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ABSTRACT
Mining dense subgraphs such as cliques or quasi-cliques is an
important graph mining problem and closely related to the
notion of graph clustering. In various applications, graphs
are enriched by additional information. For example, we
can observe graphs representing different types of relations
between the vertices. These multiple edge types can also
be viewed as different “layers” of the same graph, which is
denoted as a “multi-layer graph” in this work. Additionally,
each edge might be annotated by a label characterizing the
given relation in more detail. By exploiting all these differ-
ent kinds of information, the detection of more interesting
clusters in the graph can be supported.

In this work, we introduce the multi-layer coherent sub-
graph (MLCS) model, which defines clusters of vertices that
are densely connected by edges with similar labels in a subset
of the graph layers. We avoid redundancy in the result by
selecting only the most interesting, non-redundant clusters
for the output. Based on this model, we introduce the best-
first search algorithm MiMAG. In thorough experiments we
demonstrate the strengths of MiMAG in comparison with re-
lated approaches on synthetic as well as real-world datasets.

Categories and Subject Descriptors: H.2.8 Database
management: Database applications [Data mining]

Keywords: dense subgraphs, graph clustering, networks

1. INTRODUCTION
Mining graph and network data has gained much atten-

tion in recent years. One important mining task is graph
clustering that aims at grouping the vertices of a graph into
so-called clusters such that many edges between vertices of
the same cluster exist, i.e. the vertices are densely connected.
This task is often also referred to as“dense subgraph mining”
including the detection of cliques or quasi-cliques [12].

Besides the mere graph data, real-world data often con-
tains additional information, which can be exploited by clus-
tering approaches. Several approaches have been proposed
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considering additional information about the vertices of a
graph (e.g. [19, 14, 7, 6]). In this work, however, we con-
sider additional information about the edges of a graph.

For example, a graph can contain different types of edges,
which represent different types of relations between vertices.
Such different types can occur, for example, when we com-
bine information from several information networks: e.g.,
combining a co-author network with a citation network. In
the first graph, authors are connected if they have common
papers; in the second graph, if a paper of one author cited
a paper of the other author. Thus, we will get two edge
types: “co-authorship” and “citation”. Furthermore, each
edge might also be associated with a label, e.g. the number
of co-authored (or cited) papers. We denote such a graph
with multiple edge types as a “multi-layer graph”. It is de-
fined as a set of graphs (called “layers”) where each graph is
based on the same set of vertices and represents the edges
of one certain type. Accordingly, in each layer a different
edge set is given. These layers can also be viewed as “di-
mensions” of the graph. (In the following, we use the terms
“layers” and “dimensions” interchangeably.) An exemplary
multi-layer graph is depicted in Fig. 1; several real-world
examples are described in the experimental section.

For graphs with edge labels, we can distinguish between
two possible interpretations of the labels: First, labels can
be regarded as edge weights that denote the strength of the
relation between the incident vertices. In this paper, how-
ever, we consider a second interpretation: the edge labels
represent characteristics of the relations. For example, a
co-author network might contain information about the col-
laboration between two authors, as the begin or end time
of the collaboration, research topics, conferences/journals
where the joint papers were published etc.

Overall, in this work, we aim at finding clusters of vertices
that are densely connected by edges with similar labels in
a subset of the graph layers. These clusters are denoted as
(multi-layer) coherent subgraphs.

We want to highlight that the coherent subgraphs need
not to appear across all layers, but we detect them in sub-
sets of the layers. This is important as some of the edge
types might not be relevant for finding interesting coherent
subgraphs at all; other types might be relevant only for cer-
tain subgraphs. Thus, for each coherent subgraph we find
an individual set of relevant layers. This principle is moti-
vated by the field of subspace clustering [10] that aims at
analyzing subsets of the dimensions in a vector space and
that stems from the fact that in higher-dimensional vector
data it is unlikely to find objects that are similar w.r.t. all
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of their characteristics; each cluster is associated with an in-
dividual subspace projection. Exploiting these observations
in our model, the detected coherent subgraphs are useful
in several scenarios: We might find a dense cluster of au-
thors who started their collaboration at a similar time and
co-authored papers at the same conferences. The authors
in another dense cluster might have cited each others’ pa-
pers on similar research topics, but not have published joint
papers. Similar, in a co-actor graph representing the joint
work of actors (cf. Sec. 5), a cluster might be a group of
actors who worked together on movies with similar success.

Additionally, we consider the fact that a vertex can natu-
rally belong to more than one cluster, e.g. an author might
of course participate in several working groups. Thus, we
allow our clusters to overlap. However, similar to subspace
clustering, allowing overlap can lead to a huge number of
valid clusters that mostly represent redundant information
[13, 7]. Thus, we propose a clustering model that allows clus-
ters to overlap to a certain extend, but avoids redundancy in
the resulting set of clusters. This final set of clusters (“clus-
tering”) should contain the most interesting clusters w.r.t. a
quality function which can be specified by the user.

Finally, since determining the overall clustering according
to our model is NP-hard (as also with most dense subgraph
mining models on a single graph), we introduce the algo-
rithm MiMAG using a best-first search [16] to find an ap-
proximate solution. Best-first search is an established search
principle to explore a graph, which in our case is a search tree
for enumerating subgraphs, in an informed fashion. Start-
ing in an initial node (in our case: the root node of the
search tree), best-first search algorithms iteratively expand
the “most promising” node based on a given heuristic. In
MiMAG, the most promising subgraphs are expanded to de-
tect the most interesting clusters first. This concept is re-
lated to the well-known A* algorithm for finding minimum-
cost paths in a graph [9].

