
Learning Graph-based POI Embedding for Location-based
Recommendation

Min Xie† Hongzhi Yin‡
∗

Hao Wang† Fanjiang Xu† Weitong Chen‡ Sen Wang⋄

† State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
‡The University of Queensland, School of Information Technology and Electrical Engineering, Australia

⋄School of Information and Communication Technology, Griffith University, Australia
‡{h.yin1, w.chen9}@uq.edu.au †{xiemin2014, wanghao, fanjiang}@iscas.ac.cn

⋄sen.wang1982@gmail.com

ABSTRACT

With the rapid prevalence of smart mobile devices and the
dramatic proliferation of location-based social networks (LB-
SNs), location-based recommendation has become an impor-
tant means to help people discover attractive and interest-
ing points of interest (POIs). However, extreme sparsity
of user-POI matrix and cold-start issue create severe chal-
lenges, causing CF-based methods to degrade significantly
in their recommendation performance. Moreover, location-
based recommendation requires spatiotemporal context aware-
ness and dynamic tracking of the user’s latest preferences in
a real-time manner.
To address these challenges, we stand on recent advances

in embedding learning techniques and propose a generic graph-
based embedding model, called GE, in this paper. GE joint-
ly captures the sequential effect, geographical influence, tem-
poral cyclic effect and semantic effect in a unified way by
embedding the four corresponding relational graphs (POI-
POI, POI-Region, POI-Time and POI-Word) into a shared
low dimensional space. Then, to support real-time recom-
mendation, we develop a novel time-decay method to dy-
namically compute the user’s latest preferences based on the
embedding of his/her checked-in POIs learnt in the latent s-
pace. We conduct extensive experiments to evaluate the
performance of our model on two real large-scale datasets,
and the experimental results show its superiority over oth-
er competitors, especially in recommending cold-start POIs.
Besides, we study the contribution of each factor to improve
location-based recommendation, and find that both sequen-
tial effect and temporal cyclic effect play more important
roles than geographical influence and semantic effect.

1. INTRODUCTION
With the rapid development of Web 2.0, location acqui-

sition and wireless communication technologies, a sufficient
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number of location-based social networks (LBSNs) have e-
merged in recent years, such as Foursquare, Facebook Places,
Gowalla and Loopt, where users can check in at point-of-
interests (POIs), e.g., stores, restaurants, sightseeing sites,
and share life experiences in the physical world via mobile
devices promptly. It is crucial to utilize user check-in data to
make personalized recommendation in a real-time manner,
which helps users know new POIs and explore new regions
(e.g., cities), facilitate advertisers to launch mobile adver-
tisements to targeted users.

Unlike traditional desktop recommendation systems de-
livering “digital” information, e.g., movie recommendation,
music recommendation etc., location-based recommendation
systems typically involve mobile users and “physical” enti-
ties (such as sightseeing sites), which suffers from more chal-
lenges. 1. Data Sparsity. To know and rate a POI, a user
has to physically visit that POI, thus the cost is more ex-
pensive than rating a movie online. Even if a user makes
the effort to visit the POI, he often does not check in due to
privacy or safety concerns. Therefore, users’ check-in data
generated in LBSNs is much sparser than their generated
rating data for movies and music. This issue plagues most
of the existing collaborative filtering recommender system-
s. 2. Context Awareness. Location-based recommen-
dation requires considering not only personal preferences,
but also the spatiotemporal context [21], as a user tends
to have different choices and needs at different time and
places. 3. Cold Start is a critical problem in the do-
main of location-based recommendation, as many new POIs
(e.g., business) are emerging every day, especially in the fast-
developing countries. 4. Dynamic of Personal Prefer-
ences is the last, but the most critical challenge. As ana-
lyzed in [22], users’ preferences are changing with the time
going on. For instance, users will naturally be interested in
visiting parenting-related POIs (e.g., the playground and a-
musement park) after they have a baby, and probably ignore
their other interests. Accurately capturing this change has
been proved to be commercially very valuable since it indi-
cates visiting and purchasing intents. Thus, location-based
recommendation requires provides satisfactory recommen-
dations promptly based on users’ latest preferences and their
current spatiotemporal context, which requires producing
recommendation results in a real-time manner.

To deal with all the above challenges and improve location-
based recommendation, we exploit and integrate the follow-
ing factors in a unified way.



• Sequential Effect. It has been observed by research
on human mobility that, human movement exhibits se-
quential patterns [4, 29], which means the transition
probabilities from one checked-in POI to other POIs is
a nonuniform distribution, e.g., users often sequential-
ly check-in at airports and hotels.

• Geographical Influence. Many recent studies show
that people tend to visit nearby POIs or explore POIs
near the ones that they have visited before [20].

• Temporal Cyclic Effect. As suggested in [7, 28],
users’ mobility behaviors in the physical world exhibit
strong temporal cyclic patterns, and the daily pattern
(hours of the day) is one of the most fundamental pat-
terns. For example, a user may regularly arrive to the
office around 9:00 am, have dinner at a restaurant at
12:00 am, and watch movies at night around 10:00 pm.
So he is more likely to go to a restaurant rather than
a bar at lunch time.

• Semantic Effect. A recent analysis of the Whrrl
dataset shows that the check-in activities of users ex-
hibit a strong semantic regularity [19]. In other words,
the contents of POIs checked-in by the same user tend
to semantically similar.

