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ABSTRACT
Inference algorithms of latent Dirichlet allocation (LDA), either
for small or big data, can be broadly categorized into expectation-
maximization (EM), variational Bayes (VB) and collapsed Gibbs
sampling (GS). Looking for a unified understanding of these differ-
ent inference algorithms is currently an important open problem. In
this paper, we revisit these three algorithms from the entropy per-
spective, and show that EM can achieve the best predictive perplex-
ity (a standard performance metric for LDA accuracy) by minimiz-
ing directly the cross entropy between the observed word distribu-
tion and LDA’s predictive distribution. Moreover, EM can change
the entropy of LDA’s predictive distribution through tuning priors
of LDA, such as the Dirichlet hyperparameters and the number of
topics, to minimize the cross entropy with the observed word dis-
tribution. Finally, we propose the adaptive EM (AEM) algorithm
that converges faster and more accurate than the current state-of-
the-art SparseLDA [20] and AliasLDA [12] from small to big data
and LDA models. The core idea is that the number of active topics,
measured by the residuals between E-steps at successive iterations,
decreases significantly, leading to the amortized O(1) time com-
plexity in terms of the number of topics. The open source code of
AEM is available at GitHub.
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1. INTRODUCTION
Latent Dirichlet allocation (LDA) [4] is a three-layer hierarchical

Bayesian model widely used for probabilistic topic modeling, com-
puter vision and computational biology. The collections of docu-
ments can be represented as a document-word co-occurrence ma-
trix, where each element is the number of word count in the spe-
cific document. Modeling each document as a mixture topics and
each topic as a mixture of vocabulary words, LDA assigns thematic
labels to explain non-zero elements in the document-word matrix,
segmenting observed words into several thematic groups called top-
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ics. From the joint probability of latent labels and observed words,
existing inference algorithms of LDA approximately infers the pos-
terior probability of topic labels given observed words, and esti-
mate multinomial parameters for document-topic distributions and
topic-word distributions. In Bayesian view, LDA adds the Dirich-
let prior constraints on its predecessor, probabilistic latent semantic
analysis (PLSA) [10], and shows a better generalization ability for
predicting the words in unseen corpus.
In the past decade, the batch/online/parallel inference algorithms

of LDA for either small or big data mainly fall into three cate-
gories: 1) expectation-maximization (EM) [5], 2) variational Bayes
(VB) [4], and 3) collapsed Gibbs sampling [8]. For example, EM
for LDA has many variants such as batch EM [5, 3, 23], online
EM [24], and parallel EM [13]. Similarly, VB also has batch [4],
online [9] and parallel [25] variants. Among these inference algo-
rithms, GS variants [8, 15, 20, 12, 1, 21, 19] have gained signifi-
cantly more interests in both academia and industry because of its
sampling efficiency (low space and time complexities). Unfortu-
nately, there still lacks a unified understanding of these three types
of inference schemes:

• Which algorithm can achieve the best predictive performance?

• What is the effect of prior information, such as the Dirichlet
hyperparameters and the number of topics, on the predictive
performance of these algorithms?

• Which algorithm converges the fastest to the local optimum
of the LDA objective function?

Satisfactory answers to these questions may help researchers and
engineers choose the proper inference algorithms for LDA or other
probabilistic topic models in real-world applications [3, 16, 12].
In this paper, we address these questions within the entropy frame-

work. The corpus provides the observed word distribution x. LDA
can use its multinomial parameters to reconstruct the predictive
word distribution x̂. Inference algorithms aim to minimize the
Kullback-Leibler (KL) divergence between x and x̂ by tuning LDA’s
multinomial parameters conditioned on the Dirichlet hyperparam-
eters. First, we show that minimizing the KL divergence is equiv-
alent to minimizing the cross entropy between x and x̂, which is
the same with the definition of predictive perplexity [4, 3, 9, 23], a
standard performance metric for different inference algorithms of
LDA. Minimizing the cross entropy can be done directly by EM [5]
rather than VB [4] and GS [8]. Therefore, EM can learn x̂ with
better generalization ability on unseen corpus than both VB and
GS. Second, as far as prior information is concerned [16], we show
that tuning Dirichlet hyperparameters can minimize the entropy of
x̂, which in turn can minimize the cross entropy for the best pre-
dictive performance. Nevertheless, when the number of training



Table 1: Definitions of Notation.
1 ≤ d ≤ D Document index
1 ≤ w ≤ W Word index in vocabulary
1 ≤ k ≤ K Topic index
xW×D = {xw,d} Observed word distribution
x̂W×D = {x̂w,d} Predictive word distribution
NNZ Number of nonzero elements
N =