The main contributions of this paper are the following:

1. We propose the new paradigm of clustering multi-layer
graphs with edge labels.

2. We introduce the clustering model MLCS, which avoids
redundancy in the result set.

3. We propose the best-first search algorithm MiMAG to
approximate the MLCS clustering.

2. RELATED WORK
For mining graph data there exist various mining tasks

[1]. Some of the most active areas are graph clustering,
graph classification, and frequent subgraph mining. In this
work, we concentrate on clustering graph/network data. An
overview of the various existing models and techniques is
given in [1] and [4]. The term “graph clustering” is some-
what ambiguous as it is (a) used for the clustering of graph
databases, where a cluster represents a set of graphs, and (b)
for clustering in one large graph, where the clusters repre-
sent sets of vertices from the graph. The latter is often also
referred to as “dense subgraph mining”, and is the meaning
that is used in this paper. For the definition of dense sub-
graphs, several models exist. Two of the most widely-used
models are cliques and γ-quasi-cliques [17].

The concept of subspace clustering was developed for the
task of clustering vector data. Traditionally, clustering is
done by using all dimensions of the feature space. However,

full-space clustering does not scale to high-dimensional data
since locally irrelevant dimensions may obfuscate the clus-
tering structure [2, 10]. As a solution, subspace clustering
methods detect an individual set of relevant dimensions for
each cluster [10]. For subspace clustering, several models
and algorithms have been proposed. E.g., cell-based sub-
space clustering methods obtain high-quality results and are
efficiently computable [15].

Some clustering approaches have been proposed that con-
sider graphs with labeled vertices (here, the vertex labels are
vectors). These approaches can be seen as a combination of
graph clustering with clustering approaches for vector data.
However, they mostly rely on fullspace-clustering on the ver-
tex attributes (e.g. [19]). Recently, the approaches [14, 7,
6] were introduced to deal with the combination of subspace
clustering and dense subgraph mining. In these approaches,
clusters are ensured to be densely connected and vertices
in a cluster are similar in subsets of their attribute values.
Although these cluster models are related to the model in-
troduced in this paper, adapting these methods to handle
edge labels does not lead to the desired results. Two ap-
proaches for such an adaption are discussed and evaluated
in the experimental section.

Graphs with a single edge type and labels in terms of
edge weights can be considered by some graph clustering
approaches like minimum cut [1] and spectral clustering [19].

To the best of our knowledge, there are no previous ap-
proaches for clustering in multi-layer graphs with edge labels.
Also in the survey by Fortunato [4] it is mentioned that such
graphs have not been dealt with by any algorithm. Even
though the authors of [11] mention the existence of differ-
ent types of relations in a network (which they call ”levels
of relation”), they just summarize all the different relations
between two vertices into a single edge weight.

A concept which is related to our approach is the detec-
tion of cross-graph quasi-cliques [17]. Given a database of
graphs each having the same vertices, a cross-graph quasi-
clique is defined as a set of vertices that forms a quasi-clique
in all of the graphs. Only maximal sets having this prop-
erty are output. The approaches [20] and [21] also work on a
graph database and mine sets of vertices that form a clique
[20] or quasi-clique [21] in at least a certain percentage of
the graphs in the database (which is called the “support” of
the (quasi-)clique). Both approaches aim at mining closed
(quasi-)cliques, i.e. a (quasi-)clique O is not contained in
the output if one of O’s supersets also forms a (quasi-)clique
having the same support. In [3], cross-graph cliques are de-
tected in a dynamic graph represented as a 3-dimensional
boolean cube. To adapt these approaches to our problem
setting, the graphs in the graph database could be seen as
the different layers of our input graph. However, edge labels
are not considered by these approaches. Furthermore, the
existing methods do not avoid redundancy in the result set
apart from simply excluding subsets of (quasi-)cliques. Thus
their output can often contain a large set of highly overlap-
ping vertex sets. In our experimental section, we compare
our approach to an adaption of the closed quasi-clique min-
ing algorithm Cocain [21].

3. MODEL
In this section, we introduce the MLCS (“Multi-layer co-

herent subgraph”) model for the clustering of graphs with
different types of edges. We start by providing a formal
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definition of the input graph. For ease of presentation, we
represent the input graph as a set of graphs (called “multi-
layer graph”) each having the same vertex set V ; each graph
contains the edges of one type with their corresponding la-
bels. Formally, the layer graph is defined as:

Definition 1 (Multi-Layer Graph). A multi-layer
graph G for a set of dimensions Dim = {1, . . . , d} is a set
G = {Gi | i ∈ Dim} of graphs

Gi = (V,Ei, li), Ei ⊆ V × V, li : Ei → R

where each graph layer Gi, i ∈ Dim is an undirected graph
without self-loops and with an edge labeling function li.

We can easily handle graphs with different vertex sets Vi

by simply considering the union V =
⋃

Vi. The remainder
of this section is structured as follows: In Section 3.1, we
introduce our definition for a single cluster. We define our
redundancy model and selection criteria for the final clus-
tering in Section 3.2. In Section 3.3 we introduce the cluster
quality function that is used in our experiments.