While there are many recent studies that exploit one or
two of the above factors to improve location-based recom-
mendation effectiveness, they lack an integrated analysis of
their joint effect to address all the above four challenges in a
unified and generic way. Specifically, to overcome the data
sparsity issue, most prior work of location-based recommen-
dation focused on exploiting the geographical influence [10,
3, 20] and temporal cyclic effect [7, 28] to provide spatial
or/and temporal context-aware recommendation. To further
address the cold-start problem, some recent work explored
the semantic effect and integrated the content information
of POIs [25, 17]. Most recently, Yin et al. [27] developed
a probabilistic generative model for joint modeling of geo-
graphical influence, temporal cyclic effect and semantic ef-
fect. However, their method is not a generic method and
cannot be straightforwardly extended to incorporate other
factors such as sequential influence.
On the other hand, almost all existing location-based rec-

ommendation methods are incapable of supporting real-time
recommendation principally, and they would suffer from the
following two drawbacks: 1) Delay on model updates caused
by the expensive time cost of re-running the recommender
model; and 2) Disability to track changing user preferences
due to the fact that latest check-in records used for updat-
ing recommendation models are often overwhelmed by the
large data of the past. Accurately capturing the change of
user preferences in a real-time manner is very helpful for
location-based recommendation. As each check-in provides
valuable information about the user’s preferences, recom-
mender model must respond immediately to new check-in
information. Although several Markov chain-based recom-
mender models [4, 29] have been recently developed to pre-
dict next POIs based on the user’s recent check-ins by min-
ing the sequential patterns, they do not consider other three
important factors, failing to overcome the challenges of data
sparsity and cold start.
Recently, methods of embedding items in a low-dimension

Euclidean space have been widely adopted in a variety of
fields, including natural language processing, text mining

and music information retrieval. Tang et al. [15] predict-
ed text embeddings based on heterogeneous text network-
s which showed great potential in document classification.
Chen et al. [1] proposed a Logistic Markov embedding (LME)
model to map each song to one point (or multiple points) in
a latent Euclidean space for playlists generating, which also
verifies the effectiveness of embedding methods.

In this paper, we stand on the recent advances in embed-
ding learning techniques and propose a graph-based embed-
ding method called GE to encode the above four factors in a
low-dimension latent space to effectively address the issues
of data sparsity, cold start and context awareness in a uni-
fied manner. Specifically, we use a bipartite graph model to
represent (or capture) the relationships between POIs and
POIs (sequential effect), POIs and geographical regions (ge-
ographical influence), POIs and time slots (temporal cyclic
effect), POIs and content words (semantic effect), respec-
tively. Then, we embed the four heterogenous information
graphs into a shared low-dimension space, in which each
vertex, i.e., each POI (including cold-start ones), time slot,
geographical region and content word, is represented as a
low-dimensional vector. Note that our proposed GE model
is a generic flexible model that can be easily extended to
incorporation of other factors, not limited to the above four.

To keep track of the dynamics of user preferences, we
adopt a time-decay manner to compute the user’s latest
preferences based on the embeddings of the user’s checked-
in POIs and associated timestamps, i.e., if a POI is visited
by the user more recently, it will be more important and
assigned with a higher weight. Thus, just like the classic
item-based collaborative filtering method [11], our proposed
dynamic user preference modeling method has the nice prop-
erties of making fast response to new check-in information
and scaling to massive datasets without retraining model.
To support real-time & context-aware recommendation, the
final recommendations are made based on the embeddings of
the user’s latest preferences and the spatiotemporal context
in the shared latent space.

The primary contributions of our research are summarized
as follows.

• To the best of our knowledge, we are the first to in-
vestigate the joint effect of sequential effect, geographi-
cal influence, temporal cyclic effect and semantic effect
to address the challenges of data sparsity, cold start,
context awareness and dynamic user preferences in a
unified way.

• We develop a graph-based embedding model to learn
the representations of POIs, time slots, geographical
regions and content words in a shared low-dimension
space. Then, to support real-time recommendation, we
propose a novel method for dynamic user preferences
modeling based on the learnt embedding of POIs.

• We conduct extensive experiments to evaluate the per-
formance of our recommender method on two real large-
scale datasets. The results show the superiority of our
proposals in location-based recommendation by com-
paring with the state-of-the-art techniques.

The remainder of the paper is organized as follows. Sec-
tion 2 details our proposed graph-based embedding methods.
We report the experimental results in Section 3. Section 4
reviews the related work and Section 5 concludes the paper.
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Figure 1: Illustration of encoding sequential effect, geographical influence, temporal cyclic effect and semantic effect

into a low dimensional metric utilize graph-based method. POI-Region graph, POI-Time graph and POI-Word graph

are all bipartite graphs, while POI-POI graph is a general graph which can also be treated as a bipartite graph when

one POI is on one side and others are on the opposite side. Diverse factors can be connected through POIs.

Variable Interpretation

U ,V the set of users and POIs

R, T , W the set of regions, time slots and words

lv , Wv, POI v’s location and content word set

τ , t, the timestamp of check-in and its discretized
time slot

Du the profile of user u

R
d d dimensional latent space

~uτ time-aware user preference embedding

~v, ~r, ~t, ~w embeddings of POI v, region r, time slot t
and word w, respectively

△T the time interval

Table 1: Notations used in this paper.

2. GRAPH-BASED EMBEDDING MODEL
In this section, we first introduce the key data structures

and definitions used in this paper, and then present our
proposed graph-based embedding (GE) model and the opti-
mization method.

2.1 Problem Formulation
For ease of presentation, we define the key data structures

and notations used in this paper. Table 1 also lists them.

Definition 1. (POI ) A POI is defined as a uniquely i-
dentified specific site (e.g., a restaurant or a cinema). In our
model, a POI has three attributes: identifier, geographical
location and content. We use v to represent a POI identifier
and lv to denote its corresponding geographical attribute in
terms of longitude and latitude coordinates. Besides, there
is textual semantic information associated with a POI, such
as the category and tag words. We use the notation Wv to
denote the set of words describing POI v.

Definition 2. (Check-in Activity) A check-in activity is
made of a five tuple (u, v, lv, τ , Wv) that means user u
visits POI v at time τ .