∑
w,d

xw,d Total number of word tokens

zW×D = {zk
w,d} Topic labels for words

rK×D = {rk,d} Residual matrix
θK×D Document-topic distribution
φK×W Topic-word distribution
μK×NNZ Responsibility matrix
α, β Dirichlet hyperparameters

documents increases, the best hyperparameters approach to zeros.
Under this situation, LDA reduces to PLSA without Dirichlet prior
constraints. This makes sense according to the Bayesian theory,
where the data-driven likelihood plays more important roles than
prior information when data become big. Also, increasing the to-
tal number of topics K will decrease the entropy of x̂ for a lower
cross entropy with x. Finally, we propose the adaptive EM (AEM)
algorithm for minimizing the cross entropy with fast convergence
speed. The basic idea is that in each document AEM calculates a
few number of active topics measured by residuals between E-steps
at successive iterations. We find that the number of active topics in
each document shrinks significantly after a few iterations, which is
irrelevant toK provided by users. In this sense, AEM has an amor-
tized O(1) time complexity in terms of K, similar to the current
state-of-the-art AliasLDA [12] and LightLDA [21]. As a summary,
we have the following contributions in this paper:

• We explain the major difference among three inference al-
gorithms for LDA by the cross entropy. We show that EM
can achieve the best predictive performance because it mini-
mizes directly the cross entropy between the observed word
distribution and the LDA’s predictive word distribution.

• We discuss how prior information of LDA such as the Dirich-
let hyperparameters and the number of topics K affect the
entropy of LDA’s predictive word distribution. When data
(corpus) become bigger, the best Dirichlet hyperparameters
become smaller, which makes LDA reduce to PLSA. Also,
the larger K always leads to a better predictive performance
on unseen data because it decreases steadily the entropy of
LDA’s predictive word distribution.

• We propose the AEM algorithm that converges significantly
faster and more accurate than the state-of-the-art GS fast vari-
ants (SparseLDA [20] and AliasLDA [12]), VB fast variants
(online VB [9]) and EMvariants (fast EM [24]), as confirmed
by extensive experiments from small to big datasets and LDA
models with large K.

Section 2 reviews EM, VB and GS for LDA. Section 3 presents
the entropy formulation of LDA’s objective function, and discusses
the influence of prior information on LDA’s word prediction per-
formance. We propose AEM based on residual learning with amor-
tized O(1) time complexity in terms of K. Section 4 shows ex-
tensive experiments from small to big datasets and LDA models.
Finally, Section 5 makes conclusions and envisions further work.

2. LDA INFERENCE ALGORITHMS
LDA allocates a set of thematic topic labels, z = {zk

w,d}, to ex-
plain nonzero elements in the document-word co-occurrence ma-
trix xW×D = {xw,d}, where 1 ≤ w ≤ W denotes the word

E-step:

μw,d(k) ∝
[θ̂d(k) + α − 1][φ̂w(k) + β − 1]∑

w[φ̂w(k) + β − 1]
, (1)

M-step:

θ̂d(k) =
∑
w

xw,dμw,d(k), (2)

φ̂w(k) =
∑

d

xw,dμw,d(k). (3)

Hyperparameters:

α∗ = α − 1, β∗ = β − 1. (4)

Algorithm 1: E-step and M-step in EM.

index in the vocabulary, 1 ≤ d ≤ D the document index in the
corpus, and 1 ≤ k ≤ K the topic index. Usually, the number
of topics K is a prior information provided by users. Some topic
models like hierarchical Dirichlet process (HDP) [17] can learn au-
tomatically the suitable K from corpus, which is not considered
in the context of this paper. The nonzero element xw,d �= 0 de-
notes the number of word counts at the index {w, d}. For each
word token xw,d,n = {0, 1}, xw,d =

∑
n

xw,d,n, there is a topic
label zk

w,d,n = {0, 1},
∑K

k=1 zk
w,d,n = 1, 1 ≤ n ≤ xw,d. Each

nonzero element xw,d �= 0 is associated with a topic probability
vector

∑
k

μw,d(k) = 1, which denotes the posterior probability
of a topic label zk

w,d = 1 given the observed word {w, d}. The ob-
jective of inference algorithms is to calculate the posterior probabil-
ity from the full joint probability p(x,z, θ, φ|α, β) of LDA, where
z is the topic labeling configuration, θK×D and φK×W are two
non-negative matrices of multinomial parameters for document-
topic and topic-word distributions, satisfying

∑
k

θd(k) = 1 and∑
w

φw(k) = 1. Both multinomial matrices are generated by two
Dirichlet distributions with hyperparameters αk and βw . Although
learning asymmetric hyperparameters can lead to a better predic-
tion performance [18], it needs complicated optimization steps. For
simplicity, we consider the smoothed LDA with fixed symmetric
hyperparameters [8], i.e., ∀k αk = α; ∀w βw = β. Table 1 sum-
marizes the important notations in this paper.