3.1 Cluster model
As discussed in the introduction, an MLCS cluster is a set

of vertices which are connected with a high density by edges
with similar labels in a subspace of the multi-layer graph (i.e.
in a subset of the graph layers).
Cluster property for a single graph layer. First, we con-
sider a single graph layer Gi. For the density of a subgraph,
we use the established quasi-clique model [17, 21, 12]. The
quasi-clique model defines dense subgraphs based on their
intra-cluster connectivity. Formally,

Definition 2 (γ-quasi-clique). A vertex set O ⊆ V
in a graph G = (V,E) is a γ-quasi-clique for γ ∈ [0, 1] if

∀v ∈ O : degOG(v) ≥ �γ · (|O| − 1)�

where degOG(v) = |{u ∈ O | (u, v) ∈ E}|. The density of a
quasi-clique O in graph layer Gi is defined by

γGi(O) =
minv∈O{degOGi

(v)}
|O| − 1

For our cluster model, we consider a vertex set as dense if
it is a 0.5-quasi-clique, i.e. its quasi-clique density is at least
0.5. As shown in [21], for γ ≥ 0.5 the vertices in a γ-quasi-
clique are connected “tightly and relatively evenly”. This
also ensures that the subgraph is connected in the graph
[21]. For the similarity of the edge labels, we use a cell-based
cluster model [15]. To be considered similar, the labels of
the edges in a cluster may vary at most by a threshold w.
Formally, we define a cluster in a graph layer Gi as follows:

Definition 3 (One-dimensional MLCS cluster).

A vertex set O ⊆ V is a one-dimensional MLCS cluster in a
graph layer Gi = (V,Ei, li) (w.r.t. threshold w and distance
function dist) if it forms a 0.5-quasi-clique in the graph Gi

and

∀x, y ∈ Ei(O) : dist(li(x), li(y)) ≤ w

where the edge set Ei(O) is defined as Ei(O) = {(u, v) ∈
Ei | u, v ∈ O}
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Figure 1: Exemplary MLCS cluster in layer 1 & 4

Please note that the threshold w is only needed if the edge
labels are continuous valued. If we have categorical labels
or the layer graphs are unlabeled, we can simply set w = 0.
Additionally, since two nodes connected by a single edge
trivially fulfill the definition, we only consider subgraphs
with at least 3 vertices as clusters.
Cluster property in subspaces of the multi-layer graph.
Next, we consider clusters located in subspaces of the layer
graph. Naturally, the vertex set of a multi-dimensional clus-
ter should fulfill the one-dimensional cluster property for all
of the dimensions in the subspace. This idea leads to some
important observations: If an edge (u, v) exists in one graph
layer, it does not automatically exist in another layer. Thus,
when we consider the same vertex set in different graph lay-
ers, the corresponding edge sets can differ from each other.
Thus, in our model, we ensure the density of the subgraph
for each layer individually. Formally,

Definition 4 (MLCS cluster). An MLCS cluster
C = (O,S) in a multi-layer graph G = {Gi | i ∈ Dim} con-
sists of a vertex set O ⊆ V and a non-empty set of relevant
layers S ⊆ Dim such that ∀i ∈ Dim : i ∈ S ⇔ O is an
MLCS cluster in the graph layer Gi.

The density of the cluster C = (O,S) is defined as

γS(O) = 1
|S|

∑
i∈S γGi(O)

Since the edge sets per layer may differ, also the cluster’s
density in each layer may vary. Thus, we define the density
of the cluster as the average density over all layers in the sub-
space. Note that in the case of unlabeled layer graphs, our
cluster model resembles the definition of cross-graph quasi-
cliques [17] or closed quasi-cliques [21].

In Fig. 1, the vertex set O = {b, c, d, e, f} forms an MLCS
cluster for w = 1 in the layers 1 and 4. In layer 2, O is not
a quasi-clique and in layer 3, the edge labels of E3(O) are
not similar, thus O does not form a cluster in these layers.

3.2 Clustering model
In the previous section we introduced the properties that

a vertex set has to fulfill to form an MLCS cluster. As mo-
tivated in the introduction, the clusters are allowed to over-
lap. However, just outputting all valid clusters can lead to
a large amount of valid clusters that are possibly very sim-
ilar to each other and thus contain redundant information.
An example (for simplicity without edge labels) is shown
in Fig. 2, where the clusters C2 and C3 highly overlap in
layer 1. Thus, the final clustering result should be a non-
redundant set of the “most interesting” clusters. This result
set is called the MLCS clustering.

As the “interestingness” of a cluster can be highly appli-
cation dependent, it is defined by a quality function Q(C),
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Figure 2: Overlapping clusters with given qualities
Q(C1) = 2.5, Q(C2) = 5 and Q(C3) = 5.3

which can be specified by the user. The default quality
function that was used in our experiments is introduced in
Section 3.3.

For the avoidance of redundancy, we first introduce a re-
dundancy relation. We define a cluster C to be redundant
w.r.t. a cluster C′ if a significant fraction of C’s edges is also
covered by C′ (thus, they represent similar information) and
the quality of C′ is not smaller than that of C. Formally,

Definition 5 (Redundancy relation).

A cluster C = (O,S) is redundant w.r.t. a cluster C′ =
(O′, S′) (short: C ≺red C′) if

C �= C′ ∧Q(C) ≤ Q(C ′) ∧ 1

|S|
∑

i∈S∩S′

|Ei(O) ∩ Ei(O
′)|

|Ei(O)| ≥ r

for the redundancy parameter r ∈ (0, 1].

In our experiments, r = 0.25 proved to be a good choice,
thus this is used as the default redundancy parameter. In
Fig. 2, the cluster C2 is redundant w.r.t. the cluster C3.
In contrast, C1 is not redundant w.r.t. C2. Although it’s
quality is lower, the edge overlap between the clusters is
below the threshold. Please note that two clusters with equal
quality might be pairwise redundant w.r.t. each other.

Based on this redundancy relation we now select the maxi-
mum-quality clustering Result from the set A of all valid
clusters. This clustering should not contain clusters that are
redundant w.r.t. each other and at the same time it should
maximize the sum of the qualities of the selected clusters:

Definition 6 (MLCS clustering).