Definition 3. (User Profile) For each user u, we create a
user profileDu, which is a set of check-in activities associated
with u and sorted by timestamp. The dataset D used in our
model includes all user profiles, i.e.,D = {Du : u ∈ U}.

Definition 4. (POI-POI Graph) POI-POI graph, de-
noted as Gvv = (V ∪V, Evv), captures the check-in sequence
of POIs in a user profile Du. V is a set of POIs and Evv is
the set of edges between POIs. Given a time interval △T ,
for each check-in pair {(vi, τi), (vj , τj)} in a user profile Du,
if 0 < τj − τi ≤ △T , there will be an edge eij from vi to vj .
The weight wij of edge eij is defined as the number of times

that vj is checked in after vi in the whole dataset D within
a predefined time interval △T .

The POI-POI graph captures the sequential patterns of
check-in POIs. Intuitively, if vi and vj are often checked in
sequentially, their correlation will be larger: if a user has
visited vi, he has a high probability to visit vj next.

To capture the geographical influence, temporal cyclic ef-
fect and semantic effect, the bipartite graphs POI-Region,
POI-Time and POI-Word are defined as below. Fig. 1 gives
an illustration of our graph-based model. As vertices are
discrete in graphs, we need first transform the continuous
values in the check-in records (such as location coordinates
and timestamps) into discrete ones. Specifically, we divide
the whole geographical space into a set of regions R accord-
ing to administrative divisions such as cities or suburbs. All
check-in timestamps are divided into a set of time slots T
to capture the temporal cyclic patterns, such as 24 hours
for the daily patterns or 7 days for the weekly patterns. We
will study the impact of different division methods of time
in Section 3.4.3.

Definition 5. (POI-Region Graph) POI-Region graph,
denoted as Gvr = (V ∪ R, Evr), is a bipartite graph where
R is a set of regions and V is a set of POIs. Evr is the set
of edges between POIs and regions. If POI vi is located in
region rj, there will be an edge eij between them, otherwise
none. The weight wij is set to 1 when the edge eij exists.

Definition 6. (POI-Time Graph) POI-Time graph, de-
noted as Gvt = (V ∪ T , Evt), is a bipartite graph where T
is a set of time slots and V is a set of POIs. Evt is the set
of edges between POIs and time slots. The weight wij of
the edge between POI vi and time slot tj is defined as the
frequency of POI vi checked in at time slot tj .

Definition 7. (POI-Word Graph) POI-Word graph,
denoted as Gvw = (V ∪W, Evw), is a bipartite graph where
W represents the vocabulary set. Evw is the set of edges be-
tween POIs and words. If POI wi ∈ Dvj , there will be an
edge eij between word wi and POI vj , otherwise none. As
Dvj is a bag of words, we use the standard tf.idf to compute
the edge weight wij.

The three types of graphs above can well capture the ge-
ographical influence, temporal cyclic effect and semantic ef-
fect, respectively. Take POI-Time graph as an example, we
can interpret it as following: if a POI vi is often visited in
time slot tj , the edge weight wij is large. Thus, given a tar-
get user u at the temporal context tj , he/she is most likely



to visit POI vi. It is worth mentioning that our graph-based
embedding learning model can be straightforwardly gener-
alized to integrate other types of graphs such as POI-image
graph which captures the visual effect. In this work, we on-
ly consider four types of graphs : POI-POI, POI-Region,
POI-Time, POI-Word. Our goal is to embed the above four
graphs into a shared low dimensional space R

d where d is
the dimension. Then, we can get the vector representations
of POIs, regions, time slots and words, i.e., ~v, ~r, ~t and ~w.
Finally, we formally define the problem investigated in our

work. Given a dataset D as the union of a collection of user
profiles, we aim to provide location-based recommendations
stated as follows.

Problem 1. (Location-based Recommendation) Giv-
en a user activity dataset D and a querying user u with
his/her current location l and time τ (that is, the query is
q = (u, l, τ)), our goal is to recommend top-k POIs that u
would be interested in. To fit the time τ and location l into
our graphs, we first map them into the corresponding region
r and time slot t.

2.2 Model Description and Optimization
In this section, we first propose a graph-based embedding

learning approach using bipartite graph and its optimization
method, and then present the integrated learning of POI em-
bedding, region embedding, time slot embedding and word
embedding in the latent space. Last, we show how to track
and represent the dynamic user preferences promptly.

2.2.1 Bipartite Graph Embedding

Inspired by the LINE model [16] which learns the embed-
ding of large-scale homogeneous information networks, i.e.,
networks with the same types of nodes, we extend it to learn
embeddings of heterogeneous graph nodes.
Given a bipartite graph G = (VA ∪ VB , E), where VA

and VB are two disjoint sets of vertices of different types,
and E is the set of edges between them. We first define the
conditional probability of vertex vj in set VB generated by
vertex vi in set VA as:

p(vj |vi) =
exp(~vTj · ~vi)

∑
vk∈VB

exp(~vTk · ~vi)
(1)

where ~vi is the embedding vector of vertex vi in VA, and ~vj
is the embedding vector of vertex vj in VB , Eq. (1) defines
a conditional distribution p(·|vi) over all the vertices in the
set VB . To preserve the weight wij on edge eij , we make
the conditional distribution p(·|vi) close to its empirical dis-
tribution p̂(·|vi), which can be defined as p̂(vj |vi) =

wij

degi
.

Then, we minimize the following objective function:

O =
∑

vi∈VA

λid(p̂(·|vi), p(·|vi)) (2)

where d(·, ·) is the KL-divergence between two distributions,
λi is the importance of vertex vi in the graph, which can be
set as the degree degi =

∑
j wij . Omitting some constants,

the objective function Eq. (2) can be calculated as:

O = −
∑

eij∈E

wij log p(vj |vi) (3)

By learning {~vi}i=1...|VA| and {~vj}j=1...|VB | that minimize
Eq. (3), we are able to represent different types of vertices
with a d dimensional embedding ~vi and ~vj in metric R

d.