2.1 EM, VB and GS
EM maybe the earliest maximum a posteriori (MAP) inference

algorithm for LDA [5, 3]. It marginalizes out the latent topic vari-
ables z in the full joint probability of LDA p(x, z, θ, φ|α, β), and
tunes the multinomial parameters {θ, φ} conditioned on {α, β} to
maximize the following posterior probability,

p(θ, φ|x, α, β) =
p(x,θ, φ|α, β)

p(x|α, β)
∝ p(x,θ, φ|α, β). (5)

Maximizing this posterior finds the best parameters {θ∗, φ∗} to
explain the observed words x, no matter what topic labeling con-
figuration z is. EM is an iterative coordinate ascent algorithm com-
posed of E-step and M-step in Algorithm 1. In the E-step, EM
infers the responsibility μw,d(k) by fixing parameters {θ̂, φ̂}. In
the M-step, EM updates parameters {θ̂, φ̂} based on the inferred
responsibility μw,d(k). Normalizing {θ̂, φ̂} obtains the multino-
mial parameters {θ, φ}. For simplicity, we replace the hyperpa-
rameters by α∗ = α − 1 and β∗ = β − 1 as shown in Algo-
rithm 1. When α∗, β∗ → 0, the Dirichlet distribution becomes the
uniform distribution without constraints on the generated multino-
mial variables. Under this condition, EM for LDA reduces to EM



Variational E-step:

μw,d(k) ∝
exp[Ψ(θ̂d(k) + α)] exp[Ψ(φ̂w(k) + β)]

exp[Ψ(
∑

w
[φ̂w(k) + β])]

, (6)

θ̂d(k) =
∑
w

xw,dμw,d(k). (7)

Variational M-step:

φ̂w(k) =
∑

d

xw,dμw,d(k). (8)

Hyperparameters:

α∗ = α − 0.5, β∗ = β − 0.5. (9)

Algorithm 2: Variational E-step and M-step in VB.

for PLSA [10]. According to [13, 24], EM for LDA has many vari-
ants with different names such as the collapsed variational Bayes
having zero-order approximation (CVB0) [3] and the belief propa-
gation (BP) [23, 22].
Unlike standard EM, VB [4] treats {θ, z} as latent variables,

and tunes the multinomial parameter φ to maximize the following
posterior from the full joint probability,

p(θ, z|x, φ, α, β) =
p(x,z, θ, φ|α, β)

p(x,φ|α, β)
. (10)

Maximizing this posterior optimizes the topic-word distributionφ∗

from training data to generate the best {θ, z} for unseen corpus,
i.e., for the best generalization performance. Nevertheless, marginal-
izing out latent variables {θ, z} in full joint probability of LDA,∫

θ,z
p(x,z, θ, φ|α, β), is intractable. As a result, VB maximizes

an approximate variational posterior rather than (10) using the vari-
ational EM algorithm [14] in Algorithm 2. In the variational E-
step, fixing the parameter φ̂w(k), we update μw,d(k) and θ̂d(k)
until convergence, which makes the variational posterior approx-
imate the true posterior p(θ, z|x, φ, α, β) by minimizing the KL
divergence between them. In the variational M-step (8), we update
φ̂w(k) to maximize the variational posterior having the same form
with the M-step of EM (2). Normalizing {θ̂, φ̂} yields the multino-
mial parameters {θ, φ}. According to [3], exp[Ψ(x)] ≈ x − 0.5

for x > 1, where Ψ is the digamma function. Since {θ̂, φ̂} are
unnormalized document-topic and topic-word distributions, we ex-
pect many elements to be greater than 1 when the number of topics
K is small. So, the variational E-step (6) can be approximated by

μw,d(k) ≈
[θ̂d(k) + α − 0.5][φ̂w(k) + β − 0.5]∑

w
[φ̂w(k) + β] − 0.5

. (11)

Replacing α∗ = α − 0.5 and β∗ = β − 0.5 in (11) (shown in
Algorithm 2) obtains a similar E-step with EM in (1) but with one
main distinction: though the numerator in (11) is the same with
that in (1), the denominator in (11) is always 0.5(W − 1) con-
stant smaller than that in (1). Moreover, when the number of topics
K → ∞, the accumulated {θ̂, φ̂} become very sparse and many
non-zero elements are close to zeros. In this case, the approxima-
tion exp[Ψ(x)] ≈ x − 0.5 for x > 1 cannot be made. Therefore,
the conclusion made in [3] is incorrect that (11) can produce al-
most the same results with (1) by tuning hyperparameters properly.
Our experimental results (in Section 4) also confirm that VB cannot
yield comparable accuracy with EM by tuning only hyperparame-
ters when K and W are large.
Finally, in contrast to EM and VB, GS [8] integrates out the

multinomial parameters {θ, φ} based on the Dirichlet conjugacy,

MCMC E-step:

μw,d,n(k) ∝
[θ̂

−z
k,old
w,d,n

d
(k) + α][φ̂

−z
k,old
w,d,n

w (k) + β]

∑
w[φ̂

−z
k,old
w,d,n

w (k) + β]

, (12)

Sampling zk,new

w,d,n
= 1 from μw,d,n(k). (13)

MCMCM-step:

θ̂d(k) = θ̂
−z

k,old
w,d,n

d
(k) + z

k,new

w,d,n
, (14)

