph mining al-
gorithm gSpan [16, 27] that mines frequent substructures in
a database of graphs satisfying a given minimum frequency
constraint. For details of these modifications, the structural
clustering algorithm and its performance, we refer the inter-
ested reader to the original publications [21, 22].

3.2 Weighted Decomposition Kernel
The basic idea of the Weighted Decomposition Kernel

(WDK) [18] is to focus on relatively small parts of a struc-
ture, called selectors, that are matched according to an equal-
ity predicate. The importance of the match is then weighted
by a factor that depends on the similarity of the context in
which the matched selectors occur.

More formally, a weighted decomposition kernel is charac-
terized by a decomposition R(s, z, x) where s is a subgraph
of x called the selector and z is a subgraph of x called the
context of occurrence of s in x. This setting results in the
following general form of the kernel:

K(x, x′) =
∑

(s,x)∈R−1(x)

∑
(s′,x′)∈R−1(x′)

δ(s, s′)κ(z, z′), (3)

where κ is a kernel on contexts and δ is the exact matching
kernel applied to selectors.

In this paper, selectors are single atoms and the matching
kernel δ(s, s′) is defined by the coincidence between the type
of s and s′. The context kernel k is based on a soft match
between substructures, defined by the distributions of label

1In slight abuse of notation, we use the same indices as
above.
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contents after discarding topology. In this paper, we use the
following attributes labeling vertices and edges: atom type,
atom charge and bond type. Contexts are formed as follows:
Given a vertex v ∈ V and an integer r ≥ 0, called the context
radius. We denote by x(v, r) the substructure of x composed
of the vertices within distance r from vertex v, and the set
of all edges that have at least one end in the vertex set of
x(v, r). More formally, we define the decomposition relation
depending on r as Rr = {(s, z, x) : x ∈ X, s = {v}, z =
x(v, r), v ∈ V }, where s is the selector and z is the context
for vertex v. In our case, the matching kernel δ(v, v′) returns
1 if the two vertices v and v′ have the same label.

3.3 Neighborhood Subgraph Pairwise Distance
Kernel

The Neighborhood Subgraph Pairwise Distance Kernel
(NSPDK) [10] is based on exact matching between pairs of
small subgraphs. Formally, let Rr,d(Av, Bu;G) denote the
relation between two rooted graphs Av,Bu and a graph G
to be true iff both Av and Bu are in {Nv

r : v ∈ V (G)},
where Av (Bu) is isomorphic to some Nr and D(u, v) = d.
In words: the relation Rr,d selects all pairs of neighborhood
graphs of radius r whose roots are at distance d in a given
graph G.

We define κr,d over G×G as the decomposition kernel on
the relation Rr,d, i.e.,

κr,d(G,G′) =
∑

Av,Bu∈R−1
r,d

(G)

A′v
′
,B′u

′
∈R−1

r,d
(G′)

δ(Av, A′v
′
)δ(Bu, B′u

′
) (4)

where δ is the exact matching kernel. In words: κr,d

counts the number of identical pairs of neighboring graphs
of radius r at distance d between two graphs.

The NSPDK is finally defined as:

K(G,G′) =
∑
r

∑
d

κr,d(G,G′). (5)

In this work we impose an upper bound on the radius and

the distance: Kr∗,d∗(G,G
′) =

∑r∗

r=0

∑d∗

d=0 κr,d(G,G′) that
is, NSPDK is limited to the sum of the κr,d kernels for all
increasing values of the radius (distance) parameter up to a
maximum given value r∗ (d∗).

3.4 Structural Cluster Kernel
In this section, we introduce a novel kernel, called struc-

tural cluster kernel, that leverages information of a cluster-
ing algorithm to improve a base kernel representation. The
main idea is to change the similarity metric of a base kernel
so that the relative similarity between two points is higher
if the points are in the same cluster. Our kernel uses a com-
bination of two similarity measures: (1) a base kernel that
computes structural similarity between pairs of graphs and
(2) a cluster based similarity measure that describes how
close examples are to each other in terms of the similarities
between the clusters they belong to. The similarity between
two clusters is computed by taking the average of the simi-
larities between the cluster instances. In our application to
molecule regression and classification, we use the WDK and
NSPDK (see Section 3.2 and 3.3) as the base kernel. For
the cluster based kernel, we use the structural clustering al-
gorithm introduced in section 3.1 that clusters a dataset of

graphs based on structural similarity. The cluster similarity
information is used to improve pointwise similarities, based
on which we construct the final kernel.