2.2.2 Optimization

Optimizing objective function Eq. (3) is computationally
expensive, as calculating the conditional probability p(·|vi)
need to sum over the entire set of vertices. To address this
problem, we sample multiple negative edges according to
some noisy distribution for each edge eij following the nega-
tive sampling approach proposed in [13]. For each edge eij ,
it specifies the following objective function:

log σ(~vTj · ~vi) +
K∑

n=1

Evn∼Pn(v)[log σ(−~vTn · ~vi)] (4)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, K
is the number of negative edges. We set K = 5, Pn(v) ∝

d
3/4
v from the empirical setting of [13], dv is the out-degree

of vertex v. Then we adopt the asynchronous stochastic
gradient algorithm (ASGD) [14] for Eq. (4). If an edge eij
is sampled, the gradient w.r.t. the embedding vector ~vi of
vertex vi will be calculated as:

∂O

∂~vi
= wij ·

∂ log p(vj |vi)

∂ ~vi
(5)

However, when the weights of edges have a high variance
there will be a problem, because it is very hard to find a
good learning rate. If we select a large learning rate ac-
cording to the edges with small weights, the gradients on
edges with large weights will explode, while the gradients
will become too small if we select the learning rate accord-
ing to the edges with large weights. To overcome this dilem-
ma, we follow the edge sampling approach used in [16]. Let
W = (w1, w2, ..., wE) denote the ranking sequence of edge
weights where E = |E|. First, we calculate the sum of the

weights wsum =
∑E

i=1 wi. Then, sample a value within

[0, wsum] to see which interval [
∑i−1

j=0 wj ,
∑i

j=0 wj) the ran-
dom value falls into. In the latter procedure, we use alias
table method [9] to draw a sample, thus reduce the sampling
complexity to O(1). Moreover, optimization with negative
sampling takes O(η × (K + 1)) time cost, where K is the
number of negative samples and η is the time taking for one
sampling. Thus, the entire step takes O(η × K) time. In
fact, the number of steps used for optimization is usually
proportional to the number of edges E. Therefore, the over-
all time complexity of optimization is O(η ×K × E), while
η,K are all constants. The proposed edge sampling method
is very efficient since it is linear to the number of edges E,
and does not depend on the number of vertices V (V = |V|).

Now we can efficiently learn the embeddings of different
types of vertices in a heterogeneous bipartite graph, to learn
various graph embeddings simultaneously, let us introduce
the integrated embedding learning method.

2.2.3 Joint Embedding Learning

There are four bipartite graphs: POI-POI, POI-Region,
POI-Time and POI-Word graphs to be embed integrated
in our GE model. An intuitive approach is to collectively
embed the four bipartite graphs by minimizing the sum of
all objective functions as following:

O = Ovv +Ovr +Ovt +Ovw (6)

where
Ovv = −

∑

eij∈Evv

wij log p(vi|vj) (7)



Algorithm 1: Joint training

Data: Gvv, Gvr, Gvt, Gvw, number of samples N ,
number of negative samples K

Result: POI embeddings ~v, region embeddings ~r, time
slot embeddings ~t, word embeddings ~w

while iter ≤ N do
• sample an edge from Evv and draw K negative

edges, and update POI embeddings;

• sample an edge from Evr and draw K negative
edges, and update POI embeddings and region
embeddings;

• sample an edge from Evt and draw K negative
edges, and update POI embeddings and time
slot embeddings;

• sample an edge from Evw and draw K negative
edges, and update POI embeddings and word
embeddings;

end

Ovr = −
∑

eij∈Evr

wij log p(vi|rj) (8)

Ovt = −
∑

eij∈Evt

wij log p(vi|tj) (9)

Ovw = −
∑

eij∈Evw

wij log p(vi|wj) (10)

The objective function (6) can be optimized by training
all types of graphs simultaneously by merging all the edges
in the four sets Evv, Evr, Evt, Evw together, and then deploy
edge sampling, which samples an edge for model updating in
each step, with the sampling probability proportional to its
weight. However, the graphs are heterogeneous in our mod-
el, the weights of the edges between different graphs are not
comparable to each other. A more reasonable solution is to
alternatively sample from the four sets of edges respective-
ly which called joint training. We summarize the detailed
training algorithm in Algorithm 1.
Hence, we have learnt the embeddings of POIs, regions,

time slots and words integrated, then we will introduce how
to represent users in the shared latent space.

2.2.4 Dynamic User Preference Modeling

General recommender models (e.g. latent factor mod-
els) achieves the dynamic update of user preferences via
re-training the model or applying the online learning tech-
niques, which is very time-consuming. We aim to propose
an efficient approach that tracks the dynamic of user prefer-
ences in a linear time complexity. To achieve this, we map
dynamic user preferences to the same latent space R

d as
POIs, and utilize the learnt POI embeddings to represent
the embedding of dynamic user preferences. More precisely,
we assume that an individual’s preferences at time τ can be
represented by the collection of POIs he has visited before
τ . Note that, the check-ins in Du are ranked according to
their check-in timestamps in an increasing order. Therefore,
we can learn the embedding ~uτ , i.e., u’s preferences at time
τ , by utilizing the vectors of POIs he has visited before τ
in the form of exponential decay. That is, if a user u has

checked in a set of POIs before time τ , his/her preferences
at time τ can be computed as:

~uτ =
∑

(u,vi,τi)∈Du∩(τi<τ)

exp−(τ−τi) · ~vi (11)

where ~vi is the embedding of POI vi, (u, vi, τi) is u’s check-in
record in Du before time τ ; the later the POI is visited, the
bigger the exponential is. In this way, we can dynamically
track the user’s preferences in an efficient and scalable way.
Rather than directly learning latent factors for users, we
compute the vector representations of users based on the
embedding of their checked-in POIs. This method allows
us to update user preferences without retraining GE model
once the embedding of POIs has been learnt.