φ̂w(k) = φ̂
−z

k,old
w,d,n

w (k) + zk,new

w,d,n
. (15)

Hyperparameters:

α∗ = α, β∗ = β. (16)

Algorithm 3: MCMC E-step and M-step in GS.

and tunes the latent topic variables z to maximize the following
posterior from the full joint probability,

p(z|x, α, β) =
p(x,z|α, β)

p(x|α, β)
∝ p(x,z|α, β). (17)

Maximizing this posterior finds the best topic labeling configura-
tion z

∗ to explain the observed word distribution x. The total num-
ber of word tokens is N =

∑
w,d xw,d. Because searching a to-

tal of KN topic configurations for the best z
∗ is intractable, GS

uses an approximate searching called Markov chain Monte Carlo
(MCMC) EM [14] in Algorithm 3. In the MCMC E-step, GS
computes per word token the topic posterior conditioned on the
rest word topic labeling configuration, μw,d,n(k) = p(zk,new

w,d,n =

1|zk,old

w,d,−n,x, α, β), and samples a new topic label zk,new

w,d,n = 1

from this posterior. The notation −zk,old

w,d,n denotes subtracting the
old topic label from the accumulated and unnormalized document-
topic and topic-word matrices {θ̂, φ̂}. In the MCMC M-step, per
word token, GS updates immediately {θ̂, φ̂} by adding the new
sampled topic label zk,new

w,d,n = 1. In this sense, GS can be viewed
as an incremental EM algorithm [13, 24] that estimates the best
topic label zk,new

w,d,n = 1 for each word token sequentially. As shown
in Algorithm 3, the hyperparameters α∗ = α and β∗ = β for a fair
comparison with both EM and VB. Thus, the MCMC E-step (12) is
almost the same with (1) but with one additional sampling step for
each word token xw,d,n rather than xw,d. Since the sampling step
determines the topic label for each word token, GS can be viewed
as a hard version of EM.

2.2 Convergence for Big LDA Models
As reported by the Linguistic Data Consortium, there are mil-

lions of vocabulary words in English, Chinese, Spanish, and Ara-
bic. Taking polysemy and synonyms into consideration, a rough
estimate of the number of word senses is close to the same mag-
nitude of vocabulary words—that is, around 105 or 106 topics for
semantics of small correlated word sets. Extensive experiments on
big search query data confirm that inferring at leastK = 105 topics
can achieve a significant improvement on industrial search engine
and online advertising systems [19]. Therefore, fast algorithms
with low time complexity in terms of K have attracted intensive
research interests recently [15, 20, 12, 21, 24].
These fast algorithms use the fact that the accumulated matri-

ces {θ̂K×D, φ̂W×K} become very sparse when K is large. The
time complexity of GS for one iteration isO(KN). FastLDA [15]
introduces the upper bound on the normalization factor of the pos-



terior (12) using the Hölder’s inequality. Without visiting all pos-
sible K topics, FastLDA is able to draw the target topic sample
from the posterior probability normalized by the upper bound. By
refining the upper bound to approximate the true normalization fac-
tor, FastLDA samples the topic label equal to that drawn from
the true posterior probability as GS does. So, FastLDA yields
exactly the same result as GS but with much less computation.
Due to sparseness, SparseLDA [20] partitions the K-tuple pos-
terior vector into three buckets from which a random topic label
can be efficiently sampled, which avoids additional computations
in GS during the sampling process. SparseLDA is often twice
faster than FastLDA [20] because it does not need to update the
upper bound of normalization factor. Both methods have time com-
plexity O(Kd + Kw) for each word token, where Kd 	 K and
Kw 	 K are the number of nonzero (NNZ) elements per doc-
ument and word in sparse matrices {θ̂, φ̂}. Theoretically, they are
lossless algorithms having the same accuracy with GS.
To speedup SparseLDA, AliasLDA [12] combines Metropolis-

Hastings scheme and the use of the Walker’s alias method for esti-
mating φ̂ with amortized O(1) complexity. So, it reduces the over-
all time complexity for each word token toO(Kd). In practice, Kd

is often bounded due to sparsity of matrix θ̂ when K → ∞. Under
this condition, AliasLDA’s time complexity is independent of K.
However, the alias table is an approximation to the slowly changing
word-topic distribution, which loses accuracy when compared with
GS. Our results also confirm that AliasLDA converges faster than
SparseLDA but with slightly worse accuracy. Furthermore, based
on AliasLDA, LightLDA [21] builds the alias tables for updating
both {θ̂, φ̂} with the overall amortized time complexity O(1) for
each word token. Likewise, because of the alias approximation and
delayed update, LightLDA cannot ensure the same accuracy with
GS, though it converges significantly faster.
Both VB and EM have time complexity O(K × NNZ). Be-

cause NNZ 	 N , VB and EM should be faster for scanning one
iteration of corpus than GS. Moreover, due to MCMC sampling
process, GS is well-known to sweep data more iterations than EM
and VB for convergence. But, VB is often slower than GS for each
iteration, because it computes K time-consuming digamma func-
tions for each xw,d �= 0 [3, 23]. Till now, VB has no specific
variants designed for large K. Online VB [9] partitions the data
into small minibatches and performs the variational M-step for each
minibatch sequentially, which converges using significantly less it-
erations than batch VB. As far as EM variant is concerned, fast EM
(FEM) [24] is designed for large K. At its core is the idea that
the responsibility vector μw,d(k) in (1) and (2) can be updated on
a dynamically changing subset of active topics. Nevertheless, the
size of this subset is fixed for all documents in FEM, causing more
learning time on those fast convergent documents.