Given a multi-layer graph G and the set A of all valid MLCS
clusters, the maximum-quality clustering Result ⊆ A fulfills:

• Redundancy-freeness: ¬∃C,C′ ∈ Result : C ≺red C′

• Maximum quality sum: ¬∃Result′ ⊆ A:
Result′ is redundancy-free and∑

C∈Result′ Q(C) >
∑

C∈Result Q(C).

In Fig. 2, the clustering solution would be {C1, C3}.
Complexity results. We briefly describe the main result of
our complexity analysis:

Theorem 1. Given a layer graph G over the vertices V ,
determining the MLCS clustering is NP-hard w.r.t. |V |.

Proof. We prove this theorem by a polynomial reduction
of the NP-hard k-clique problem (“Is there a clique with
at least k vertices”?) to the determination of an MLCS
clustering. Given a graph G = (V,E) and an integer k, we
can solve the k-clique problem as follows: Take G = {G1 =
(V,E, l1)} with l1(e) = 0 ∀e ∈ E as the input of the MLCS
clustering. As quality function for a cluster C = (O,S)

we choose Q(C) =

{
|O| |O| ≥ k ∧ γG1(O) = 1

−1 else
. Since the

MLCS clustering has maximum quality sum it contains only
the cliques (γG1(O) = 1) of the graph G with at least k
vertices. The answer to the k-clique problem is ’no’, if the
MLCS clustering is empty, and ’yes’, else. This proof can
even be extended to show the #P-hardness of MLCS.

3.3 Instantiation of our model
In this section we introduce a default cluster quality func-

tion for MLCS clusters. In most settings, clusters containing
many vertices are considered more interesting than smaller
ones. Therefore, approaches for mining quasi-cliques mostly
aim at finding maximal quasi-cliques w.r.t. the number of
vertices. However, just maximizing the number of vertices
in a cluster can lead to the detection of low-dimensional
clusters with low density. Thus, our quality function real-
izes a trade-off between the contradicting objective functions
size, dimensionality and density. Furthermore, we are not
interested in clusters that are too small (here: less than 8
vertices) or that are only one-dimensional. Thus, the quality
of a cluster C = (O,S) in our instantiation is defined as

Q(C) =

{
|O| · |S| · γS(O) |O| ≥ 8 ∧ |S| ≥ 2

−1 else

Clusters that are not considered interesting are assigned
a quality of -1 and will thus never be included in an MLCS
clustering, as they would lower the overall quality sum of
the clustering. As distance function for the edge labels we
use the Manhattan distance. In all experiments in Section
5, these instantiations are used. Though, our model and
the algorithm can easily be used with other instantiations,
which might be more applicable for some applications.

4. ALGORITHM
In this section we give an overview of the MiMAG (Mining

Multi-layered, Attributed Graphs) algorithm. Due to The-
orem 1, we cannot expect to find an efficient algorithm
computing an exact MLCS clustering. Thus, MiMAG com-
putes an approximate solution: Instead of determining a
redundancy-free clustering with maximum quality, we com-
pute a maximal, redundancy-free clustering with high qual-
ity. That is, we determine a clustering to which no further
cluster C with Q(C) > 0 can be added without violating the
redundancy-freeness property.

MiMAG is partly based on the Quick algorithm [12] for
finding quasi-cliques. In this algorithm, vertex sets O ⊆ V
are enumerated by a depth-first traversal in the set enumer-
ation tree [18].1 Each set visited by the depth-first traversal
is tested for the quasi-clique property. An exemplary tree
for a graph with three vertices is shown in Fig. 3 (top left).
Each node O is associated with a candidate set candO, which
contains all vertices that are ordered behind the vertices in
O in a given order ≺. A child node O′′ extends its parent
node O by adding one of the vertices from candO. Basi-
cally, the set enumeration tree contains all possible vertex
sets O ⊆ V . However, the search space can be reduced: If
O’s candidate set contains a vertex v that can never be part
of a quasi-clique O′ ⊃ O, we can delete v from the candi-
date set. For example, in Fig. 3 (top left) if the vertex v2 is
deleted from the candidate set of O, the subtree rooted at

1To avoid confusion, we use the term “vertex” for a vertex in
the original graph and the term “node” for the nodes of the set
enumeration tree, which represent sets of vertices.
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{ }O={v1}
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O''
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Set Enum. Tree for layer 1

O''

{v1,v2}

{v1,v2,v3}

{v2,v3}

S      ={1}{v3}

Set Enum. Tree for layer 2

Figure 3: Synchronizing set enumeration trees

{v1, v2} is pruned from the tree. Techniques how to detect
such vertices were introduced in [12].

Synchronized Tree Traversal. A naive approach to de-
termine the MLCS clustering would be: (1) use the quick
algorithm on each of the graph layers individually to find all
one-dimensional MLCS clusters2, (2) compose the resulting
patterns to multidimensional clusters, and (3) remove re-
dundant clusters. This naive, sequential approach, however,
is not suitable for the detection of the MLCS clustering: too
many (intermediate) patterns are generated which anyway
would not be included in the final result due to their redun-
dancy. Thus, we interweave all steps.

We first combine the steps (1)+(2) by proposing a “syn-
chronized traversal” of all set enumeration trees simultane-
ously, i.e. all instances of the tree perform the same order
of traversal. Trees in which a node O was pruned temporar-
ily pause their traversal. Another view on this synchronized
traversal is that we use an extended set enumeration tree (cf.
Fig. 3, bottom). In this tree, each node O has a set of ac-
tive dimensions SO (which represent the set of dimensions
in which the node O has not been pruned from the set enum.
tree) and candidate sets candO,i for each dimension i ∈ SO.
For each set O we visit during the traversal, we check if O
forms an MLCS cluster in a subset of its active dimensions.
Please do not confuse the active dimensions SO of a node
O and the subspace S of the potential cluster C = (O,S);
it holds S ⊆ SO but the sets are not necessarily equal. We
show in Sec. 4.1/4.2 how the set of active dimensions can be
used to prune the tree.