2.3 Recommendation Using GE
Once we have learnt the embeddings of POIs, regions, time

slots and words, given a query user u with the query time τ
and location l, i.e., q = (u, τ, l), we first project time τ and
location l into time slot t and region r, and then select top-k
POIs with the highest score that u has not visited before.
More precisely, given a query q = (u, τ, l), for each POI v
which has not been visited by u, we compute its ranking
score as in Eq. (12), and then select the k ones with the
highest ranking scores as recommendations.

S(q, v) = ~uT
τ · ~v + ~rT · ~v + ~tT · ~v (12)

where ~uτ is the representation of u’s latest preferences, which
can be computed in Eq. (11), and ~v is the embedding of POI
v, ~r is the embedding of region r where query location l is
located in, ~t is the embedding of time slot t where query
time τ belongs to. The learnt POI embedding ~v also auto-
matically capture the semantic content information of item
v through the POI-Word graph, as our GE model jointly
learns the embedding of multiple relational networks in the
same latent space.

The above equation encodes the joint effect of dynamic
user preferences, sequential effect and semantic effect (~uT

τ ·~v),
the geographical influence (~rT ·~v) and temporal cyclic effect
(~tT · ~v)in a unified way. As for the cold start POIs, our GE
model can still learn their representations in the latent space
based on the POI-Region and POI-Word graphs. Thus, both
cold-start and normal POIs can be recommended together
by the same ranking function - Eq. (12), which distinguishes
from other existing recommender models [2, 27, 17] that use
different functions to compute the scores for cold-start and
normal POIs, separately.

3. EXPERIMENTS
In this section, we first describe the settings of experi-

ments and then demonstrate the experimental results.

3.1 Experimental Settings

3.1.1 Data Sets

Our experiments are performed on two real large-scale LB-
SNs datasets: Foursquare and Gowalla. The basic statistics
of them are shown in Table 2. The two real datasets are
publicly available1.

Foursquare. Foursquare is one of the most popular on-
line LBSNs. We collected its public check-in data from Sep

1https://sites.google.com/site/dbhongzhi/



Foursquare Gowalla

# of users 114,508 107,092
# of POIs 62,462 1,280,969

# of check-ins 1,434,668 6,442,892
time span Sep 2010-Jan 2011 Feb 2009-Oct 2010

Table 2: Basic statistics of datasets

2010 to Jan 2011 through Twitter with the same crawling
strategy as proposed in [5]. This dataset contains 62,462
POIs and 1,434,668 check-ins generated by 114,508 users
who live in the USA. Each check-in is stored as user-ID,
POI-ID, POI-location in the form of latitude and longitude,
check-in timestamp, and POI-content.
Gowalla. This dataset contains 6,442,892 check-in histo-

ries which is much more than Foursquare dataset. Howev-
er, it does not contain the content information about POIs.
Therefore, each check-in record has the same format with
the above Foursquare dataset except for POI-content.

3.1.2 Comparative Approaches

We compare our GE with the following four methods rep-
resenting the state-of-the-art location-based recommenda-
tion techniques.
SVDFeature. SVDFeature [2] is a machine learning toolk-

it designed to solve the feature-based matrix factorization.
To compare with our model GE fairly, we implement it by
incorporating more side information beyond the user-POI
matrix, including POI content, POI geographical location
and check-in time.
JIM. JIM [27] is a joint probabilistic generative model

that simulates the decision-making process of users’ check-
in behaviors. It strategically integrates semantic effect, tem-
poral effect, geographical influence and word-of-mouth effect
to overcome the issues of data sparsity and cold start.
PRME-G. PRME [6] is a personalized ranking metric

embedding algorithm that jointly models the sequential tran-
sition of POIs and user preferences. PRME-G further incor-
porates geographical influence based on PRME. Although
PRME-G is also based on embedding techniques, it utilize
two latent spaces: sequential transition space and user pref-
erences space.
Geo-SAGE. Geo-SAGE [17] is a geographical sparse ad-

ditive generative model for location-based recommendation
which incorporates and exploits POI content information
and the crowd’s preference at a region.
Note that all the above four recommender models fail to

keep track of the dynamics of user preferences, thus they
cannot well support real-time recommendation.
To further validate the benefits brought by each factor,

we design four variants of GE. GE-S1 is the first simplified
version of the GE model where we set △T = ∞ in graph
Gvv to eliminate the sequential effect. GE-S2 is the sec-
ond variation of the GE model where we neglect the check-
in location, which means we remove the POI-Region graph
Gvr. As the third simplified version of GE, GE-S3 does not
consider the temporal cyclic effect by removing POI-Time
graph Gvt. GE-S4 means our model without considering
the semantic effect by removing POI-Word graph Gvw.

3.1.3 Evaluation Methods

Given a user profile Du in terms of a collection of us-
er check-in records, we first rank them according to their
check-in timestamps. Then, we use the 80-th percentile as
the cut-off point so that check-ins before this point will be
used for training and the rest are for testing. In the training

dataset, we choose the last 10% check-ins as the validation
data to tune the model hyper-parameters such as the dimen-
sion of the latent space. According to the above dividing s-
trategies, we split the dataset D into the training set Dtrain

and test set Dtest. To evaluate the recommendation method-
s, we adopt the evaluation methodology and measurement
Accuracy@k proposed in [17, 25, 27, 26]. Specifically, for
each check-in record (u, v, τ , lv, Wv) in Dtest:

• we calculate the ranking score for the ground truth
POI v and all other POIs unvisited previously by u by
Eq. (12).

• we form a ranked list by ordering all of these POIs
according to their ranking scores. Let p denote the
position of v within this list. The best result corre-
sponds to the case where v precedes all the unvisited
POIs (that is, p = 1).