3. LDA REVISITED
We first reformulate LDA’s objective function within the entropy

framework, and explain why EM can achieve better predictive per-
plexity than both VB and GS. Prior information, such as Dirichlet
hyperparameters {α∗, β∗} and the number of topicsK, can change
the entropy of LDA’s predictive word distribution for a better per-
formance. Finally, we propose AEM with fast convergence speed
for big LDA models, having the amortized time complexity O(1)
for each xw,d �= 0 in terms of K.

3.1 Entropy
The bag-of-word representation of a given corpus is denoted by a

sparse matrix xW×D. We normalize this matrix by the total number

of word tokens, xw,d ← xw,d/N , so that each element becomes
the observed probability xw,d = p({w, d}|corpus),

∑
w,d xw,d =

1. In this way, the observed word distribution of a fixed corpus
is represented by the normalized matrix xW×D , from which we
can randomly sample words to reconstruct the corpus. However,
this observed word distribution does not provide latent thematic
relations of co-occurred words, which requires topic models like
PLSA and LDA to learn. LDA represents each document as a finite
mixture of topics, and each topic as a finite mixture of vocabulary
words. Through finding latent topic structures, LDA can recon-
struct the predictive word distribution x̂W×D by document-topic
and topic-word distributions as follows,

x̂W×D = φW×K × θK×D, (18)

where θ ∼ Dir(α) ∝
∏

d

∏
k
[θd(k)]α−1 and φ ∼ Dir(β) ∝∏

k

∏
w
[φw(k)]β−1. The inference algorithms of LDA aim to min-

imize the KL divergence between the observed word distribution
and the predictive word distribution,

DKL(x||x̂; α, β) = H(x, x̂|α, β) − H(x), (19)

where the entropy of the corpus H(x) is a constant, so that min-
imizing the KL divergence is equivalent to maximizing the minus
cross entropy, i.e., −H(x, x̂|α, β),

− H ∝

∑
w,d

xw,d log

(
x̂w,d

∏
d

∏
k

[θd(k)]α−1
∏
k

∏
w

[φw(k)]β−1

)

∝

∑
w,d

xw,d

[
log

∑
k

μw,d(k)
θd(k)φw(k)

μw,d(k)

]
+

∑
w,d

xw,d

( ∑
d

∑
k

log[θd(k)]α−1 +
∑

k

∑
w

log[φw(k)]β−1

)
, (20)

where μw,d(k) is some topic distribution over the word index {w, d}
satisfying

∑
k

μw,d(k) = 1, μw,d(k) ≥ 0. Note that the third line
in (20) can be re-written as follows,

∑
w,d

xw,d

( ∑
d

∑
k

log[θd(k)]
α−1

+
∑

k

∑
w

log[φw(k)]
β−1

)

=

( ∑
d

∑
k

log[θd(k)]α−1 +
∑

k

∑
w

log[φw(k)]β−1

) ∑
w,d

xw,d, (21)

where
∑

w,d
xw,d = 1. According to the Jensen’s inequality, we

obtain the following lower bound to (20),

−H ≥
∑
w,d

∑
k

xw,dμw,d(k)

[
log

θd(k)φw(k)

μw,d(k)

]

+
∑

d

∑
k

log[θd(k)]α−1 +
∑

k

∑
w

log[φw(k)]β−1. (22)

The equality holds true if and only if

μw,d(k) ∝ θd(k)φw(k). (23)

For this choice of μw,d(k), Eq. (22) gives a tight lower bound on
the minus cross entropy (20) we are trying to maximize. Note that
Eq. (23) is the same as the E-step (1) in EM. Since the hyperpa-
rameters {α, β} are fixed, without loss of generality, we derive the
optimal update for the parameter θd(k). Because θd(k) is param-
eter of a multinomial distribution. there is an additional constraint
that

∑
k

θd(k) = 1. To deal with this constraint, we construct
the Lagrangian from (22) by grouping together only the terms that
depend on θd(k),

�(θ) =
∑

d

∑
k

[ ∑
w

xw,dμw,d(k) + α − 1

]
log θd(k) + δ

( ∑
k

θd(k) − 1

)
,

(24)



where δ is the Lagrange multiplier. Taking derivatives, we find

∂

∂θd(k)