Informed Best-First Traversal. We now combine the
steps (1)-(3): Instead of first generating all clusters, we let
the final (redundancy-free) clustering grow incrementally.
Since we want to maximize the quality of the overall clus-
tering, we aim at generating the clusters in decreasing order
of their quality and adding the non-redundant clusters with
highest quality to the result first. In this case, it is crucial
to use a good traversal strategy for the extended set enum.
tree.3 Therefore, we propose an informed best-first traver-
sal: For each node O, we compute a quality estimation that
provides an upper bound for the maximal quality of any clus-

2Please note that for each layer we get a different set enum. tree
(cf. Fig. 3, top) as different subtrees might be pruned.
3If one is interested in generating all patterns, an arbitrary traver-
sal strategy can be used. We, however, want to determine only a
subset of the patterns (the non-redundant, high quality ones).

Algorithm 1 MiMAG: Best-first search for MLCS clusters

Require: ML-Graph G = {Gi | i ∈ Dim} with Gi = (V,Ei, li)
Ensure: Redundancy-free, maximal clustering Result
1: Result := ∅
2: queue := {(∅, Dim, {cand∅,i = V | i ∈ Dim}) }
3: while queue �= ∅ do
4: Obj := queue.pop()
5: if Obj is cluster C = (O,S) then
6: if ¬∃C′ ∈ Result : C ≺red C′ then Result.add(C)

7: else � Obj is ST = (O,SO, {candO,i | i ∈ SO})
8: neighbors :=

⋃
i∈SO

{v ∈ candO,i | ∃x∈O : (x, v)∈Ei}
9: u := argmaxv∈neighbors{

∑
i∈SO

degOGi
(v)}

10: expand(O,u, SO, {candO,i | i ∈ SO})
11: return Result
12: procedure expand(O,u, SO, {candO,i | i ∈ SO})
13: Onext := O ∪ {u}, SOnext := {i ∈ SO | u ∈ candO,i}
14: for all i ∈ SOnext do candOnext,i := candO,i \ {u}
15: Prune SOnext and candOnext,i (∀i ∈ SOnext )
16: STnext = (Onext, SOnext , {candOnext,i | i ∈ SOnext})
17: if Qest(STnext) ≥ 0 then queue.insert(STnext)

18: for all i ∈ SO do candO,i := candO,i \ {u}
19: Prune SO and candO,i (∀i ∈ SO)
20: STremain = (O,SO, {candO,i | i ∈ SO})
21: if Qest(STremain) ≥ 0 then queue.insert(STremain)

22: if ∃ cluster C = (Onext, S), S ⊆ SOnext then
23: if ¬∃C′ ∈ Result : C ≺red C′ then queue.insert(C)

ter that can be found in the subtree rooted at O. We start
the traversal at the root node and in each search step we ex-
pand the node O having the highest estimated quality (i.e.
MiMAG descends one step into the subtree rooted at O).

One important aspect has to be considered: Even if a clus-
ter C is found at the currently expanded node, it can not
be added to the result directly. Since the quality estimation
upper bounds the quality of the subtree, C itself might have
a lower quality. Thus, there might exist other subtrees (and
potential clusters) with higher (estimated) qualities. There-
fore, MiMAG maintains a priority queue which contains the
set of subtrees that are still to process (similar to the list
OPEN in best-first search) as well as the set of already de-
tected clusters that could not be added to the result so far.
This queue is sorted by the (estimated) quality values of the
subtrees and clusters. If the first element of the queue is
a cluster, no better clusters exist; in this case (and if the
cluster is non-redundant to previously selected clusters), we
can finally add it to the result set.

In the queue, a subtree (short: ST ) is represented by a
3-tuple ST = (O,SO, {candO,i | i ∈ SO}) where O is the
vertex set in the root node of ST , SO is the set of active di-
mensions forO and candO,i are the candidate sets. Qest(ST )
denotes the upper bound for the quality of clusters of this
subtree. We discuss these upper bounds in Sec. 4.1.

Overall Processing Scheme. The processing of MiMAG
is shown in Algorithm 1. Given the input multi-layer graph
G, MiMAG computes a redundancy-free, maximal clustering
Result. Initially, the set Result is empty (line 1); it will be
iteratively filled during the processing. At the beginning, the
queue contains one element which represents the root node
of the extended set enum. tree (line 2). As long as the queue
contains elements, the object with the highest (estimated)
quality is taken from the queue. If the object is a cluster,
no cluster with higher quality can be found anymore, thus
we add it to the result set if it is not redundant w.r.t. an
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Figure 4: Expansion of a node O

already selected cluster (line 6). If the object is a subtree,
we expand the represented set O by one neighboring vertex
u that is contained in the candidate sets; we use the vertex
having the highest degree w.r.t. O since it most probably
leads to dense subgraphs.

The node expansion is illustrated in Fig. 4, where u =
v5. MiMAG calls the EXPAND procedure for the sub-
tree rooted at O. In this procedure, at first the sets Onext,
SOnext and the candidate sets candOnext,i are determined.
SOnext can only contain dimensions i for which vertex u was
contained in the candidate set candO,i (line 13). The candi-
date sets are reduced using pruning techniques (cf. Section
4.2). These sets represent the new subtree STnext rooted at
Onext, and it is added to the queue if the estimated qual-
ity is non-negative (lines 16,17). Similar steps are done for
the remaining subtree STremain rooted at O (lines 20,21),
which contains the sets O′ ⊃ O with u /∈ O′ (cf. Fig. 4).
Note that we get a new quality estimate, since u is removed
from the candidate sets candO,i. Finally, if Onext is a valid
(non-redundant) cluster it is also added to the queue.