• We formed a top-k recommendation list by picking the
k top ranked POIs from the list. If p ≤ k (i.e., the
ground truth POI v appears in the top-k recommen-
dation list), we have a hit. Otherwise, we have a miss.

We define hit@k for a single test case as either the value
1, if the ground truth POI v appears in the top-k results, or
the value 0, if otherwise. The overall Accuracy@k is defined
by averaging over all test cases:

Accuracy@k =
#hit@k

|Dtest|
(13)

where #hit@k denotes the number of hits in the whole test
set, and |Dtest| is the number of test cases.

3.2 Recommendation Effectiveness
In this section, we present the experimental results of all

recommendation methods with well-tuned parameters. Fig.
2 reports the performance of the recommendation methods
on Foursqaure and Gowalla datasets respectively. Note that,
we only show the performance when k = {1, 5, 10, 15, 20},
since a greater value of k is usually ignored for the top-k
recommendation task.

Recommendation on Foursquare. Fig. 2(a) present
the recommendation accuracy on Foursquare dataset. Clear-
ly, our proposed GE model outperforms other competitor
models significantly. Several observations are made from the
results: 1) GE and PRME-G achieves much higher recom-
mendation accuracy than other comparison methods in top-
1 recommendation, showing the benefits brought by met-
ric embedding method. Besides, GE beats PRME-G. This
may be because GE embeds all information into one shared
latent space while PRME-G uses two latent spaces to em-
bed user preferences and sequential patterns, respectively.
Additionally, our GE model is much more versatile and ex-
ploits more side information in a unified way. 2) JIM per-
form better than PRME-G except for top-1 recommenda-
tion, as JIM considers more side information than PRME-
G, such as content information of POIs and their popularity.
3) Geo-SAGE drops behind other methods, this is because
Geo-SAGE ignores both sequential effect and temporal ef-
fect which play critical roles in location-based recommenda-
tion. 4) Although GE and SVDFeature use the same types
of features and information, GE achieves much higher rec-
ommendation accuracy, showing the advantages of our de-
veloped graph-based embedding method and dynamic user
preference modeling technique.
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Figure 2: Recommendation Effectiveness

Methods

Acc@k
k = 1 k = 5 k = 10 k = 15 k = 20

GE-S1 0.183 0.252 0.293 0.322 0.347

GE-S2 0.225 0.296 0.339 0.370 0.396

GE-S3 0.214 0.278 0.323 0.348 0.368

GE-S4 0.224 0.288 0.333 0.366 0.394

GE 0.231 0.321 0.372 0.407 0.435

Table 3: Recommendation Accuracy of GE Variants.

Recommendation on Gowalla. Fig. 2(b) reports the
performance of the recommendation models on Gowalla data-
set. From the figure, we can see that the trend of comparison
result is similar to that presented in Fig. 2(a). However, JIM
slightly outperforms PRME-G on Foursquare dataset while
PRME-G exceeds JIM on Gowalla. This is because Gowalla
dataset has no content information. Moreover, all recom-
mendation methods achieve higher accuracy on this dataset
except JIM. Analysing the dataset, we find that users in the
Gowalla dataset have more check-in records than users in
the Foursquare dataset on average, which enables the mod-
els to capture users’ preferences more accurately. Besides,
the loss of content information degenerates the performance
of JIM, but does not have much impact on our GE model,
which reveals the robustness of our model.

3.3 Impact of Different Factors
To explore the benefits of incorporating the sequential ef-

fect, geographical influence, temporal cyclic effect and se-
mantic effect into GE model respectively, we compare our
GE model with four variations, GE-S1, GE-S2, GE-S3, GE-
S4, which are introduced in Section 3.1.2. Since Gowalla
dataset has no content information, we only show the re-
sults on Foursquare dataset in Table 3.
From the result, we first observe that GE consistently out-

performs the four variants, indicating that GE benefits from
simultaneously considering the four factors in a joint way.
Second, we find that the contribution of each factor to im-
proving recommendation accuracy is different. Specifically,
according to the importance of the four factors, they can be
ranked as follows: Sequential Effect > Temporal Effect >
Content Effect > Geographical Influence. The performance
gap between GE and GE-S1 is the most significant, showing
that sequential effect plays an important role in location-
based recommendation. The improvement of GE over GE-
S3 is also great, which validates human movements exhibit
strong temporal cyclic patterns. This shows that temporal
related factors matter a lot in users’ daily routines.

(a) Impact of N and d on Foursquare Dataset

N(*m)
d

70 80 90 100 110 120

10 0.259 0.260 0.260 0.261 0.261 0.261
50 0.341 0.345 0.347 0.351 0.351 0.351
100 0.352 0.361 0.365 0.368 0.371 0.372
150 0.357 0.364 0.370 0.372 0.373 0.373
200 0.357 0.364 0.369 0.372 0.373 0.373
250 0.356 0.364 0.369 0.372 0.373 0.373

(b) Impact of N and d on Gowalla Dataset

N(*m)
d

70 80 90 100 110 120

100 0.418 0.422 0.424 0.426 0.426 0.426
150 0.435 0.440 0.443 0.446 0.447 0.447
200 0.443 0.449 0.453 0.456 0.456 0.457
250 0.448 0.453 0.458 0.462 0.462 0.463
300 0.448 0.454 0.459 0.462 0.463 0.463
350 0.449 0.454 0.459 0.463 0.464 0.464

Table 4: Recommendation Accuracy@10

3.4 Sensitivity Analysis of Model Parameters
Tuning model parameters is critical to the performance

of the proposed model, such as the embedding dimension d,
the number of samples N , and the time interval △T in our
GE model. We therefore study the impact of these model
parameters in this section. Besides, we will also study the
impact of different time split strategies that capture different
temporal cyclic patterns.

