
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 2938

Three-Dimensional Spatial Join Count Exploiting
CPU Optimized STR R-Tree

Ryuya Mitsuhashi∗, Hideyuki Kawashima†, Takahiro Nishimichi‡, Osamu Tatebe†
∗Graduate School of Systems and Information Engineering, University of Tsukuba

Email: mitsuhashi@hpcs.cs.tsukuba.ac.jp
†Center for Computational Sciences, University of Tsukuba

Email: {kawasima,tatebe}@cs.tsukuba.ac.jp
‡ Kavli Institute for the Physics and Mathematics of the Universe

Email: takahiro.nishimichi@ipmu.jp

Abstract—In this study, we attempt to address the issue
regarding the spatial join count, where in the number of particles
around a halo is counted only once for a given simulation result.
An efficient spatial index is necessary for accelerated counting;
therefore, we propose a CPU optimized sort-tile-recursive R-
tree that employs a parallel radix sort and node packing with
thread pool and single instruction multiple data instructions. In
an experiment conducted with astronomical data, the proposed
method demonstrates an improvement in performance by 26.8
times compared with that using a conventional CPU optimized
R-tree. We also propose a partial materialization approach to
handle large amount of data that exceeds the capacity of main
memory. To accelerate the approach, we propose a construct-
search-destruct pipeline that exploits a thread pool to conceal
the latency of the construction and destruction of the index. The
pipelining method achieves an improvement in performance by
27.5 times compared with that of a conventional CPU optimized
R-tree. All our codes are available on GitHub.

Keywords-Spatial join count, STR R-tree, Periodic boundary
condition, SIMD

I. Introduction

A. Spatial Join Count over Shells

Spatial join [1] is an important query used in a number

of fields such as astronomy, neuroscience, and geology. For

example, in astronomy the spatial join appears in queries for

identifying stars [2], finding close celestial bodies [3], and

counting neighboring astronomical objects [4]. For a spatial

join on two relations R and S containing spatial objects, if the

distance between an object from R and that of another object

from S is less than a predefined threshold, such a pair of

objects is included in the join result. The cost of the spatial join

is O(MN) when R and S contain M and N objects respectively.

In astronomy, a number of simulations are conducted to

analyze the state of the universe [5][6] and find an unknown

or a rare phenomenon. Spatial join is frequently used in such

analysis. In this study, we focus on a variant of the spatial join

count in proposed by Taruya et al. [4].

This type of spatial joint count involves counting the number

of particles in each shell of a three-dimensional Euclidean

space. Each shell has a halo at its center. The halo is a celestial

sphere-like object, represented by its center point. Only the

object ID and point information are required in this workload.

Fig. 1. SJCS. Red and blue points represent particles and halos, respectively.
Circles spreading out from the blue points are shells.

SELECT SH1.id, SH1.count, SH2.count, SH3.count
FROM (SELECT HALO.id, COUNT(*) FROM HALO, PART

WHERE distance(HALO.p, PART.p) < THRESHOLD1
GROUP BY HALO.id) AS SH1,
(SELECT HALO.id, COUNT(*) FROM HALO, PART
WHERE distance(HALO.p, PART.p) >= THRESHOLD1
AND distance(HALO.p, PART.p) < THRESHOLD2

GROUP BY HALO.id) AS SH2,
(SELECT HALO.id, COUNT(*) FROM HALO, PART
WHERE distance(HALO.p, PART.p) >= THRESHOLD2
AND distance(HALO.p, PART.p) < THRESHOLD3

GROUP BY HALO.id) AS SH3

Fig. 2. SQL query for SJCS

Figure 1 represents an overview of this workload, and Fig.

2 shows a structured query language (SQL) query for this

workload, referred to as spatial join count over shells (SJCS)

in this study.

B. Problems with SJCS

The query shown in Fig. 2 is inefficient because it contains

many relational joins. These joins can be merged into a single

join that can be processed naturally in the following three

steps. First, we construct an index for particles in a simulation

result. Second, for each halo, we find the largest shell using a

range search within the index. Finally, we count the number of

particles in each shell. In this approach, we need to consider

the following two problems.

1) Expensive index construction:

2939

The index cannot be constructed in advance because

SJCS is executed only once and is applied immediately

after the simulation data are generated. Therefore, we

require a fast search index that can be constructed in a

computationally inexpensive manner.

2) Large data exceeding memory capacity:

Coordinates of only particle data are required to con-

struct the index. However, the number of particles is

large (8 × 109), making the size of the index greater

than 180 GB.

It is difficult to maintain such a large index in the main

memory; hence, multiple storage accesses are required.

However, this reduces performance because a number

of write and read accesses occur during the index

construction phase and search phase, respectively.

C. Contributions

We propose a CPU-optimized sort-tile-recursive R-tree

(CoSTR-R-tree) that dramatically accelerates the SJCS work-

load. Note that all codes are available on GitHub [7]. The

proposed method solves the above problems as follows.

1) Parallel index construction: In the SJCS workload, the

number of dimensions for astronomical objects is three.

That is, the positions of the halos and the particles are

represented by x, y and z coordinates. In such low-

dimensional space, we can exploit R-tree variants effec-

tively without encountering the curse of dimensionality.

Thus, we are able to accelerate the STR R-tree [8], and

achieve an improvement in performance by 26.8 times
with a small SJCS workload (Section V).

The STR R-tree construction consists of a sort and

pack phases. We employ an efficient parallel radix sort

[9], which is a CPU cache-conscious multi-threaded

O(N) sorting technique, to accelerate the sort phase. We

parallelize the pack phase with multi-threading and Intel

Streaming SIMD Extensions (SSE) intrinsics (mm min

and mm max). In addition, we employ thread pool

pattern construction to reduce the overheads of thread-

forking and thread-joining.