In the following, we describe the steps which are neces-
sary to build the structural cluster kernel. Let DTrg =
{(x1, y1), . . . , (xt, yt)} denote the training data, where xi ∈
X represent the data points and yi their labels, respectively.
Further, let DTst = {xt+1, . . . , xn} denote the set of test
points. We first cluster the training set with the structural
clustering procedure PSCG presented in Section 3.1. The
resulting clusters are used to build a kernel representing the
pairwise similarities between all clusters. In this kernel rep-
resentation, each of the pairwise sets of the structural clus-
ters is seen as a single data point, and a higher level kernel
is designed so as to compare the two clusters. The similar-
ity between two clusters is computed by taking the average
of the sum of the pairwise similarities between all graph in-
stances in both clusters. The kernel K(Ci, Cj) is defined
as

K(Ci, Cj) =


1

|Ci||Cj |
∑

xk∈Ci

∑
xl∈Cj

Kb(xk, xl) if i 6= j

1 if i = j,
(6)

where Kb(xk, xl) represents the base kernel and Ci, Cj ∈
{C1, . . . , Cp}. As mentioned earlier, we use the WDK and
NSPDK as base kernel to compute the pairwise similarities
between graphs. In the next step, we build a kernel repre-
sentation KCl(xi, xj) based on the averaged pairwise simi-
larities between the clusters xi and xj belong to. KCl(xi, xj)
is defined as

KCl(xi, xj) =


1

|nxi
||nxj

|
∑

Ck:xi∈Ck

∑
Cl:xj∈Cl

K(Ck, Cl) if i 6= j

1 if i = j

(7)
where nxi denotes the number of clusters containing xi,

nxj denotes the number of clusters containing xj and Ck, Cl ∈
{C1, . . . , Cp}. Thus, we map the points to a feature space
where the pointwise similarities are equal to the cluster simi-
larities in the input space. The points belonging to the same
cluster will result in matrix entries close to one, whereas for
the points from different clusters, the entries will be close to
zero. Figure 1 illustrates the cluster kernel concept.

The cluster similarity weights KCl(xi, xj) are combined
with the values of the base kernel Kb(xi, xj), thus forming
the final kernel matrix. To sum up, the new structural clus-
ter kernel is

KSC(xi, xj) = Kb(xi, xj)×KCl(xi, xj) (8)

We are faced with two problems in the construction of the
above structural cluster kernel: (i) the base kernel matrix
has to be positive semi-definite and (ii) the structural cluster
kernel must be positive semi-definite. The first requirement
is obvious, since we use the WDK and NSPDK as base ker-
nels, which are known to be valid kernels. In the following,
we provide a proof sketch to show that the structural cluster
kernel is a valid kernel.

Proof Sketch:.
KCl is a valid kernel, since each kernel value KCl(xi, xj)

contains the average sum of pairwise similarities between all
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Algorithm 1 Structural Cluster Kernel

Given: training points DTrg = {(x1, y1), . . . , (xt, yt)} and test points DTst = {xt+1, . . . , xn}, xi ∈ Rn, i = 1, . . . , n
a) Cluster training points using PSCG [22, 21]
c) Build cluster matrix on the training set
KCl(xi, xj) = 1

|nxi
||nxj

|
∑

Ck:xi∈Ck

∑
Cl:xj∈Cl

K(Ck, Cl), i, j ∈ {1, . . . , t}

d) Build the SCK on the training dataset by taking the product between the base kernel Kb and the cluster kernel KCl

KSC(xi, xj) = KCl(xi, xj)×Kb(xi, xj), i, j ∈ {1, . . . , t}
e) Compute cluster assignments for all test points
f) Compute KSC(xj , xi) between each test point xj and all training points xi, i = 1, . . . , t.

clusters, which in turn encompass the average sum of all
training instances xi ∈ {x1, . . . , xt}.

For each pair of clusters, we define one kernel that returns
the average similarity between the two clusters for the first
instance in cluster one and the second in cluster two. For
all other instances, it returns zero. As the sum of two valid
kernels is again a valid kernel, the resulting function is a
valid kernel as well. Applying the kernel to two instances,
we only consider the clusters to which the two instances are
assigned, consequently most of the summands are equal to
zero:

KCl(xi, xj) =
1

|nxi ||nxj |
∑

Ck:xi∈Ck

∑
Cl:xj∈Cl

K(Ck, Cl)

=
1

|nxi ||nxj |
∑

Ck:xi∈Ck

∑
Cl:xj∈Cl

K(Ck, Cl)

+
1

|mxi ||mxj |
∑

Ck:xi /∈Ck

∑
Cl:xj /∈Cl

K(Ck, Cl)

︸ ︷︷ ︸
0

+
1

|nxi ||mxj |
∑

Ck:xi∈Ck

∑
Cl:xj /∈Cl

K(Ck, Cl)

︸ ︷︷ ︸
0

+
1

|mxi ||nxj |
∑

Ck:xi /∈Ck

∑
Cl:xj∈Cl

K(Ck, Cl)

︸ ︷︷ ︸
0

,

(9)

where nxi denotes the number of clusters containing xi
and mxi denotes the number of clusters not containing xi.