4.1 Quality Bounds for Subtrees
In the following, we present upper bounds for the quality

of subtrees (all proofs are available on our website4). Even
by allowing arbitrary quality functions, we can derive some
generally applicable bounds. First, we exploit the fact that
in some cases the subtree does not contain any interesting
cluster at all; the quality can be upper bounded by -1.

The first case uses the active dimensions: If no active di-
mensions are left in the node O, we know that there cannot
exist any valid cluster in the subtree rooted at O. This
result holds since a cluster’s subspace is a subset of the ac-
tive dimensions and the active dimensions fulfill the anti-
monotonicity property5: If a dimension i is not active for
the set O, then there cannot exist a superset O′ ⊃ O such
that i is active for O′.

In the second case, we exploit our redundancy model to
determine the bound: If all clusters C contained in sub-
tree ST (i.e. clusters C = (X,SX) with SX ⊆ SO and
O ⊂ X ⊆ O ∪

⋃
i∈SO

candO,i) would be redundant w.r.t.

a cluster C′ ∈ Result we cannot add them to the final clus-
tering. Thus, even if their quality is larger than 0, we can
safely estimate the subtree’s quality with -1. To check the
redundancy w.r.t. a cluster C′ = (O′, S′) ∈ Result, we have
to check the properties from Def. 5. The properties C �= C′

and Q(C) ≤ Q(C′) are trivially fulfilled for every possible C
due to the ordering of the queue; just the edge overlap prop-

erty ( 1
|SX |

∑
i∈SX∩S′

|Ei(X)∩Ei(O
′)|

|Ei(X)| ≥ r) has to be checked.

Therefore, we determine a lower bound ovlmin for the edge

4http://dme.rwth-aachen.de/mlcs
5Note: This property does not hold for the cluster model itself
(neither for the set of vertices nor for the relevant dimensions).

overlap such that ovlmin ≤ 1
|SX |

∑
i∈SX∩S′

|Ei(X)∩Ei(O
′)|

|Ei(X)| for

all possible clusters C from the subtree . Then, if ovlmin ≥ r
we getQest(ST ) = −1. For every subtree ST and every clus-
ter C′ = (O′, S′) ∈ Result with S′ ⊇ SO we get:

ovlmin = min
i∈SO

|Ei(O∩O′)|+max{ 1
4
·(|O|2+|O|)−|Ei(O∩O′)|−k,0}

|Ei(O∩O′)|+k+max{ 1
4
·(|O|2+|O|)−|Ei(O∩O′)|−k,0}

with k = |Ei(O ∪ candO,i)\Ei((O ∪ candO,i) ∩O′)|

For example, in the case O′ ⊇ O ∪
⋃

i∈SO
candO,i we get

ovlmin = 1 and thus Qest(ST ) = −1.
Upper bounding cluster properties. Useful properties

to incorporate in quality functions are the density and car-
dinality of clusters. Thus, we develop upper bounds for
these cluster properties that can be used for specific in-
stantiations of the quality function. Given a subtree ST =
(O,SO, {candO,i | i ∈ SO}), for each one-dimensional MLCS
cluster X in dimension i ∈ SO with O ⊂ X ⊆ O ∪ candO,i

the following bounds apply:

• γ(X) ≤ min{min degi
|O| , 1} =: γmax

i with

min degGi = minv∈O{degO∪candO,i(v)}

• |X| ≤ min(
⌊

min degi
0.5

⌋
+ 1, |O ∪ candO,i|) =: nmax

i

• |Ei(X)| ≤ |Ei(O)|+(nmax
i −|O|)· max

v∈candO
{degO∪candO,i

Gi
(v)}

Furthermore, we have for each multi-dimensional MLCS clus-
ter (X,SX): |SX | ≤ |SO| due to the anti-monotonicity of the
active dimensions.

Specific instantiation. We can use the above bounds for
our default instantiation of the quality function: the quality
of the subtree ST is upper bounded by

Qest(ST ) = max
k∈{1,...,|SO|}

{
maxk(n

max
i ) ·

k∑
m=1

maxm(γmax
i )

}
where maxx(yi) denotes the x-th highest value of all {yi |
i ∈ SO}. Furthermore, if we have maxi∈SO (nmax

i ) < 8 or
|SO| < 2, the subtree can not contain any cluster with pos-
itive quality; in this case, the estimation is Qest(ST ) = −1.

4.2 Pruning Techniques
MiMAG exploits the introduced quality bounds twofold:

first, to realize the best-first traversal using a priority queue;
and second, to prune the search space if the estimate is nega-
tive (lines 17, 21). To further enhance the efficiency, MiMAG
exploits pruning techniques for the set of active dimensions
and the candidate sets (lines 15, 19).

One example is the pruning by edge similarity : Due to
Def. 3, a one-dim. MLCS cluster (O,S) must only contain
edges with similar labels. Thus, if the set Ei(O) contains any
two edges with label distance greater than w, O (and also
all supersets O′ ⊃ O) cannot be a valid cluster. We use this
property to prune the candidate sets candO,i as follows: If
for a vertex v ∈ candO,i it holds that E

′ = Ei(O)∪{(v, o) ∈
Ei | o ∈ O} does not fulfill the similarity property, we can
remove v from candO,i as no set O′ ⊇ O ∪ {v} could form
an MLCS cluster in dimension i.