2) Partial Materialization:

To solve the memory shortage problem, we adopt a

partial materialization approach that divides particle data

into multiple segments and then applies the SJSC to

each segment repeatedly. To accelerate this approach,

we propose a construct-search-destruct (CSD) pipeline.

The pipeline exploits the thread pool to conceal the

latency of the construction and destruction of the index.

The pipelining method with a CoSTR-R-tree achieves

an improvement in performance by 27.5 times (Section

VI).

D. Organization

The remainder of this paper is organized as follows. Section

II describes related work. In Section III, we present the

CoSTR-R-tree and describe its concept, design, and implemen-

tation. Section IV describes the details of the SJCS workload,

including the periodic boundary condition. Section V presents

a performance evaluation of the CoSTR-R-tree with an SJCS

workload with real data and uniformly randomly generated

data compared with a CPU-optimized R-tree (CoR-tree). In

Section VI, we present and evaluate partial materialization

for large-scale particle data that exceed memory capacity.

Conclusions are given in Section VII.

II. RelatedWork

A. R-Tree and its Variants

An R-tree [10] is a tree shaped index that can be used to

search spatial objects efficiently. In this paper, we treat three-

dimensional data; therefore, we do not require indices for high-

dimensional data, such as an SS-tree [11], an SR-tree [12], an

A-tree [13], an X-tree [14], a VA-File [15], or a VA+-File

[16]. R-tree variants are sufficient for our purposes.

The R-Tree structure has been studied relative to perfor-

mance improvement. The node splitting principal of the R-

tree minimizes the area of split nodes. It does not consider

overlap between nodes; therefore, performance deteriorates

depending on the data distribution. The R*-tree [17] was

designed to solve this problem. The R*-tree minimizes the

overlap between nodes and the area of nodes. The search

performance of the R*-tree is more efficient than that of an

R-tree.

Typically, the R-tree and the R*-tree are dynamic structure,

i.e., they change their shape relative to data insertions or

deletions. However, R-trees can also be constructed in a static

manner. A static R-tree index loads all data simultaneously.

The time required to construct an index is much less than

that required by dynamic variants.

The Packed R-tree [18] is the simplest statically structured

R-tree. It takes only the x-coordinate; therefore, it shows poor

search performance. The Hilbert Packed R-tree [19] uses the

Hilbert value (value of a space-filling curve) of its centroid

to sort records. It shows better performance than the Packed

R-tree and the R*-tree. The STR R-tree [8] is an improved

version of the Packed R-tree. It sorts data from first to last

coordinates recursively. It was reported that the STR-R-tree

outperforms the Hilbert Packed R-tree in most cases [8].

B. STR R-Tree

STR divides records into tiles (groups of records) and

sorts recursively for each dimension. We briefly describe the

construction procedure in the following.

1) Input records: Let the number of children in a node

be C, the number of records be N, and the dimension

of data be D. In the STR R-tree, D times sorts are

performed recursively.

2) Sorting tiles: Records are sorted by the (D− k)-th axis,

where k is the number of remaining sorts and initialized

by D. Note that the axis number starts at 0. If k is equal

to 0, proceed to step 4.

3) Recursive sort: The sorted records are divided into

��N/C�1/k� tiles. Each tile has C��N/C�(k−1)/k� records.

2940

Let k be k − 1. Step 2 is applied to the records in each

tile.

4) Pack nodes: Records are divided into �N/C� groups.

Parent nodes are created from those groups. Let the

number of records N be �N/C�. If N is greater than C,

repeat step 2 onwards with the parent nodes. Otherwise,

create the root node and terminate this procedure.

Although a GPU optimized STR R-tree has been proposed

by Simin, et al. [20], to the best of our knowledge, a CPU

optimized version has not yet been proposed.

III. Three-Dimensional CPU-Optimized STR R-Tree

As described above, construction of the STR R-tree consists

of sort and pack phases.

The sort phase sorts records recursively to minimize over-

laps between nodes and the pack phase packs records and

creates the parent nodes of the records.

R-tree variants variant searches involve tree traversal and

determining if an object exists within a query range (Section

II-A). These procedures have significant parallelisms. This

section explains how we optimize these procedures.

A. Parallel Construction

1) Overview of Construction: The sort phase is the primary

process in index construction. For practical applications, sort-

ing must be executed quickly. The pack phase can also be

parallelized because each relation between a parent node and

its child nodes is independent of each other. To parallelize

the pack phase, each thread obtains C nodes from an array

of nodes and the destination index of the array and then

creates the parent node at the destination. When a parent node

is created, its minimum bounding rectangle (MBR), which

encloses all its child nodes, is set. In this process, we can

use SSE intrinsics, mm min and mm max, to obtain the

minimum and maximum values for each coordinate.

In the construction of the three-dimensional CoSTR-R-tree,

there are iterations of three parallel sorts and one parallel node

packing. If we use the fork and join thread model, there are

four forks and four joins per iteration. To avoid overhead, we

use a thread pool mechanism. In the parallel radix sort, worker

threads are symmetric, i.e., all threads do the same work. The

same can be said for parallel node packing. Based on these

facts, we employ a uniform thread pool. With a uniform

thread pool, a single request is processed by all threads in the

pool, i.e., there is no work request queue. This eliminates the

overhead associated with managing a work request queue, thus

improving performance.