In kernel methods, for predicting the label of a new test
point we need to perform kernel function calculations only
between the test points and the training points. For com-
puting the kernel entries, we first need to assign each test
point to one or more clusters using the structural cluster-
ing procedure to compute KCl(xi, xt). Based on this clus-
ter assignment the similarity KCl(xi, xt) between the test
point xt and all training points xi is computed by averag-
ing the pairwise similarities between all clusters xt and xi
are assigned to (Equation 7). The kernel matrix KSC is ex-
tended by taking the inner product between KCl(xi, xt) and
Kb(xi, xt) between each test point xt and all training points
xi, i = 1, . . . , t.

The steps needed for the calculation of the structural clus-
ter kernel are shown in Algorithm 1.

3.5 Semi-Supervised Setting
In semi-supervised learning, one tries to improve a classi-

fier trained on labeled data by exploiting a relatively large
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C1,C3

C2,C3

C1,C2

Figure 1: Illustration of the cluster kernel concept.
The cluster based similarity KCl(x1, x2) between the
highlighted structures x1 and x2 is computed based
on the averaged pairwise similarities between the
clusters they belong to. x1 belongs to C1 and C2, x2
to C2 and C3. Thus, we need to compute the pairwise
similarities between the cluster instances of cluster
C1C2, C1C3, C2C2 (which equals 1) and C2C3.

set of unlabeled data. If unlabeled data is added to the
relatively small labeled dataset, we expect that the new
similarity, obtained via structural clustering and the use
of unlabeled data, induces a better representational space
for classification and regression than using only the labeled
data. Therefore, we extend on the kernel construction in
Section 3.4 by involving a large number of unlabeled data.
The structural cluster kernel is constructed as follows: We
first cluster both the labeled and unlabeled training data
with the structural clustering procedure to determine small,
structurally homogeneous neighborhoods of the input space.
The resulting clusters are then used to build a kernel repre-
senting the pairwise similarities between all clusters. As in
the supervised setting, the cluster similarity information is
used to improve pointwise similarities between the labeled
data samples, based on which the final structural cluster
kernel is constructed.

4. EXPERIMENTAL RESULTS
In this section, we first study the performance of our

proposed structural cluster kernel in a supervised setting.
Next, we investigate the cluster kernel approach in a semi-
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supervised setting to test if the prediction performance can
be improved by including a large amount of unlabeled data.
For all experiments, we employed the chemical domain as
our application area by using real datasets of molecular
graphs. In Table 1 an overview of the datasets is provided.

Table 1: Overview of the datasets used for assessing
our structural cluster kernel. n denotes the number
of molecular graphs in the respective dataset.

Dataset n
class.(SAR)/

Reference
regr.(QSAR)

4QSAR COX2 282 regression 4QSAR database [24]
4QSAR DHFR 362 regression 4QSAR database [24]
CPD MOUSE 442 regression ACD DSSTox databases [14]
CPD RAT 580 regression ACD DSSTox databases [14]
ISS MOUSE 316 regression Benigni/Vari Carcinogenicity [2]
ISS RAT 375 regression Benigni/Vari Carcinogenicity [2]
Suth COX2 414 regression Sutherland dataset [23]
Suth DHFR 672 regression Sutherland dataset [23]
Suth ER TOX 410 regression Sutherland dataset [23]
FDAMDD 1216 regression ACD DSSTox databases [17]
Biodeg 328 regression Biodegradability dataset [11]
Tox09 1213 regression Environmental Toxicity

Prediction Challenge 2009 [1]
ER LIT 381 regression Sutherland dataset [23]
CYP INH 2C9 700 classification Yap and Chen [28]
CYP SUB 2C9 700 classification Yap and Chen [28]
Fontaine 435 classification Fontaine et al. [12]
NCI AIDS 1000 classification DTP AIDS Antiviral Screen [9]
CPDB MUT 684 classification Mutagenicity dataset [15]

4.1 Supervised Setting
In this section, we empirically compare the performance of

our structural cluster kernel approach against five methods.

1. WDK: The Weighted Decomposition Kernel is used
to build a classification or regression model. Section
3.2 provides a detailed description of the WDK.

2. NSPDK: The Neighborhood Subgraph Pairwise Dis-
tance Kernel (see Section 3.3) is used to build a clas-
sification or regression model.