�(θ) =

∑
w xw,dμw,d(k) + α − 1

θd(k)
+ δ. (25)

Setting this to zero, we get

θd(k) =

∑
w

xw,dμw,d(k) + α − 1

−δ
. (26)

Using the constraint that
∑

k
θd(k) = 1, we easily find that −δ =∑

k
[
∑

w
xw,dμw,d(k) + α − 1]. We therefore have our M-step

update for the parameter θd(k) as

θd(k) =
θ̂d(k) + α − 1∑
k
[θ̂d(k) + α − 1]

. (27)

where θ̂d(k) =
∑

w
xw,dμw,d(k) is the expected sufficient statis-

tics. Note that the denominator in (27) is a constant
∑

w xw,d +
Kα − K. The other multinomial parameter can be estimated by

φw(k) =
φ̂w(k) + β − 1∑
w
[φ̂w(k) + β − 1]

, (28)

where φ̂w(k) =
∑

d
xw,dμw,d(k) is the expected sufficient statis-

tics. Till now, minimizing the KL divergence between the observed
word distribution and the predictive word distribution (19) results
in the same E-step and M-step in Algorithm 1.
Minimizing the KL divergence (19) bridges LDA’s objective func-

tion with non-negative matrix factorization (NMF) [11] as follows,

x ≈ φθ, θ ∼ Dir(α), φ ∼ Dir(β), (29)

min

(
−

∑
w,d

xw,d log(φθ)w,d

)
,∀xw,d �= 0, (30)

where the observed matrix x is decomposed into two non-negative
matrices {θ, φ} in (29). When α = β = 1 (α∗ = β∗ = 0 in
Algorithm 1), the Dirichlet constraint (29) can be discarded, so that
NMF (29) and (30) become the standard PLSA model [7, 6]. We
note that [2] studies the recoverability of the parameters of the LDA
by NMF algorithms for topic modeling with provable guarantees.
Different inference algorithms for LDA can be fairly compared

by the perplexity metric [4, 3, 9, 23],

exp

{
−

∑
w,d

xw,d log(φθ)w,d∑
w,d

xw,d

}
∝ −

∑
w,d

xw,d log(φθ)w,d. (31)

which has been previously interpreted as the geometric mean of
the likelihood in the probabilistic framework. Comparing Eqs. (31)
with (30), we find that the perplexity metric can be also inter-
preted as the cross entropy between the observed word distribution
x and the multiplication of two factorized matrices φθ. Because
EM can directly minimizes the KL divergence (19) or the cross
entropy (30), it often has a much lower predictive perplexity on
unseen test data than both VB and GS in Section 2 for predicting
the words in unseen corpus. This theoretical analysis has also been
supported by extensive experiments in Section 4, where the pre-
dictive perplexity on the unseen test data is calculated as follows:
Step 1) We randomly partition the dataset into training and test sets
in terms of documents. Step 2) We estimate φ̂ on the training set
by a number of iterations until convergence. Step 3) We randomly
partition each document into 80% and 20% subsets on the test set.
Fixing φ̂, we estimate θ̂80% on the 80% subset by a number of itera-
tions until convergence, and then calculate the predictive perplexity

on the rest 20% subset,

exp

{
−

∑
w,d

x20%
w,d log

[ ∑
k

θ80%
d (k)φw(k)

]
∑

w,d
x20%

w,d

}
. (32)

3.2 Prior
In this subsection, we shall discuss the effect of prior informa-

tion, such as the hyperparameters {α∗, β∗} and the number of top-
icsK, on the predictive perplexity (32). According to (18), (27), (28)
and Algorithm 1, we obtain the following equations,

x̂ ∼ x̂w,d =
∑

k

θd(k)φw(k), (33)

θd(k) =
θ̂d(k) + α∗∑
k
[θ̂d(k) + α∗]

, φw(k) =
φ̂w(k) + β∗∑
w
[φ̂w(k) + β∗]

, (34)

where tuning hyperparameters {α∗, β∗} and the number of topics
K will influence directly the entropy of predicted word distribu-
tion, i.e., H(x̂), which is the upper bound of the KL divergence
DKL(x̂||x). The lower H(x̂) results in the lower DKL(x̂||x).
From (34), when {α∗, β∗} → ∞, we get θd(k) → 1/K and

φw(k) → 1/W for uniform distributions, so that H(x̂) is maxi-
mized in (33), which also increases the cross entropy (20). On the
contrary, the smaller hyperparameters {α∗, β∗} make the matrices
{θ, φ} in (34) more sparse. According to the theoretical analy-
sis [16], both hyperparameters should be set small (e.g., α∗ ≈
0.1, β∗ = 0.01) for better learning efficiency, because each doc-
ument is associated with a few topics and the topics are known to
be word-sparse. Nevertheless, the smallest {α∗, β∗} = 0 does not
result in the best predictive performance (32), because PLSA often
generalizes worse than LDA on unseen test data [4]. If the training
data are sufficiently big, PLSA will approximate LDA because the
Bayesian Dirichlet prior plays a less important role in preventing
overfitting. To summarize, we have the following hypotheses on
hyperparameters:

• Changing {α∗, β∗} from zeros to infinity will first decreases
and then increases H(x̂) as well as (32).