2) Details of Construction: The CoSTR-R-tree is mapped

on a single in-memory array, which facilitates easy paralleliza-

tion of the construction. To allocate an array that can contain

the entire index, it is necessary to calculate the number of

nodes required in advance. Here, let the number of records

be N, the maximum number of children a node can hold be

C and the total number of required nodes be M. M can be

calculated as follows.

Fig. 3. Recursive sort implementation (numbers in the boxes represent x and
y coordinates).

Pn+1 = �Pn/C� · · · (P0 = N) ,M =
�logC N�∑

k=0

Pk (1)

Algorithm 1 shows the CoSTR-R-tree construction proce-

dure.

1) Input records: Let the number of input records be N,

and the number of child nodes in a node be C (Algorithm

1, lines 2 and 3, respectively).

2) Create leaf nodes: We calculate the total number of

nodes M and allocate the array of M nodes. Then, we

create N leaf nodes from the input records and place

them into the array (Algorithm 1, lines 6-8).

3) Sort by first axis (parallel): Previously generated nodes

are sorted by the first axis using parallel radix sort

(Algorithm 1, line 12). Note that this single sort is

parallelized.

4) Sort by second axis and third axes (parallel): Sorted

nodes are divided into �N/C�1/3 tiles (Algorithm 1, line

14). Nodes in each tile are sorted by the second axis

using a radix sort. Note that multiple sorts are performed

simultaneously. Then, the sorted nodes in each tile are

divided into �N/C�1/2 sub-tiles, and sorted by the third

axis with a radix sort (Algorithm 1, at line 16).

5) Pack nodes and tree growth (parallel):
Sorted nodes are divided into �N/C� groups (Algorithm

1, line 18). Each thread is provided with a group and the

destination offset of the array to write the parent node.

Then they create the parent node from the group and

write it to the destination.

6) Repeat: Let the number of records N be �N/C�. If N is

1, create the root node, then terminate the construction.

Otherwise, let the parent nodes generated in the previous

step be the new input. Then, repeat step 3 onwards.

Note that parallel radix sort is used in step 3; however, it

is not used in step 4. Figure 3 illustrates how we implement

these sorts. In the upper part of Fig. 3, a parallel radix sort

is applied to the first sort, while in the lower part, the second

2941

Algorithm 1 CoSTR-R-tree construction

1: A[]← array of data
2: N ← number of data
3: C ← max number of children in a node
4: T ← thread pool
5: function main(A,N,C,T)
6: M ← calculate total number of nodes from N
7: allocate array of nodes NA[M]
8: create leaf nodes from A[] and put them into NA[M − N] to

NA[M − 1]
9: NP← pointer to NA[M − N]

10: while N > C do
11: {parallel radix sort by first axis using thread pool T }
12: ParallelRadixS ort(NP,N, 0,T)
13: {tile-by-tile radix sort by second axis using thread pool T }
14: RadixS ortT ileByTile(NP,N, 1, �N/C�2/3 ×C,N,T)
15: {tile-by-tile radix sort by third axis using thread pool T }
16: RadixS ortT ileByTile(NP,N, 2, �N/C�1/2 × C, �N/C�2/3 ×

C,T)
17: {parallel node packing using thread pool T }
18: ParallelPackNodes(NP,N,C,T)
19: NP← NP − �N/C�
20: N ← �N/C�
21: end while
22: {pack nodes and create the root node}
23: PackChildNodes({NA[1], ...,NA[N]},NA[0])
24: end function

sort is performed concurrently using a tile-by-tile radix sort by

assigning a thread to each tile. A parallel radix sort is not used

for the second and third sort due to thread synchronization

overhead. For example, if N = 108 and C = 10, there are

�N/C�1/3 = 216 tiles in the second axis sort. Each tile has

�N/C�2/3 × C = 464160 nodes1. Applying parallel radix sort

to each tile would require 216 parallel radix sorts. This is

inefficient because parallel radix sort has thread barriers; thus,

the total number of thread barriers becomes at least 512.

Algorithm 2 shows tile-by-tile multi-threaded radix sort that

corresponds to step 4. Each thread gets the tile on which

they perform the sort (Algorithm 2, lines 11-22). Note that

the nodes in the tile are sorted (Algorithm 2, line 25).

Algorithm 3 shows multi-threaded node packing that cor-

responds to step 5. Each thread obtains the destination offset

of the array for writing the parent node (Algorithm 3, line 9-

10)). Each thread obtains the group to be the children of the

parent node (Algorithm 3, line 12-20). This divides the nodes

into �N/C� groups. Note that each group has C nodes. Then,

we create the parent nodes for these groups (Algorithm 3, line

23).

Algorithm 4 shows node packing used in Algorithms 1 and

3 that creates a parent node. The MBR of the parent node is

created (Algorithm 4, lines 5-10). To find the lowest coordinate

and the highest coordinate from the child nodes’ MBR,

mm min and mm max are used, respectively (Algorithm 4,

lines 8-9). They are SSE intrinsics that obtain the minimum

and maximum values for each element from the two vectors,

respectively.

1The last tile may have fewer nodes than this.