3. LoMoGraph: LoMoGraph [5] combines clustering and
classification or regression for making predictions on
graph structured data. The approach consists of two
steps: First, the structural clustering procedure PSCG
[22] is applied to find groups of graphs in a structural
space that share a common structural scaffold with a
minimum size. The sizes of these common subgraphs
are used as a measure of similarity between the graphs.
A graph is assigned to a cluster provided that there ex-
ists at least one common subgraph, whose size is equal
or greater than a user-defined threshold θ. Second, one
local model is learned per structural cluster using a
feature-vector representation of the graphs where the
features encode standard chemical descriptors in our
setting of molecular graphs. In the prediction step,
the query graph is assigned to one or more clusters
using PSCG. Based on this assignment, the prediction
is made. Since the structural clustering procedure is
overlapping and non-exhaustive, a graph can fall into
no cluster, one cluster or multiple clusters. If it falls
into no cluster, a global model is applied for predic-
tion. If the query graph falls into a single cluster, the
local model based on this cluster is used for prediction,

and if it is assigned to multiple clusters, weighted lo-
cal models are used dependent on cluster membership.
The weight for a cluster is linearly dependent on its
size. Thus, larger weights are assigned to larger clus-
ters, assuming that the more graphs a cluster has, the
more reliable the corresponding model is.

4. LoMoGraph WDK: The method combines LoMo-
Graph with WDK. More precisely, one local model is
learned per structural cluster based on the WDK.

5. LoMoGraph NSPDK: The method combines Lo-
MoGraph with NSPDK, i.e., one local model is learned
per structural cluster based on the NSPDK.

We investigated our structural cluster kernel approach us-
ing both NSPDK and WDK as base kernel. For SCK with
NSPDK and SCK with WDK, we investigated not only the
approach with the diagonal elements in the kernel matrices
K(Ci, Cj) (Equation 6) and KCl(xi, xj) (Equation 7) set
to one, but also a second approach, where the diagonal el-
ements are computed in the same way as the non-diagonal
elements. We refer to these four approaches as SCK NSPDK
(d=1), SCK NSPDK (d6=1), SCK WDK (d=1) and SCK
WDK (d6=1).

In the experiments, regression and classification were per-
formed using the Support Vector Machine (SVM) algorithm.
Several user parameters were optimized by internal cross-
validation. For SCK WDK, SCK NSPDK, WDK, NSPDK,
LoMoGraph WDK, and LoMoGraph NSPDK, the trade-off
between training error and margin, C, was selected from
{10−3, 10−2, 10−1, 100, 101, 102}. Further, we optimized the
radius r for WDK in {1, 2, 3, 4}. The parameter combina-
tion resulting in the lowest mean absolute error (the highest
accuracy) was then used for building the final model. All
other SVM parameters were left at their default values. For
NSPDK, the maximum radius r∗ was set to 2, and the max-
imum distance d∗ to 5. For the SCK approaches, we set
the similarity coefficient θ of PSCG to 0.5. For FDAMDD
and NCI AIDS we made an exception and set θ to 0.3 to
take into account the size and structural heterogeneity of
the datasets. As for LoMoGraph, the parameters that were
used for clustering were defined based on a set of criteria:
the similarity coefficient of PSCG was chosen such that the
local models consist of minimally 5% and maximally 20% of
the training data. The rationale behind this choice is that a
too small value of θ results in large, heterogeneous clusters
whereas a too big value of θ produces very few, small clusters
or no clusters at all. In both cases the predictivity of LoMo-
Graph would be negatively affected. For the experiments on
SCK, we used the same values for θ for all datasets. Another
parameter called minimum cluster size controls how many
graphs a cluster must have at least so that a local model
can be learned. This parameter was chosen greater than or
equal to 20 as a lower bound for the number of graphs that
are needed to train meaningful models.

Performance estimates are obtained using 100 times hold-
out validation with a training set fraction of 66%. This
means that 2/3 of the data are used for training a model
while the remaining 1/3 is reserved for testing. To quantify
predictive accuracy, we choose the relative mean error (re-
gression) and classification accuracy (classification), which
are standard measures in regression and classification set-
tings. The Wilcoxon signed-rank test and the corrected re-
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Table 2: Mean absolute errors with standard deviations of SCK NSPDK, NSPDK, LoMoGraph NSPDK and
LoMoGraph on the regression datasets. Statistically significant results are reported using both the Wilcoxon
signed-rank test and the corrected resampled t-test (separated by a ’|’).