Deleting a vertex from a candidate set can change prop-
erties (e.g. the degree) of other vertices from the set, thus
we prune the sets iteratively until no more vertices can be
deleted. If after the pruning we have candO,i = ∅ for a di-
mension i, i becomes inactive and can thus be removed from
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Figure 5: Experimental evaluation on synthetic datasets (1)

SO. More pruning techniques are left out here due to space
limitations. Besides the pruning techniques developed espe-
cially for the MLCS model, MiMAG also uses the pruning
techniques from the Quick algorithm [12].

5. EXPERIMENTAL EVALUATION
We evaluate the clustering quality and runtime of MiMAG

experimentally on synthetic and real-world datasets. All ex-
periments were conducted on Opteron 2.3 GHz CPU’s using
Java6 64bit. For the synthetic data, the clustering qual-
ity is determined by comparing the clustering results to the
ground truth using the E4SC measure, which was developed
for the evaluation of subspace clustering results [5]. For
the real-world datasets, there is no ground truth available,
which hinders an evaluation of the clustering quality. Thus,
for those datasets we provide some key characteristics of the
clustering results as well as exemplary clusters to illustrate
the results of MiMAG. If not specified otherwise, the redun-
dancy parameter r is set to r = 0.25 for all experiments.

Baseline approaches. We compare MiMAGwith 3 base-
line approaches: The closed quasi-clique mining algorithm
Cocain [21] (cf. Section 2) is used on our input graph by
considering each of the graph layers as a graph in a graph
database. To best match our cluster model, the minimum
support parameter of Cocain is set to min sup = 1

|Dim| and

the minimum quasi-clique density to γmin = 0.5.
Furthermore, we present two different ideas to adapt the

GAMer algorithm [7], developed for clustering graphs with
vertex labels, to our problem. Both ideas transform the
multi-layer graph covering Dim layers to a graph with Dim-
dimensional attribute vectors at the vertices. The resulting
graph can then be clustered by GAMer. In the first idea
(GAMer-avg), the transformed graph is obtained as follows:
the vertices of the original graph are kept; the edges are
determined by the union of the edge sets from all graph
layers (i.e. E =

⋃
Ei; the edge labels are deleted). The i-th

entry of a vertex v’s attribute vector is the average label
value of v’s incident edges from layer i. In the second idea
(GAMer-lg) we use the well-known concept of the line graph
[8]. Each vertex of a line graph represents an edge of the
original graph and vice versa. In our case, a line graph
vertex vlg = (v1, v2) represents all the edges (v1, v2) from
the different layers. The i-th entry of vlg’s attribute vector
corresponds to the label value li(v1, v2), if (v1, v2) ∈ Ei and
⊥, else (where ⊥ is considered not similar to any value).

5.1 Evaluation on synthetic graphs
For the evaluation of MiMAG, we generated various syn-

thetic multi-layer graphs with edge labels containing over-

lapping MLCS clusters as well as “noise”vertices and“noise”
edges that do not belong to any cluster. The generated edge
labels lie in the range [0, 1]. In our experiments, the param-
eter w for MiMAG (and also the corresponding parameter
for GAMer) is set to w = 0.1.

Results for varying graph sizes. First, we analyze the
behavior of the approaches for varying graph sizes. The gen-
erated graphs consist of 10 layers, the number of generated
(“hidden”) clusters increases linearly from 10 to 300. Each
cluster contains 10 vertices and 3 relevant layers, with quasi-
clique densities of 0.6. 10% of the vertices in the graph are
noise vertices and in each layer we have 60 noise edges.

Although the runtimes of all approaches (cf. Fig. 5(a)) in-
crease with increasing graph sizes, MiMAG constantly shows
the lowest runtimes. Considering the clustering quality (cf.
Fig. 5(b)), MiMAG reaches perfect or nearly perfect E4SC
values on all datasets. The number of detected clusters
(Fig. 5(c)) matches the number of hidden clusters. Cocain
also achieves quite good quality values (ca. 0.8 to 0.9), as
the closed quasi-clique model is closely related to our MLCS
model. However, Cocain outputs a huge amount of quasi-
cliques (e.g. nearly 2000 instead of the hidden 300 clusters)
because it does not avoid redundancy in the result. This
also explains the high runtimes of Cocain. For GAMer-avg,
the number of detected clusters approximately matches the
number of hidden clusters. However, the clustering quality
is significantly lower as MiMAG’s as the averaged label val-
ues distort the cluster structure. For GAMer-lg the number
of found clusters varies very much and the clustering quality
is low. This is caused by an important problem with the line
graph approach: from the density of a subgraph in the line
graph, it is not possible to draw conclusions about the den-
sity of the corresponding original subgraph, which hinders
the detection of dense subgraphs in the original graph.

Results for varying dimensionality. Next, we analyze
the behavior of the different approaches for varying dimen-
sionalities (i.e. varying numbers of graph layers) of the input
graph. The number of graph layers varies between 5 and 50.
The generated multi-layer graphs each contain 30 clusters,
each having 10 vertices and 3 relevant layers, with quasi-
clique densities of 0.6. Again, we have 10% noise vertices
and 60 noise edges per layer.

Comparing the runtimes and clustering qualities of the ap-
proaches (Fig. 6(a) and Fig. 6(b)), we observe that MiMAG
again achieves the lowest runtime and highest quality. For
most approaches, the runtime and the clustering quality re-
main relatively stable for increasing dimensionality. Just for
GAMer-avg the runtime significantly increases, while the
E4SC values dramatically drop. This is caused by the graph
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Figure 6: Experimental evaluation on synthetic datasets (2)

transformation: As the edges of the transformed graph are
the union of the edge sets from all graph layers, by combining
an increasing number of graph layers the transformed graph
gets very dense, such for high dimensionalities GAMer-avg
detects many clusters that do not exist in the original graph.