• When D increases, the best hyperparameters {α∗, β∗} → 0.

Observing (33), we also find that increasing K can decrease H(x̂)
because more sparsity or expression power is added on matrices
{θ, φ}. When K → ∞, the decrease level of H(x̂) will become
small because the minimum of H(x̂) exists. Hence, we summarize
the following hypothesis on K for predictive performance:

• Increasing K will steadily decrease H(x̂) to the minimum.

However, our observation is inconsistent with the conclusion made
in [16] that the user needs to avoid selecting overly large number
of topics for LDA. We conjecture that the difference lies in the dif-
ferent performance metrics used for LDA. For the predictive per-
plexity metric (32), we find that more topics are beneficial, which
is supported by the recent practice in learning big topic models [19]
for search engine and online advertisement applications.
Due to similar algorithmic structures, the above hypotheses for

EM are also applicable to VB in Algorithm 2 and GS in Algo-
rithm 3 but with one exception for VB that has not been fully dis-
cussed in [3]. When K or W is very large, the approximation (11)
does not hold true. Under this condition, VB cannot minimize the
cross entropy (20) for the best predictive perplexity (32) even if we
carefully tune the Dirichlet hyperparameters {α∗, β∗}.
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Figure 1: An example of adaptive EM (AEM).

3.3 Convergence
The core idea of the proposed AEM for fast convergence is that

we do not need to update the responsibility vector μw,d(k),∀k in
both E-step and M-step due to sparsity of matrices {θ̂, φ̂}. Instead,
we can update only a subset of active topics Kd for each document
selected by ranking the residual,

rd(k) =
∑
w

xw,d|μw,d(k) − μold
w,d(k)|, (35)

where μold
w,d(k) stores the responsibility vector in the previous iter-

ations. For the dth document, if rd(k1) > rd(k2), the topic k1 is
more important or active than the topic k2 for updating because k1

has a larger change of topic assignment than k2. When the conver-
gence is achieved, it is expected that rd(k) → 0, ∀k representing
all topics become inactive. Because EM can converge to the local
optimum of (20), rd(k

∗)will always become smaller after μ·,d(k
∗)

has been selected and updated in both E-step and M-step. Hence,
the topic k∗ becomes more inactive, and may not be selected in
the next iteration by dynamically ranking in descending order. The
complexity of initial quick-sort ranking is at mostO(D×K log K)
for each iteration, and that of the subsequent insert-sort ranking is
nearly independent of K. Both ranking operations will not add
much time complexity when compared with the original EM com-
plexity O(K × NNZ). In this way, all important or active topics
of each document can be selected to form an active topic subset
Kd at different learning iterations. In practice, the cardinality of
this subset |Kd| 	 K when K is very large. Specifically, Fast
EM (FEM) [24] fixes |Kd| = c,∀d at all iterations, where c is a
constant, e.g., c = 10. Since EM has a time complexity O(K),
FEM thus has an amortized time complexity O(1) in terms of K.
However, |Kd| = c,∀d in FEM cannot ensure the fastest conver-
gence speed with two reasons. First, different documents may have
different topic subset cardinalities. Second, documents may shrink
the subset cardinality with more learning iterations. These weak-
nesses motivate the proposed AEM algorithm to find the adaptive
subset cardinality.
Fig. 1 shows an example of the adaptive subset cardinality. All

solid and dashed segments denote normalized responsibility vector
μw,d(k) in proportion where K = 4. The solid segments and ar-
rows denote those selected active topic values μw,d(k∗) for updat-
ing in both E-step and M-step, while the dashed segments denote
those unchanged values. Suppose that there are four documents d1,
d2, d3 and d4 having residual vectors rd1(k), rd2(k), rd3(k) and
rd4(k). For the document d1, if two residuals {rd1(k3), rd1(k4)}
are ranked higher, the topics {k3, k4} are activated in the subset
Kd1 so that the values {μ·,d1(k3), μ·,d1(k4)},∀w ∈ d1 are up-

for k in adaptive subset Kd do1
θ̂−w,d(k) ← θ̂d(k) − xw,dμw,d(k);2
φ̂w,−d(k) ← φ̂w(k) − xw,dμw,d(k);3
μw,d(k) ← normalize([θ̂−w,d(k) + α∗][φ̂w,−d(k) +4
β∗]/

∑
w

[φ̂w,−d(k) + β∗]);
θ̂d(k) ← θ̂−w,d(k) + xw,dμw,d(k);5
φ̂w(k) ← φ̂w,−d(k) + xw,dμw,d(k);6
rd(k) ←