3.4.1 Impact of Model Parameters N and d

Table 4 presents the performance of our proposed GE in
terms of Accuracy@10 with different number of samples N
and embedding dimensions d. Note that, the unit of N is
set to 1 million.

Similar observations can be made on both datasets. From
the results, we observe that the recommendation accuracy
of GE is not highly sensitive to the dimension d, but still
presents a tendency that its recommendation accuracy in-
creases with the increasing number of dimension d holisti-
cally, and then does not change much when d is larger than
100. GE is sensitive to the number of samples N , the ac-
curacy varies a lot w.r.t N . First, the performance of GE
increases quickly with the increasing of N , this is because
the model has not achieved convergence. Then, it does not
change significantly when the number of samples becomes
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Figure 3: Recommendation effectiveness of different temporal cyclic patterns.

(a) Impact of △T on Foursquare Dataset

△T
Acc@k

1 5 10 15 20

5 0.186 0.244 0.277 0.301 0.321
10 0.210 0.284 0.326 0.356 0.380
15 0.222 0.303 0.350 0.383 0.410
20 0.226 0.311 0.362 0.397 0.426
25 0.231 0.321 0.372 0.407 0.435
30 0.220 0.313 0.366 0.403 0.433
35 0.201 0.309 0.360 0.396 0.424
40 0.193 0.277 0.322 0.358 0.387

(b) Impact of △T on Gowalla Dataset

△T
Acc@k

1 5 10 15 20

1 0.168 0.239 0.276 0.303 0.324
3 0.236 0.320 0.370 0.405 0.433
5 0.270 0.369 0.426 0.465 0.495
7 0.287 0.390 0.449 0.489 0.520
9 0.295 0.401 0.462 0.501 0.533
11 0.290 0.385 0.457 0.498 0.529
13 0.268 0.361 0.430 0.469 0.498
15 0.245 0.338 0.416 0.451 0.488

Table 5: Impact of time interval

large enough, since the model GE has converged. Thus, to
achieve a satisfying trade off between effectiveness and effi-
ciency of model training, we set N = 150M and d = 100 on
Foursquare dataset, and N = 250M and d = 100 on Gowal-
la dataset. There are more edges on Gowalla dataset than
that on Foursquare dataset, so more samples are needed. It
should be noted that the performance of our GE reported in
other experiments is achieved with this parameter settings.

3.4.2 Impact of time interval in sequential patterns

Table 5 investigates the impact of time interval △T in
mining POI sequential patterns. From the experimental re-
sults, we observe that the performance first improves quick-
ly with the increase of △T and then drop down gradually.
The reason of accuracy disparity is that, when △T is small,
GE prunes too many POI co-occurrence edges, leading to
a extremely sparse POI-POI graph; while △T becomes too
large, GE may incorporate too many noise edges and fail to
capture the sequential patterns of check-in POIs. Thus, we
choose △T = 25 days on Foursquare dataset and △T = 9
days on Gowalla dataset to achieve the best results. Due to
the denser check-in data in the Gowalla dataset on average,
the △T is much smaller on Gowalla dataset than that on
Foursquare dataset.

3.4.3 Exploring Various Temporal Patterns

So far, we have evaluated the recommendation perfor-
mance of GE with daily pattern (24 hours of a day), as shown
in Fig. 2, in which we divide time into 24 time slots that cor-
responds to 24 hours. But, our GE model is not limited to
one specific temporal cyclic pattern. By taking different def-
initions of temporal state, many other temporal patterns can
be integrated into our GE model, as long as they contain the
non-uniformness and consecutiveness properties [7]. In this

experiment, we design two additional variants of GE, GE-S5
and GE-S6, to study the effect of weekly pattern (day of the
week) and weekday/weekend pattern, respectively. We di-
vide time into 7 time slots in GE-S5, and 2 time slots in GE-
S6. Fig. 3 shows the recommendation results of GE, GE-S5,
GE-S6 and GE-S3. GE, GE-S5 and GE-S6 exploit daily pat-
tern, weekly pattern and weekday/weekend pattern, respec-
tively, while GE-S3 does not consider any temporal cyclic
pattern. The results indicate that exploiting daily pattern,
weekly pattern or weekday/weekend pattern can largely im-
prove the location-based recommendation performance, and
the improvement brought by exploiting daily pattern is the
most significant.

3.5 Test for Cold Start Problem
In this experiment, we conduct experiments to study the

effectiveness of different recommendation algorithms in ad-
dressing cold-start POI recommendations on the Foursquare
dataset. As there is not any check-in information available
for the cold-start POIs, PRME-G model does not work in
the cold-start scenario. Thus, we compare our GE mod-
el with other three recommender models that are able to
leverage geographical influence and semantic effect to rec-
ommend cold-start POIs.

The experimental results are shown in Fig. 4, from which
we have the following observations: 1) our proposed GE
model still performs best consistently in recommending cold-
start POIs, and its advantage over other three methods is
more significant; and 2) by comparing the recommendation
results in Fig. 2(a) and Fig. 4, the recommendation accura-
cy of all algorithms decreases, to different degrees, for cold-
start POIs, i.e., the recommendation accuracy of Geo-SAGE
and SVDFeature drop drastically while our GE model de-
teriorate slightly. This is because all JIM, SVDFeature and
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Figure 4: Recommendation for Cold-start POIs

Geo-SAGE recommend cold-start POIs according to their
content information and geographical locations; while our
GE model can still learn vector representations for cold-
start POIs by embed them into the shared latent space,
and thus the potential sequential relation between cold-start
POIs and normal POIs and the potential correlation between
cold-start POIs and time slots are well captured through the
shared latent space. In other words, our GE model lever-
ages not only the geographical influence and semantic effect,
but also the potential sequential effect and temporal cyclic
effect, when recommending cold-start POIs.