Dataset
SCK NSPDK SCK NSPDK

NSPDK
LoMoGraph

LoMoGraph
(d6=1) (d=1) NSPDK

4QSAR COX2 0.607 ± 0.055 0.625 ± 0.055 •| 0.601 ± 0.054 ◦| 0.628 ± 0.055 •| 0.868 ± 0.135 •|•
4QSAR DHFR 0.551 ± 0.035 0.572 ± 0.037 •|• 0.541 ± 0.033 ◦| 0.562 ± 0.035 •| 0.955 ± 0.102 •|•
CPD MOUSE 0.751 ± 0.041 0.760 ± 0.041 •| 0.764 ± 0.040 •| 0.775 ± 0.039 •|• 1.276 ± 0.154 •|•
CPD RAT 0.868 ± 0.045 0.870 ± 0.044 •| 0.887 ± 0.043 •|• 0.877 ± 0.042 | 1.529 ± 0.116 •|•
ISS MOUSE 0.738 ± 0.046 0.740 ± 0.046 | 0.753 ± 0.045 •|• 0.761 ± 0.048 •|• 1.197 ± 0.111 •|•
ISS RAT 0.860 ± 0.050 0.863 ± 0.047 | 0.900 ± 0.046 •|• 0.873 ± 0.051 •| 1.371 ± 0.109 •|•
Suth COX2 0.559 ± 0.039 0.586 ± 0.041 •|• 0.552 ± 0.038 ◦|◦ 0.573 ± 0.040 •| 0.905 ± 0.137 •|•
Suth DHFR 0.504 ± 0.026 0.519 ± 0.030 •|• 0.493 ± 0.026 ◦|◦ 0.498 ± 0.027 ◦| 0.941 ± 0.066 •|•
Suth ER TOX 0.828 ± 0.046 0.842 ± 0.045 •| 0.820 ± 0.042 | 0.847 ± 0.052 •| 1.216 ± 0.141 •|•
FDAMDD 0.629 ± 0.029 0.647 ± 0.023 •|• 0.612 ± 0.024 ◦|◦ 0.621 ± 0.026 ◦| 0.951 ± 0.051 •|•
Biodeg 0.844 ± 0.051 0.875 ± 0.055 •|• 0.867 ± 0.050 •|• 0.874 ± 0.053 •|• -

Tox09 0.345 ± 0.015 0.386 ± 0.016 •|• 0.342 ± 0.015 | 0.367 ± 0.016 •|• -

ER LIT 0.492 ± 0.039 0.499 ± 0.035 •| 0.495 ± 0.039 | 0.495 ± 0.041 | -

•,◦ statistically significant improvement, or degradation of SCK NSPDK (d6=1) with respect to the other methods

Table 3: Mean absolute errors with standard deviations of SCK WDK, WDK, LoMoGraph WDK and
LoMoGraph on the regression datasets. Statistically significant results are reported using both the Wilcoxon
signed-rank test and the corrected resampled t-test (separated by a ’|’).

Dataset
SCK WDK SCK WDK

WDK
LoMoGraph

LoMoGraph
(d=1) (d6=1) WDK

4QSAR COX2 0.673 ± 0.088 0.691 ± 0.056 •|• 0.683 ± 0.055 | 0.676 ± 0.053 | 0.868 ± 0.135 •|•
4QSAR DHFR 0.669 ± 0.054 0.805 ± 0.132 •|• 0.733 ± 0.051 •|• 0.702 ± 0.047 •| 0.955 ± 0.102 •|•
CPD MOUSE 0.827 ± 0.052 0.874 ± 0.085 •| 0.888 ± 0.063 •|• 0.880 ± 0.052 •|• 1.276 ± 0.154 •|•
CPD RAT 1.002 ± 0.048 1.070 ± 0.103 •| 1.129 ± 0.154 •|• 1.043 ± 0.048 •|• 1.529 ± 0.116 •|•
ISS MOUSE 0.798 ± 0.049 0.826 ± 0.053 •|• 0.850 ± 0.056 •|• 0.859 ± 0.062 •|• 1.197 ± 0.111 •|•
ISS RAT 0.977 ± 0.064 1.018 ± 0.074 •|• 1.031 ± 0.061 •|• 1.022 ± 0.062 •|• 1.371 ± 0.109 •|•
Suth COX2 0.612 ± 0.042 0.620 ± 0.047 •| 0.603 ± 0.041 ◦| 0.610 ± 0.044 | 0.905 ± 0.137 •|•
Suth DHFR 0.625 ± 0.036 0.639 ± 0.086 •| 0.633 ± 0.032 •| 0.610 ± 0.031 ◦| 0.941 ± 0.066 •|•
Suth ER TOX 0.993 ± 0.064 1.301 ± 0.439 •|• 1.175 ± 0.071 •|• 1.130 ± 0.076 •|• 1.216 ± 0.141 •|•
FDAMDD 0.727 ± 0.029 0.809 ± 0.077 •|• 0.833 ± 0.329 •|• 0.727 ± 0.029 | 0.951 ± 0.051 •|•
Biodeg 1.011 ± 0.072 1.051 ± 0.119 •| 1.110 ± 0.071 •|• 1.086 ± 0.080 •|• -