Algorithm 2 Tile-by-tile sorting

1: NP← pointer to array of nodes
2: NN ← number of nodes
3: K ← axis number
4: W ← number of elements in a tile
5: M ← number of elements in a tile of K − 1th axis
6: T ← thread pool
7: function RadixS ortT ileByTile(NP,NN,K,W,M,T)
8: # begin parallel by T , share: n← 0
9: while all tiles have not been sorted do

10: {get the range of tile for this thread}
11: s← n {n is locked here}
12: if s ≥ NN then
13: {all tiles have been sorted, unlock n}
14: return to thread pool T
15: end if
16: e← s +W − 1
17: {fix the end of tile region}
18: if e ≥ NN then
19: e← NN − 1
20: else if there is multiple of W in s, ..., e then
21: e← (multiple of W that does not exceed e) −1
22: end if
23: n← e + 1 {n is unlocked here}
24: {radix sort tile by Kth axis}
25: RadixS ort({NP[s], ...,NP[e]}, e − s + 1,K)
26: end while
27: # end parallel by T
28: end function

B. Parallel Range Search in Spatial Join

1) Overview of Search: This subsection explains how we

apply the CoSTR-R-tree to the spatial join. Since there are

many overlap checks and distance calculations in the search,

SIMD instructions can be effective. Furthermore, there is

search parallelism in spatial joins, one side of the data is

indexed and the other side of the data becomes the search keys.

These searches are independent of other searches; therefore,

it is easy to parallelize searches with multi-threading.

2) Details of Search: Algorithm 5 shows the search proce-

dure of the spatial join with the CoSTR-R-tree.

1) Initialization: Let the query radius be R (Algorithm 5,

line 3).

2) Create query MBR (parallel): To search the certain

range from an object with the CoSTR-R-tree, the query

MBR is created (Algorithm 5, line 9).

3) Issue query (parallel): We traverse the CoSTR-R-tree

from the root node with the query MBR, and get the

objects in the specified range (Algorithm 5, line 12).

Algorithm 6 query MBR creation in step 2. Here, let the

query radius be R and the query point be P. Then, a query

MBR M is created as follows. Set the lower point of the MBR

to P − R and the upper point to P + R (Algorithm 6, lines 5-

7). This calculation is performed by mm sub and mm add

which are the intrinsics for vector subtraction and the addition,

respectively.

Algorithm 7 shows range search in step 3. If the node

overlaps the query MBR, we descend the node recursively.

When a leaf node is reached, children of the leaf node are

2942

Algorithm 3 Parallel packing

1: NP← pointer to array of nodes
2: NN ← number of nodes
3: C ← max number of children in node
4: T ← thread pool
5: function ParallelPackNodes(NP,NN,C,T)
6: # begin parallel by T , share: n← 0, p← 1
7: while all nodes have not been packed do
8: {get offset of parent node}
9: q← p {p is locked here}

10: p← p + 1 {p is unlocked here}
11: {get nodes to pack}
12: s← n {n is locked here}
13: if s ≥ NN then
14: {all nodes have been packed, unlock n}
15: return to thread pool T
16: end if
17: e← s +C − 1
18: if e ≥ NN then
19: e← NN − 1
20: end if
21: n← e + 1 {n is unlocked here}
22: {pack nodes and create the parent node}
23: PackChildNodes({NP[s], ...,NP[e]},NP[−q])
24: end while
25: # end parallel by T
26: end function

Algorithm 4 Node Packing

1: NC[]← array of child nodes
2: DP← destination of parent node
3: function PackChildNodes(NC,DP)
4: {create MBR of parent node}
5: M ← MBR of NC[0]
6: for all nc: nodes in NC[] do
7: m← MBR of nc
8: lower point of M ← mm min(lower point of M, lower

point of m)
9: upper point of M ← mm max(upper point of M, upper

point of m)
10: end for
11: set NC[] for the children of DP, M for the MBR of DP
12: end function

checked to filter false alarms. If the distance is less than the

query radius R, the object is added to the results.

Algorithm 8 shows how we check for MBR overlaps in

Algorithm 7. Here, let the query MBR be M1, and the MBR of

a node be M2. It checks the following condition to determine

that there are no overlaps between those MBRs.

• If the lower point of M1 (M2) is not less than the upper

point of M2 (M1), then there are no overlaps.

If the above condition is not satisfied, they overlap.

The SSE intrinsics can also handle vector comparison and

branch by mm cmpnlt and mm test all ones. The

mm cmpnlt intrinsic performs the “not less than” operation

for each element of two vectors and returns the vector of the

comparison result. We must know whether there is an element

that satisfies one of the above conditions to prove that there

are no overlaps.

To determine this, we use the mm test all ones

Algorithm 5 CoSTR-R-tree spatial join

1: S T ← STR-R-tree
2: A[]← array of data point
3: R← search range
4: T ← thread pool
5: function main(S T, A,R,T)
6: # begin parallel by T , assume there is exclusive control to

fetch p
7: for all p: data point in A[] do
8: NR← get root node of S T
9: M ← create a MBR

10: CreateQueryMBR(M, p,R)
11: {we do not want to calculate the square root of the distance

for every object, so take the square of R in advance}
12: RangeS earch(NR,M, p,R2)
13: end for
14: # end parallel by T
15: end function

Algorithm 6 Query MBR creation

1: M ← query MBR
2: P← query point
3: R← search range
4: function CreateQueryMBR(M, P,R)
5: VR← 3-dimensional vector of R
6: lower point of M ← mm sub(P, VR)
7: upper point of M ← mm add(P, VR)
8: end function

compound intrinsic, which returns true if all elements in the

vector are 0. If it returns false, a value of 1 exists in the vector

and we know that the non-overlapping condition is satisfied.

Algorithm 9 shows the distance calculation in Algorithm 7.