4. RELATED WORK
In this section, we discuss existing research related to our

work, including location-based recommendation integrating
various factors and metric embedding.
Recently, with the easy access of large-scale user activ-

ity records in LBSNs, many recent work has tried to im-
prove location-based recommendation by exploiting various
side effects such as sequential effect, geographical influence,
temporal cyclic effect and semantic effect. 1) Sequential
effect. Most of the studies developed the Markov chain-
based methods to capture the sequential patterns of POIs
and to reduce the size of the prediction space, Cheng et
al. [4] investigated sequential influence using the first-order
Markov chain to recommend a new location for the user by
only considering user’s latest location. Zhang et al. [29]
predicted the next location probability through an additive
Markov chain, assuming that recent check-in locations usu-
ally have stronger influence than those locations checked-in
long time ago. 2) Geographical influence. Many recent
studies [10, 3, 20, 24] showed that there is a strong cor-
relation between user check-in activities and geographical
distance, thus leveraging the geographical influences to im-
prove recommendation accuracy has been noticed by most of
current location-based recommendation work. For example,
Lian et al. [10] incorporated spatial clustering phenomenon
resulted by geographical influence into a weighted matrix
factorization framework to address the challenge from ma-
trix sparsity. 3) Temporal cyclic effect. Since human
movements exhibit strong temporal cyclic patterns, the tem-
poral effect of user check-ins in LBSNs has also attracted
much attention from researchers. Gao et al. [7] studied the
temporal cyclic patterns of user check-ins in terms of tempo-
ral non-uniformness and temporal consecutiveness. Yuan et
al. [28] incorporated the temporal cyclic information into a
user-based collaborative filtering framework for time-aware
POI recommendation. 4) Semantic effect. Researchers
explored the semantic information of POIs mainly to allevi-

ate the problem of data sparsity. Hu et al. [8] proposed a
spatial topic model for location-based recommendation con-
sidering both spatial aspect and textual aspect of user posts
from Twitter. Liu et al. [12] studied the effect of POI as-
sociated tags for POI recommendation with an aggregated
LDA and matrix factorization method. Yin et al. [25, 17]
exploited both personal interests and local preferences based
on the contents associated with spatial items.

Recently, there are also some work turned their eyes on
integrating analysis of joint effect of the above factors to al-
leviate the issue of data sparsity, cold start and spatiotem-
poral context-aware recommendation [23, 27]. For example,
Yin et al. [27] proposed a probabilistic generative model for
jointly modeling of geographical influence, temporal cyclic
effect and semantic effect. However, our work is a generic
method, we not only gain the benefits brought by exploiting
various kinds of factors, but also utilize the metric embed-
ding methods to integrate different factors more smoothly
in a shared latent space.

Embedding methods have been long studied and proved to
be effective in capturing latent semantics of how items (e.g.
words in sentences) interact with each other. For example,
Tang et al. [16, 15] learned words embedding to make doc-
ument classification, and verified its effectiveness. Chen et
al. [1] adopted metric embedding in the music playlist pre-
diction and proposed a Logistic Markov embedding model
for generating the playlists. The location-based recommen-
dation using metric embedding methods is relatively less.
In our previous work [18], we applied the graph-based em-
bedding method to the next POI recommendation, but only
employed one homogeneous graph to embed the CF relat-
ed information and sequential effect, as we mainly focused
on the problem of successive POI recommendation in [18].
In this work, we proposed to utilize the multi-heterogenous
graphs to capture and model the four factors in a unified
framework. Cold start problem can also be solved easily in
our framework, as POIs without any check-in can be still
embedded by leveraging their interactions with time, loca-
tions and textual words. PRME proposed by Feng et al.
[6] is also the typical one which exploits pair-wise ranking
scheme. However, our work is a graph-based method, which
integrates various factors into a shared metric by different
bipartite graphs while PRME embeds user preference and
sequential patterns in two different metric respectively, and
only considered sequential patterns of POIs and geographi-
cal influence.

Our work in this paper distinguishes itself from other
researches in several aspects. Firstly, to the best of our
knowledge, it is the first effort that investigates the join-
t effect of sequential effect, geographical influence, tempo-
ral cyclic effect and semantic effect to address the chal-
lenges of data sparsity, cold start, context-aware recommen-
dation and dynamic user preferences in a unified way utiliz-
ing the graph-based embedding method. Secondly, although
research [6] exploited the metric embedding for location-
based recommendation, it embedded user preferences and
sequential transition into two different spaces which may
lose some potential relationship between users and POIs. In
contrast, our proposal encode all the factors into a shared
latent space via graph-based method. Moreover, incapabil-
ity in the cold-start scenario makes PRME-G drop behind
our model. Thirdly, to support real-time recommendation,



we propose a novel method for dynamic preference modeling
based on the learnt embedding of POIs.

5. CONCLUSIONS
In this paper, we developed a graph-based embedding

(GE) model to integrated capture the sequential effect, ge-
ographical influence, temporal cyclic effect and semantic ef-
fect in a unified way by embedding the four corresponding
relational graphs (POI-POI, POI-Region, POI-Time, POI-
Word) into a shared low dimensional space for the ease of
data sparsity, cold-start problem and context-aware recom-
mendation in LBSNs. Besides, to support recommendation
in a real-time manner, we developed a novel time-decay
method to dynamically compute the user’s latest preferences
based on the embedding of his/her checked-in POIs learn-
t in the latent space. To the best of our knowledge, this
is the first work that uses the metric embedding method
to unify dynamic user preferences and various of factors in
a principled manner. We conducted extensive experiments
to evaluate the performance of our GE model on two real
large-scale datasets. The results showed superiority of our
proposal over other competitor methods, especially in rec-
ommending cold-start POIs. Moreover, we studied the im-
portance of each factor in improving recommendation under
the same framework, and found that both sequential effect
and temporal cyclic effect play a dominant role in location-
based recommendation and the daily pattern is the most
significant temporal cyclic pattern in users’ daily behaviors.
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