Tox09 0.440 ± 0.021 0.643 ± 0.168 •|• 0.464 ± 0.017 •|• 0.425 ± 0.017 ◦| -

ER LIT 0.594 ± 0.040 0.590 ± 0.058 ◦| 0.609 ± 0.040 •| 0.591 ± 0.043 •| -

•,◦ statistically significant improvement, or degradation of SCK WDK (d=1) with respect to the other methods

Table 4: Classification accuracies with standard deviations of SCK NSPDK, NSPDK, LoMoGraph NSPDK
and LoMoGraph on the classification datasets. Statistically significant results are reported using both the
Wilcoxon signed-rank test and the corrected resampled t-test (separated by a ’|’).

Dataset
SCK NSPDK SCK NSPDK

NSPDK
LoMoGraph

LoMoGraph
(d6=1) (d=1) NSPDK

CYP INH 76.33 ± 2.35 75.62 ± 2.52 •| 75.55 ± 2.50 •| 75.88 ± 2.56 •| 74.08 ± 2.55 •|•
CYP SUB 76.84 ± 2.28 75.11 ± 2.84 •|• 75.95 ± 2.17 •| 76.21 ± 1.99 •| 71.37 ± 2.46 •|•
Fontaine 95.56 ± 1.57 95.37 ± 1.57 •| 95.71 ± 1.66 | 95.62 ± 1.60 | 92.08 ± 2.01 •|•
NCI AIDS 90.13 ± 1.58 89.86 ± 1.69 •| 90.58 ± 1.35 •| 89.02 ± 1.62 •|• 84.93 ± 1.61 •|•
CPDB MUT 76.71 ± 2.10 75.15 ± 2.20 •|• 77.25 ± 2.12 ◦| 73.85 ± 2.50 •|• -

•,◦ statistically significant improvement, or degradation of SCK NSPDK (d6=1) with respect to the other methods

521



Table 5: Classification accuracies with standard deviations of SCK WDK, WDK, LoMoGraph WDK and Lo-
MoGraph on the classification datasets. Statistically significant results are reported using both the Wilcoxon
signed-rank test and the corrected resampled t-test (separated by a ’|’).

Dataset
SCK WDK SCK WDK

WDK
LoMoGraph

LoMoGraph
(d=1) (d6=1) WDK

CYP INH 74.05 ± 3.02 70.78 ± 3.85 •|• 75.05 ± 2.51 ◦| 75.42 ± 2.42 ◦| 74.08 ± 2.55 |
CYP SUB 72.07 ± 3.84 70.63 ± 4.63 •| 75.77 ± 2.38 ◦|◦ 75.74 ± 2.46 ◦|◦ 71.37 ± 2.46 •|
Fontaine 94.01 ± 1.86 94.48 ± 1.83 ◦| 94.41 ± 1.54 ◦| 93.03 ± 5.14 •| 92.08 ± 2.01 •|•
NCI AIDS 84.28 ± 2.04 83.67 ± 2.20 •| 79.97 ± 8.32 •|• 82.27 ± 1.82 •|• 84.93 ± 1.61 •|
CPDB MUT 72.80 ± 2.48 71.51 ± 2.88 •| 73.29 ± 2.57 | 70.85 ± 2.64 •| -

•,◦ statistically significant improvement, or degradation of SCK WDK (d=1) with respect to the other methods

sampled t-test [19] are applied to test for significant differ-
ences at a significance level of 5%.