The difference of two vectors is calculated using mm sub

(Algorithm 9, line 5). Then, the square of the difference for

each element is summed with mm dp (Algorithm 9 , line 6),

which is the dot product intrinsic. Here mm dp returns the

vector of the distance. Thus, we must convert it to a scalar

Algorithm 7 Range search

1: NN ← node of STR-R-tree
2: M ← query MBR
3: P← query point
4: R← search range
5: function RangeS earch(NN,M, P,R)
6: if NN is not leaf node then
7: for all nc: child nodes of NN do
8: m← MBR of nc
9: if CheckOverlap(M,m) returns true then

10: {descend the child node}
11: RangeS earch(nc,M, P,R)
12: end if
13: end for
14: else
15: p← lower point of MBR of NN
16: if CalculateDistance(P, p) < R then
17: {this object is truly included in range R}
18: add object pointed to by NN to the result
19: end if
20: end if
21: end function

2943

Algorithm 8 Overlap checking

1: M1← a MBR
2: M2← a MBR
3: function CheckOverlap(M1,M2)
4: F1← mm cmpnlt(upper point of M1, lower point of M2)
5: if mm test all ones(F1) returns false then
6: return false
7: end if
8: F2← mm cmpnlt(upper point of M2, lower point of M1)
9: if mm test all ones(F2) returns false then

10: return false
11: end if
12: return true
13: end function

Algorithm 9 Distance calculation

1: P1← a point
2: P2← a point
3: {this function returns the square of the distance}
4: function CalculateDistance(P1, P2)
5: VS← mm sub(P1, P2)
6: V D← mm dp(VS, VS)
7: {distance is in V D as vector so extract it}
8: return mm cvt(V D)
9: end function

value. mm cvt (Algorithm 9, line 8) executes the vector to

scalar conversion.

IV. Applying CoSTR-R-tree to SJCS Workload

A. Periodic Boundary Condition

The periodic boundary condition is required for the SJCS

workload. This is the idea that space consists of repetitions

of the same cells. This condition is widely used in scientific

simulations, such as fluid dynamics [21] and astronomy [22],

because it is very difficult or nearly impossible to handle the

whole data space.

There are two approaches to count the appropriate number

of particles with this condition.

1) (A1) Hold the extra cells that surround the original cell

(excluding the original cell). Then construct the index

for this chunk of cells.

2) (A2) Hold only the original cell and construct its index.

When the query range sticks out of the cell, some queries

that are equivalent to those for adjacent cells are issued.

Figure 4 illustrates these two approaches. With the first

principle, the number of extra cells that surround the center is

2ΣD
k=1

3k−1, where D is the dimension of the data. This requires

large amount of memory. However, we cannot tolerate this

drawback because the data size is huge in our problem. The

second principle requires no extra cells. However, it requires

2D times searches at most 2.

In the second principle, there are no objects in the out-

of-bound region for each query (Fig. 4, right); therefore, the

cost of each query is relatively small. Thus, the reduced search

2We assume the query MBR is smaller than the cell.

Algorithm 10 CoSTR-R-tree spatial join count over shells

1: S T ← STR-R-tree
2: D← dimension of data
3: A[]← array of data point
4: S []← shells
5: T ← thread pool
6: function main(S T, A, S ,T)
7: # begin parallel by T , assume there is exclusive control to

fetch p
8: for all p: data point in A[] do
9: NR← get root node of S T

10: M ← create a MBR
11: CreateQueryMBR(M, p, radius of outer most S [])
12: LF[]← lower out of bound flags
13: UF[]← upper out of bound flags
14: CheckOutO f Bound(LF,UF,M)
15: for i← 0 to D − 1 do
16: q← copy of p
17: if LF[i] is true then
18: q[i] + coordinate of upper bound
19: else if UF[i] is true then
20: q[i] − coordinate of upper bound
21: else
22: continue this loop
23: end if
24: CreateQueryMBR(M, q, radius of outer most S [])
25: RangeCountOverS hells(NR,M, q, S)
26: for j← i + 1 to D − 1 do
27: r← copy of q
28: if LF[i] is true then
29: r[i] + coordinate of upper bound
30: else if UF[i] is true then
31: r[i] − coordinate of upper bound
32: else
33: continue this loop
34: end if
35: CreateQueryMBR(M, r, radius of outer most S [])
36: RangeCountOverS hells(NR,M, r, S)
37: for k ← j + 1 to D − 1 do
38: s← copy of r
39: if LF[i] is true then
40: s[i] + coordinate of upper bound
41: else if UF[i] is true then
42: s[i] − coordinate of upper bound
43: else
44: continue this loop
45: end if
46: CreateQueryMBR(M, s, radius of outer most S [])
47: RangeCountOverS hells(NR,M, s, S)
48: end for
49: end for
50: end for
51: end for
52: # end parallel by T
53: end function

performance caused by the multiple query issue is permissible.

We employ the second principle to apply the periodic boundary

condition to the search with the CoSTR-R-tree. To check of

the out-of-bound condition faster, we use mm cmplt and

mm cmpgt to determine if query MBRs are beyond the lower

and upper bounds in each dimension.

2944

Fig. 4. Query with periodic boundary condition: The left holds the extra
cells and issues only one query (A1), while the right holds only one cell and
issues multiple queries (A2).

Algorithm 11 Out of bound checking

1: LF[]← lower out of bound flags
2: UF[]← upper out of bound flags
3: M ← query MBR
4: function CheckOutO f Bound(LF,UF,M)
5: VL← 3-dimensional vector of lower bound coordinate
6: VU ← 3-dimensional vector of upper bound coordinate
7: LF[]← mm cmplt(lower point of M, VL)
8: UF[]← mm cmpgt(upper point of M, VU)
9: end function

B. Details of Applying Periodic Boundary Condition

To adopt the CoSTR-R-tree for the SJCS, we need to modify

the search algorithm described in Alg. 5. Alg. 10 shows the

algorithm of the SJCS. In line 11 to 14, it checks whether the

query MBR is out of periodic bound. In line 15 to 43, queries

that are applied periodic bound condition are issued.