Results for varying redundancy parameter. In Fig.
6(c), we analyze how the redundancy parameter r of our
clustering model affects the results of MiMAG, using a graph
with 10 layers and 100 hidden clusters; the cluster size varies
between 10 and 15. We observe that for r < 0.5, the correct
number of clusters is found with a high clustering quality.
For r ≥ 0.5, the number of found clusters increases dramati-
cally and the clustering quality drops. For high values for r,
less clusters are considered redundant w.r.t. other clusters,
which leads to a clustering that contains many low-quality
clusters that would be considered redundant for lower r val-
ues. Thus, we propose using r = 0.25 as a reasonable default
setting for r.

5.2 Evaluation on real-world data
Besides synthetic graphs, we also evaluate our approach

on three real-world datasets: The first one is a multi-layer
graph with edge labels extracted from the IMDB movie
Database6. In this graph, the vertices represent actors; the
labeled edges represent information about movies in which
the actors worked together. The four layers of the graph
are: 1. “First year of collaboration”, 2. “Last year of collab-
oration”, 3. “Rental fees” (the average earnings of all joint
movies between two actors), 4. “Sold tickets” (the average
number of sold tickets of all joint movies between two ac-
tors). All label values were normalized to the range [0, 1],
and we used w = 0.03 for this experiment. In this special
case, the same edge sets exist in all layers; though, the edge
labels differ. Overall, the IMDB graph contains 300 vertices
(the most prolific actors) and 18368 edges. An exemplary
cluster from MiMAG’s clustering result is shown in Fig. 7.
Please note that the cluster does not form a clique (its quasi-
clique density is 0.625), thus not all actors worked together
in the same movie. Actually, all actors connected by an

6http://imdb.com

Relevant layers:
- First year of coll.
(1996-1997)
- Rental fees
(45.5M – 72.5M $) 
- Sold tickets
(3.9M – 6.3M)

Figure 7: Exemplary cluster from IMDB

edge worked together (among other movies) in the movie
“Con Air” or “The Rock” (or both).

In our next experiment, we evaluate the potential of our
approach to handle also multi-layer graphs without edge la-
bels. The second dataset was constructed from an extract
of the Arxiv publication database7. Here, each vertex repre-
sents a publication. From the abstracts of the publications,
we extracted the 300 most common keywords. Each layer of
the graph represents a certain keyword, and an edge of layer
i represents a citation between two publications with the
common topic i. Overall, the Arxiv graph contains 13396
vertices and 673800 edges. For example, the largest clus-
ter found by MiMAG consists of 19 papers from the field
of string theory. The 7 relevant layers of this cluster corre-
spond to the keywords given in Fig 8:

symmetry model supersymmetric intersect
brane super metric

Figure 8: Keywords for a cluster from Arxiv

Our third real-world dataset is a co-author graph extract-
ed from the DBLP database8. In this graph, the vertices
represent authors and the layers represent the 50 conferences
in computer science having the most publications. Two au-
thors are connected by an edge in layer i if they co-authored
at least two papers that were published at the correspond-
ing conference. Overall, the DBLP graph contains 17291
vertices and 22896 edges. As we expect co-author groups to
be rather small, for this experiment we adapted our quality
function to consider clusters with at least 4 vertices as in-
teresting. Fig. 7 shows three exemplary clusters detected by
MiMAG and their corresponding conferences. Please note
that each of the clusters has different relevant layers. While
two of the clusters form cliques in both of their layers, in
the top right cluster the edge sets of the layers differ.

Clustering results on real-world datasets. In Table 1,
we summarize key characteristics of the clustering results of
the different approaches on the real-world datasets. Exper-
iments that did not finish within 2 days were aborted. For
each approach and dataset we provide the runtime as well as
the average number of vertices, density and number of layers
of the found clusters. Note that for the adaptions of GAMer,
the density and subspace are determined on the correspond-
ing transformed graphs (whose densities are generally higher
than in the original graph); the clusters do not correspond
to MLCS clusters in the original multi-layer graphs.

7http://www.cs.cornell.edu/projects/kddcup/datasets.html
8http://dblp.uni-trier.de
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Figure 9: Exemplary clusters from DBLP

Cocain did not finish on any of the datasets within 2 days;
GAMer-lg finished only on the DBLP graph, however with a
much higher runtime than the other approaches due to the
size of the constructed line graph. MiMAG and GAMer-avg
have similar runtimes for all datasets. On the IMDB graph,
MiMAG detects clusters with a significantly higher average
density and dimensionality than GAMer-avg. On Arxiv, the
density of GAMer-avg’s clusters is slightly higher, which is
caused by the fact that GAMer-avg unions the edge sets
from all 300 layers and thus obtains a very dense graph.
On DBLP, the clusters detected by MiMAG again show the
highest average density, while having similar average size
and dimensionality to the other approaches.
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runtime [sec] 22 26 623 661 6 9 2390
avg(|O|) 9.42 9.17 13.6 15.0 4.28 4.48 6.29
avg(γS) 0.94 0.64* 0.62 0.65* 0.87 0.40* 0.81*
avg(|S|) 2.58 2.00 9.00 9.00 2.05 2.17 2.01

Table 1: Key characteristics of the clustering results
(* density in the transformed graph)

6. CONCLUSION
We proposed the new paradigm of clustering multi-layer

graphs with edge labels. Besides the mere graph data, addi-
tional information about the edges is considered for finding
coherent subgraphs. We introduced the clustering model
MLCS, which defines clusters of vertices that are densely
connected by edges with similar edge labels in a subset of
the graph layers. Redundancy in the result set is avoided
by selecting only the most interesting clusters. Based on
this model, we introduced the efficient best-first search al-
gorithm MiMAG. The performance and clustering quality of
MiMAG were demonstrated in our experimental analysis.
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