Tables 2, 3, 4 and 5 show the detailed experimental re-
sults in terms of relative mean absolute error (regression)
and accuracy (classification) for the various methods on all
datasets. The results for LoMoGraph are taken from the
original publication [5]. Since not all datasets were used in
this paper, the table contains missing values. In the same ta-
bles the second column shows the performance of the respec-
tive SCK method as baseline to compare against. For better
illustration we highlight the reference method in italic. We
indicate whether the respective SCK method is significantly
better or worse than the comparison methods at p < 0.05 us-
ing both the Wilcoxon signed-ranked test and the corrected
resampled t-test. In the following, we discuss the results
based on the more conservative corrected resampled t-test.
Overall, our experimental results show that the structural
cluster kernel with NSPDK as base kernel performs always
better than all comparison methods using WDK as base
kernel. This demonstrates that NSPDK is a much more
powerful base kernel compared to WDK. Moreover, we ob-
serve that the choice of setting the diagonal entries in the
kernel matrix has a different effect on both SCK methods.
Whereas setting the diagonal entries of the kernel matrix un-
equal to one leads to better predictive performance for SCK
NSPDK, setting the diagonal entries equal to one results in
better predictive performance for SCK WDK. In the follow-
ing, we analyze the performance of the SCK approaches on
the different datasets. On the COX2 datasets, we observe no
performance improvement of SCK NSPDK and SCK WDK
over the respective base kernel. The datasets contain ex-
tremely similar molecules, often differing in only one atom.
Hence, the base kernel cannot be improved by the similar-
ities induced by the structural clustering procedure. For
the CPD, ISS and Biodeg datasets, a comparison between
the mean absolute errors shows a clear performance advan-
tage of SCK using both WDK and NSPDK as base kernel.
Primarily, we explain this positive effect as a result of the
structurally heterogeneity of the datasets consisting of many
small molecules (∼ up to 10 atoms). Hence, the NSPDK
alone is not suited to determine similarity between graphs.
As a consequence, for these datasets the pairwise similarities
between the small, structurally homogeneous neighborhoods
can contribute to similarity and consequently to predictive
performance. On FDAMDD, the proposed structural cluster
kernel with NSPDK as base kernel yields performance degra-
dation compared to NSPDK. This shows that taking into ac-
count the similarities induced by PSCG has an adverse effect

on the predictive performance. Although for this dataset a
significant performance gain of SCK over the base kernel
can be achieved by using WDK as base kernel, SCK WDK
still has a higher mean absolute error compared to NSPDK.
This demonstrates that NSPDK is much more powerful com-
pared to WDK. For NCI AIDS and both CYP datasets the
results on classification are clearly in favor of SCK NSPDK.
On these datasets the structural cluster kernel with NSPDK
improves over all other compared methods. However, for
the corrected resampled t-test only four of the nine wins are
statistically significant. Using WDK as base kernel, SCK
can only achieve strong performance improvements on NCI
AIDS. On the remaining classification datasets taking into
account similarities induced by PSCG has either no sig-
nificant effect or an adverse effect on predictive accuracy
compared to the baseline methods (except for LoMoGraph
on the Fontaine dataset). In summary, our structural clus-
ter kernel approach is comparative to other methods, yet
shows a strong performance increase on structurally more
sparse datasets, i.e., chemically and structurally more di-
verse datasets. On these datasets the base kernel alone is
not suited to determine similarities between graphs due to
the high structural heterogeneity within the dataset. Hence,
the structural neighborhood of two graphs can substantially
contribute to graph similarity and therefore to predictive
performance of the constructed models.

4.2 Semi-Supervised Setting
In this section, we investigate whether incorporating un-

labeled data in the clustering process can positively con-
tribute to predictive performance. Since semi-supervised
methods potentially give the greatest benefit when a large
amount of unlabeled data is used, we tested our structural
cluster kernel approach in large-scale experiments, enriching
the training data by a large number of molecules from the
vast chemical space. For this, we employed the ChemDB
database, which contains nearly 5 M commercially available
small molecules [7, 8], as a source of unlabeled data, ran-
domly sampling 100,000 structures from it. Since in the su-
pervised setting, SCK NSPDK (d6=1) performs always bet-
ter than or equal to all methods using WDK as base kernel
as well as to SCK NSPDK (d=1), LoMoGraph NSPDK and
LoMoGraph, we only compared SCK in the semi-supervised
setting against SCK NSPDK (d6=1) and NSPDK. As in the
supervised setting, the SVM complexity constant, C, was
selected from {10−3, 10−2, 10−1, 100, 101, 102}. Further, we
used the same parameter setting for the NSPDK and the
similarity coefficient θ.
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The experimental results are shown in Tables 6 and 7 and
in the bar charts in Figure 2. For completeness, the bar
charts also depict the results for LoMoGraph NSPDK and
LoMoGraph. The following discussion is based on the cor-
rected resampled t-test. The results show that in the semi-
supervised setting, SCK NSPDK achieves a strong perfor-
mance gain on all datasets over the supervised approach: 10
of the 18 wins are statistically significant. For regression, the
best results can be achieved on the toxicity datasets consist-
ing of structurally more heterogeneous graphs. The results
indicate that incorporating a large set of unlabeled data into
the structural clustering process has a definite positive ef-
fect on the predictive performance. As opposed to the super-
vised setting, SCK NSPDK can improve over the base kernel
on the FDAMDD dataset. This dataset is the largest one,
comprising structurally heterogeneous molecules. Hence, ex-
ploiting a large set of unlabeled data in the clustering step
can contribute to graph similarity. The strongest perfor-
mance gains with respect to NSPDK can be achieved on the
classification datasets. Whereas in the supervised setting
SCK NSPDK was not able to gain significantly with respect
to the base kernel on the classification datasets, the semi-
supervised approach shows significant improvements over
NSPDK in three out of five cases.