Alg. 11 shows the algorithm of checking out of bound query.

At line 7 and 8, it checks whether the query MBR is being

out of bound with mm cmplt and mm cmpgt, which are

the vector comparison intrinsics.

Alg. 12 shows the algorithm of counting objects in the

shells. It is similar to the Alg. 7 except for the leaf node

handling. At line 16, it calculates the distance between the

halo and the particle. Then, it checks which shell the particle

pointed to by the leaf node belongs to and counts up the

number of particles for the shell.

V. Evaluation of CoSTR-R-tree

A. Baseline and Data

In this section, we discuss the difference in performance

between the CoSTR-R-tree and a CoR-tree) that is accelerated

with SIMD and multi-threads. In the construction of the CoR-

tree, the area calculation that occurs during node splitting is

accelerated by SIMD.

We also apply SIMD to the creation of a parent node’s

MBR. In addition, the CoR-tree employs parallel search (Sec-

tion III-B1). Thus, the CoSTR-R-tree and CoR-tree use the

same search algorithm in these experiments. We used this as

the baseline and compared it to the CoSTR-R-tree to demon-

strate construction, destruction, and search performance. The

parallelization applied to each index are shown in Table I.

Algorithm 12 Range count over shells

with periodic boundary condition

1: NN ← node of STR-R-tree
2: M ← query MBR
3: P← query point
4: S []← shells
5: function RangeCountOverS hells(NN,M, P, S)
6: if NN is not leaf node then
7: for all nc: child nodes of NN do
8: m← MBR of nc
9: if CheckOverlap(M,m) returns true then

10: {descend the child node}
11: RangeCountOverS hells(nc,M, P, S)
12: end if
13: end for
14: else
15: p← lower point of MBR of NN
16: d ← CalculateDistance(P, p)
17: for all s: shell in S [] do
18: if d < radius of s then
19: count up the number of particles for s
20: end this loop
21: end if
22: end for
23: end if
24: end function

TABLE I
Index Acceleration

CoSTR-R-tree CoR-tree
Construct Search Construct Search

Multi-threads Yes Yes No Yes
SIMD Yes Yes Yes Yes

TABLE II
Experimental environment

CPU Intel(R) Xeon(R) CPU
E5-2650 v3 2.30 GHz × 2

Cores 20 (10 per socket)
Memory 64 GB
Compiler gcc 6.1.0
Dimension: 3
CoR-tree/CoSTR-R-tree fanout: 10

#Particles: 108

#Halos: 107

#Shells: 40
Minimum range: 0.001
Maximum range: 5

We apply the small SJCS workload to the real dataset and

the uniformly randomly generated dataset. Here, the number

of particles is 108, which is 1/80 of the real workload. The

number of halos is 107, which is the same size as that from

the real workload. The experimental environment is described

in Table II.

B. Construction

The construction of the CoSTR-R-tree is parallelized, as

described in Section III. We conducted this experiment to

observe how performance changes depending on the number of

threads. Figure 5 shows the relationship between the number

of construction threads and the construction time for both the

2945

 1

 10

 100

 1000

 0 5 10 15 20

x85.3

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

#Threads

CoSTR-R (real)
CoSTR-R (random)

CoR(real)
CoR(random)

Fig. 5. Construction time

 10

 100

 1000

 10000

 0 5 10 15 20

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

#Threads

CoSTR-R(real)
CoSTR-R(random)

CoR(real)
CoR(random)

Fig. 6. Search Time

real dataset and random datasets. As can be seen, CoSTR-R-

tree outperforms CoR-tree. With the real dataset, 14 threads

demonstrate the best performance for the CoSTR-R-tree (85.3

times faster than the CoR-tree).

C. Search

There are 40 shells in the real workload. The radius of the

minimum shell is 0.001 and that of the maximum shell is

5 where the range of the data space is 0 to 1000 for each

dimension. The interval between shells is equal in log space.

The experiments were conducted based on those conditions.

Figure 6 shows the time required to search with the CoR-

tree and the CoSTR-R-tree for the real and random datasets.

The result for CoR-tree with the random dataset shows poor

performance due to the splitting policy of the R-tree. Because

this policy minimizes the area of nodes (i.e., MBRs), the over-

lapping area between nodes is not considered. Consequently,

many overlaps occur in the tree, and many node traversals

will occur during the search. In contrast, there are few node

overlaps in the CoSTR-R-tree because the construction process

contains sorts. Therefore, the reduction in performance is small

with random data distribution.

The best performance was observed with 20 threads. There

is nearly no reduction in performance as the number of threads

increases due to the independence of searches (Section III-B1).

In the 20 threads search with the real dataset, the CoSTR-R-

tree shows 1.31 times better performance than the CoR-tree.

 0

 100

 200

 300

 400

 500

 600

 700

 800

CoSTR-R(real)

CoSTR-R(random)

CoR(real)
CoR(random)

x26.8

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

) Construction
Destruction

Search

Fig. 7. Breakdown

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

STR:real R:real

Sp
ee

du
p

(p
er

ce
nt

)

Fig. 8. Speedup with SIMD in total execution time

D. Destruction

The destruction time for both CoR-tree and CoSTR-tree

are negligible compared to search and construction (Fig. 7).