Table 6: Mean absolute errors with standard devi-
ations of SCK NSPDK in both the semi-supervised
and supervised setting and NSPDK on the classifi-
cation datasets. Statistically significant results are
reported using the Wilcoxon signed-rank test and
the corrected resampled t-test (separated by a ’|’).
Dataset

SCK NSPDK SCK NSPDK
NSPDK

Semi-Sup (d6=1)

4QSAR COX2 0.606 ± 0.055 0.607 ± 0.055 | 0.601 ± 0.054 ◦|
4QSAR DHFR 0.548 ± 0.033 0.551 ± 0.035 | 0.541 ± 0.033 ◦|
CPD MOUSE 0.746 ± 0.043 0.751 ± 0.041 •| 0.764 ± 0.040 •|•
CPD RAT 0.861 ± 0.046 0.868 ± 0.045 •|• 0.887 ± 0.043 •|•
ISS MOUSE 0.731 ± 0.049 0.738 ± 0.046 •|• 0.753 ± 0.045 •|•
ISS RAT 0.850 ± 0.050 0.860 ± 0.050 •|• 0.900 ± 0.046 •|•
Suth COX2 0.556 ± 0.040 0.559 ± 0.039 •| 0.552 ± 0.038 |
Suth DHFR 0.501 ± 0.025 0.504 ± 0.026 | 0.493 ± 0.026 ◦|◦
Suth ER TOX 0.808 ± 0.041 0.828 ± 0.046 •|• 0.820 ± 0.042 •|•
FDAMDD 0.608 ± 0.020 0.629 ± 0.029 •|• 0.612 ± 0.024 •|
Biodeg 0.840 ± 0.051 0.844 ± 0.051 •|• 0.867 ± 0.050 •|•
Tox09 0.339 ± 0.014 0.345 ± 0.015 •|• 0.342 ± 0.015 •|
ER LIT 0.492 ± 0.039 0.492 ± 0.039 | 0.495 ± 0.039 •|

•,◦ statistically significant improvement, or degradation of SCK
NSPDK Semi-Sup with respect to the other methods

5. CONCLUSION
In the work presented here, we proposed a novel graph ker-

nel approach that incorporates similarity information based
on structural graph clustering [21, 22] to improve state-of-
the-art graph kernels. The proposed kernel is based on the
idea that graph similarity can not only be determined by the
similarity of the graphs alone, i.e., their structure, but also
by the similarity of the graphs’ structural neighborhood. We
investigated the performance of the structural cluster ker-
nels for regression and classification by using several real-

Table 7: Classification accuracies with standard
deviations of SCK NSPDK in both the semi-
supervised and supervised setting and NSPDK on
the classification datasets. Statistically significant
results are reported using the Wilcoxon signed-rank
test and the corrected resampled t-test (separated
by a ’|’).

Dataset
SCK NSPDK SCK NSPDK

NSPDK
Semi-Sup (d6=1)

CYP INH 77.37 ± 2.26 76.33 ± 2.35 •|• 75.55 ± 2.50 •|•
CYP SUB 78.78 ± 2.16 76.84 ± 2.28 •|• 75.95 ± 2.17 •|•
Fontaine 95.80 ± 1.42 95.56 ± 1.57 | 95.71 ± 1.66 |
NCI AIDS 90.92 ± 1.00 90.13 ± 1.58 •| 90.58 ± 1.35 •|
CPDB MUT 78.47 ± 2.40 76.71 ± 2.10 •|• 77.25 ± 2.12 •|•

•,◦ statistically significant improvement, or degradation of SCK
NSPDK Semi-Sup with respect to the other methods
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Figure 2: a) Mean absolute errors with 95% confi-
dence intervals and b) classification accuracies with
95% confidence intervals on the different comparison
methods for the data sets in Table 1.

world datasets of molecular graphs. In our experiments we
performed a comparison with the weighted decomposition
kernel, the neighborhood subgraph pairwise distance ker-
nel, and a learning method combining clustering with clas-
sification or regression for the prediction task. The results
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demonstrate that the proposed kernel approach yields an in-
crease in performance on a number of datasets, in particular
on structurally more diverse datasets. We also investigated
the performance of our approach in the semi-supervised set-
ting, by enriching relatively small labeled datasets by a large
set of unlabeled data instances from the vast chemical space.
The results show that within the semi-supervised setting our
approach achieves gains in performance when compared to
the supervised version as well as to the pure base kernel, in
particular for classification. We believe that the approach
presented is general as such, and can also be employed in
conjunction with a variety of different kernels and clustering
approaches and is therefore not restricted to graph mining
alone.
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