Destruction of CoSTR-R-tree is 249 times faster than that of

CoR-tree because CoSTR-tree destruction requires freeing of

only a single array.

E. Performance Summary

Figure 7 shows the total execution time breakdown of the

SJCS workload for each pair of index and dataset. Note that

we varied the number of worker threads in each stage for

optimization. The numbers for CoSTR-R-tree were 14, 20,

and 1 for construction, search, and destruction, while those

for CoR-tree were 1, 20, and 1, respectively.

The CoR-tree consumes most time for construction. In

contrast, CoSTR-R-tree construction is considerably fast. In

total, the CoSTR-R-tree demonstrates 26.8 times performance

improvement compared to the CoR-tree.

We also examined how much performance is gained by

SIMD. Fig. 8 shows the performance improvement of the

CoSTR-R-tree and the CoR-tree by SIMD with the real data

set. Our CoSTR-R-tree achieves 17.4% improvement in total

execution time.

2946

Fig. 9. Construct-search-destruct pipeline (CSD)

Fig. 10. Construct-search-destruct pipeline++ (CSD++)

VI. Applying CoSTR-R-Tree to a Large Dataset

A. Partial Materialization

When the number of particles increases, its index no longer

fits in main memory. To solve the memory shortage problem,

we adopt a partial materialization approach. This approach

divides the particle data into multiple segments, and then it

conducts a sequence of SJCS tasks. A task consists of con-

struction, search, and destruction to avoid memory overflow.

We can obtain the result by naively repeating the sequences.

We refer to this naive method as non-pipelined (NP).
To accelerate partial materialization, we propose CSD

pipelining. This provides pipeline parallelism. Both the con-

struction and destruction overlap while searching for another

segment. Figure 9 illustrates the proposed CSD method.

Figure 10 shows that it is possible to overlap the first index

construction with the second index construction. The pipeline

bubble under the first index construction in Fig. 9 is filled

with the second index construction. We refer to this method

as CSD pipeline++ (CSD++).
The CoSTR-R-tree is suitable for this approach because

its execution time is faster (26.8 times) than that of the

CoR-tree. If we apply this approach to the CoR-tree, then

it requires approximately 26.8 times more time than that

of the proposed method, which would not be suitable for

astronomical researchers.

B. Thread Pool for Partial Materialization

We employ a non-uniform thread pool with a work request

queue so that each thread can execute its tasks respectively.

This allows us to overlap index construction, search, and

index destruction simultaneously. In addition, threads that

have completed index construction or destruction can help

the incomplete searches; thus we can maintain a high CPU

usage ratio. However, the non-uniform thread pool conflicts

with the uniform thread pool in the CoSTR-R-tree construction

(Section III-A1). To address this problem, we introduce an

inter-thread pool movement mechanism, which is described

as follows.

1) Initialize: We create a non-uniform thread pool and

empty the uniform thread pool.

Fig. 11. Inter-thread pool movement. Blue: non-uniform thread pool. Red:
uniform thread pool.

TABLE III
Experimental condition

CoSTR-R-tree fanout: 10
Data type: Real data

#Particles: 1.3 × 109

#Halos: 107

#Searches: 10

Size of segment: 1.3 × 108

2) Move: With the uniform thread pool, we move the

threads to use from the non-uniform thread pool to

the uniform thread pool. Then, an additional thread

acts as a coordinator of the uniform thread pool for

synchronization.

3) Execute: The threads in the uniform thread pool execute

index construction. Concurrently, the remaining threads

in the non-uniform thread pool execute search.

4) Return: After all threads in the uniform thread pool

have finished their work, they return to the non-uniform

thread pool and help with search.

Figure 11 illustrates the above procedure. When we use the

uniform thread pool, some threads are moved from the non-

uniform thread pool. Then, the coordinator thread (represented

by the orange spiral) is assigned to the uniform thread pool.

The coordinator places a barrier among the threads or instructs

them to return to the original thread pool. When the uniform

thread pool ends its work, its threads return to the non-uniform

thread pool. This enables parallel execution of both multi-

threaded search and multi-threaded index construction.

C. Evaluation

1) Condition: We conducted experiments to determine how

performance improves with the CSD pipeline. Table III shows

the conditions of the experiments. We divided 1.3 × 109

particles into 10 segments, then, we performed 10 SJCS tasks

for 1.3×108 particles and 107 halos in both NP and pipelined

manners.

Note that the real SJCS includes 8 × 109 particles, which

requires approximately 100 GB for particle data and 200 GB

for CoSTR-R-tree, respectively. Our method, CSD pipelining,

can be applied to such a task size, but requires significant

time to experiment. In this paper, to investigate whether the

proposed method is feasible for use with large-scale data, we

used 1.3 × 109 particles. If we increase the repetition number

from 10 to 50, our method works for 8 × 109 particles.

2947

 100

 1000

 10000

CoSTR-R(NP)
CoSTR-R(CSD)

CoSTR-R(CSD++)

CoSTR-R(ideal)

CoR
x2

7.5

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Fig. 12. Execution time for large SJCS workload

2) Results: We show the results in Fig. 12. The NP
method, which is just an iteration of construction, search, and

destruction, required a total of 341.6 sec. CoSTR-R(CSD) and

CoSTR-R(CSD++) required 287.1 sec and 266.5 sec, respec-

tively. CoSTR-R(CSD++) achieved a 28 % improvement in

performance (over the NP). Here, constructions that overlap

with searches were executed using three threads. CoSTR-
R(CSD++) shows 27.5 times faster performance than CoR.

Note that these results contain particle data reading time,

while the results in Section V do not. The I/Os are included

in part of the index construction. We also show a reference

value that does not include I/O as CoSTR-R(ideal) in Fig.

12. The value is thirteen-fold value of the value shown for

CoSTR-R(real) in Fig. 7, which is a simply reference to ideal

(i.e., zero I/O cost) case.

VII. Conclusions

In astronomy, a number of simulations are conducted to

analyze the state of the universe and find an unknown or a rare

phenomenon. Spatial join is frequently used in such analysis.

In this study, we focused on a variant of the spatial join count

in proposed by Taruya et al. [4].

We first proposed a CoSTR-R-tree with multi-threading and

SIMD instructions. We applied the proposed CoSTR-R-tree to

the spatial join count workload in astronomy, and we evaluated

performance by comparing it to a CPU optimized R-tree (CoR-

tree). The results show that the proposed method outperformed

CoR-tree by 26.8 times with a size-limited SJCS workload

when applied to a real dataset.

We then proposed a construct-search-destruct (CSD++)

pipelining method for partial materialization to handle a large

dataset that exceeds the capacity of main memory. It suc-

ceeded to conceal I/O accesses, index constructions, and index

destructions with pipelining. Experimental results show that

the CSD++ method performed appropriately for a large SJCS

workload, where the size of the dataset exceeds the capacity

of main memory. In addition, CSD++ is 27.5 times faster than

the CoR-tree based method as a reference.

All of our codes are available on GitHub [7] for repro-

ducibility and for use by astronomy researchers.

Acknowledgements

This work was supported in part by the JST CREST

“Development of System Software Technologies for post-

Peta Scale High Performance Computing”, “Extreme Big

Data (EBD): Next Generation Big Data Infrastructure Tech-

nologies Towards Yottabyte/Year”, “Statistical Computational

Cosmology with Big Astronomical Imaging Data” and KAK-

ENHI(#16K00150).

References

[1] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans.
Database Syst., vol. 32, no. 1, 2007.

[2] A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and R. J.
Brunner, “Designing and mining multi-terabyte astronomy archives: The
sloan digital sky survey,” in SIGMOD Conference, 2000, pp. 451–462.

[3] A. S. Szalay, J. Gray, A. R. Thakar, P. Z. Kunszt, T. Malik, J. Raddick,
C. Stoughton, and J. vandenBerg, “The sdss skyserver - public access
to the sloan digital sky server data,” in SIGMOD Conference, 2002, pp.
570–581.

[4] A. Taruya, T. Nishimichi, S. Saito, and T. Hiramatsu, “Non-linear
evolution of baryon acoustic oscillations from improved perturbation
theory in real and redshift spaces,” Physical Review D, vol. 80, 2009.

[5] N. Yoshida, K. Omukai, and L. Hernquist, “Protostar formation in the
early universe,” Science, vol. 321, no. 5889, pp. 669–671, 2008.

[6] T. Nishimichi and P. Valageas, “Testing the equal-time angular-averaged
consistency relation of the gravitational dynamics in n-body simula-
tions,” Phys. Rev. D, vol. 90, p. 023546, 2014.

[7] R. Mitsuhashi, “An implementation of the spatial join count over
shells (sjcs) workload,” [Accessed Sept. 24, 2016]. [Online]. Available:
https://github.com/ryumt/SpatialJoinCountOverShells

[8] S. T. Leutenegger, M. A. Lopez, and J. Edgington, “Str: A simple and
efficient algorithm for r-tree packing,” in ICDE, 1997, pp. 497–506.

[9] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and
P. Dubey, “Fast sort on cpus and gpus: A case for bandwidth oblivious
simd sort,” in SIGMOD Conference, 2010, pp. 351–362.

[10] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD Conference, 1984, pp. 47–57.

[11] D. A. White and R. Jain, “Similarity indexing with the ss-tree,” in ICDE,
1996, pp. 516–523.

[12] N. Katayama and S. Satoh, “The sr-tree: An index structure for high-
dimensional nearest neighbor queries,” in SIGMOD Conference, 1997,
pp. 369–380.

[13] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “The a-tree: An
index structure for high-dimensional spaces using relative approxima-
tion,” in VLDB, 2000, pp. 516–526.

[14] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The x-tree: An index
structure for high-dimensional data,” in VLDB, 1996, pp. 28–39.

[15] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in VLDB, 1998, pp. 194–205.

[16] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi, “Vector
approximation based indexing for non-uniform high dimensional data
sets,” in CIKM, 2000, pp. 202–209.

[17] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree:
An efficient and robust access method for points and rectangles,” in
SIGMOD Conference, 1990, pp. 322–331.

[18] N. Roussopoulos and D. Leifker, “Direct spatial search on pictorial
databases using packed r-trees,” in SIGMOD Conference, 1985, pp. 17–
31.

[19] I. Kamel and C. Faloutsos, “On packing r-trees,” in CIKM, 1993, pp.
490–499.

[20] S. You, J. Zhang, and L. Gruenwald, “Parallel spatial query processing
on gpus using r-trees,” in Workshop on Analytics for Big Geospatial
Data, 2013, pp. 23–31.

[21] T. A. Hunt, “Periodic boundary conditions for the simulation of uniaxial
extensional flow,” Molecular Simulation, vol. 42, pp. 347–352, 2016.

[22] T. Fukushige, J. Makino, T. Ito, S. K. Okumura, T. Ebisuzaki, and
D. Sugimoto, “Wine-1: Special-purpose computer for n-body simu-
lations with a periodic boundary condition,” Astronomical Society of
Japan, vol. 45, pp. 361–375, 1993.