∑
w

xw,d|μw,d(k) − μold
w,d(k)|; μold

w,d(k) ← μw,d(k);7
Kd ← 1 : K∗,

∑K∗

k=1 rd(k) ≈ η
∑ K

k=1 rd(k), η ∈ (0, 1);8
end9

Figure 2: The adaptive EM (AEM) algorithm.

dated in both E-step and M-step. As far as the document d2 is con-
cerned, if three residuals {rd2(k1), rd2(k2), rd2(k3)} are ranked
higher, then {k1, k2, k3} are activated in the subset Kd2 for updat-
ing responsibility {μ·,d2(k1), {μ·,d2(k2), {μ·,d2(k3)},∀w ∈ d2.
Similar rules are applied to documents d3 and d4. Note that docu-
ments may have different subset cardinalities, e.g., |Kd1| �= |Kd2|.
Moreover, the number of active topics for each document will be-
come smaller and smaller when the number of learning iterations
increases due to convergence, i.e., |Kd| → 0. Using the adaptive
subset cardinality, AEM consumes less computation than FEM and
EM in each loop. Also, AEM dynamically refines and sorts doc-
ument residuals, where the active topics in the previous iterations
may be inactive in the subsequent iterations. As a result, those
unchanged or inactive responsibility values will be activated and
updated as indicated by the dashed segments in Fig. 1. Because
all topics can be updated but with different priorities, AEM retains
almost the same topic modeling accuracy with EM.
Fig. 2 shows the AEM algorithm based on incremental EM [13,

24] (lines from 2 to 6), which performs E-step and M-step for each
xw,d �= 0 incrementally, similar to GS in Algorithm 3. Previous
algorithms such as CVB0 [3] and asynchronous BP [23] are equiv-
alent to incremental EM, which has a faster convergence speed than
EM in Algorithm 1 confirmed by experiments in [3, 23]. Because
we only update μw,d(k) for a subset of topics, we need to do local
normalization in line 4 as follows:

μ̂new
w,d (k) =

μw,d(k)∑
k

μw,d(k)
×

∑
k

μold
w,d(k), k ∈ Kd, (36)

where μw,d(k) is updated according to (1). Line 7 updates dynam-
ically document residuals according to (35). For each xw,d �= 0,
AEM calculates an adaptive subset of topicsKd in line 8 as follows,

Kd ← 1 : K∗,

K∗∑
k=1

rd(k) ≈ η

K∑
k=1

rd(k), η ∈ (0, 1), (37)

where rd(k) is sorted in descending order in terms of k, and η
is a tunable parameter to control the proportion. Eq. (37) shows
that we adaptively select a subset with cardinality K∗ that can at
least occupy a controlled proportion of the overall document resid-
ual

∑K

k=1 rd(k) at the current iteration. Obviously,
∑K

k=1 rd(k)
will shrink with more learning iterations due to convergence of the
EM algorithm, so that K∗ will also shrink according to (37) satis-
fying our analysis that different iterations will have different sub-
set cardinalities. Moreover, some converged documents may have
smaller K∗ and some non-converged documents may have bigger
K∗, leading to the expected adaptive subset cardinality. Because of
similar algorithmic structures, the idea of AEM can be also applied
to speeding up both VB and GS.
Similar to FEM, AEM also has the amortized O(1) time com-

plexity for each xw,d �= 0. Nevertheless, the space complexity of
batch AEM is O(K × (NNZ + D + W )) because the matrices
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Table 2: Statistics of Datasets.
Data Dtr Dte W NNZ N H(x)

KOS 3087 343 6906 353160 467714 2903.58
NIPS 1350 150 12419 746316 1932365 13472.34

ENRON 35874 3987 28102 3710420 6412172 21195.39
WIKI 16606 4152 83470 9272290 21051241 53601.87

NYTIMES 290000 10000 102660 0.7 × 108 1 × 108 2.05 × 106

PUBMED 8180000 20000 141043 4.7 × 108 5.6 × 108 2.16 × 106

{μK×NNZ , θ̂K×D, rK×D, φ̂W×K} are in memory, which are un-
affordable for big data and models with large NNZ, D, and K.
Indeed, AEM increases the space complexity to reduce the time
complexity. Online algorithms [9, 24] partition D documents into
1 ≤ s ≤ S small mini-batches so that online AEM has space com-
plexityO(K×(NNZs +Ds +W )), where NNZs 	 NNZ and
Ds 	 D for each mini-batch. More details for online algorithm
implementation can be found in [9, 24].

4. EXPERIMENTS
Table 2 shows 6 publicly available datasets [15] with varying D,

W and document lengths NNZ/D or N/D. Also, we calculate
the entropy H(x) of each dataset, and find that H(x) increases
with W because the large W corresponds to the large uncertainty
space for word prediction. Each dataset is randomly partitioned
into training and test sets with Dtr and Dte documents, respec-
tively. We also extract small subsets from the original NYTIMES
and PUBMED with Dtr = Dte = 105. We evaluate different in-
ference algorithms of LDA using predictive perplexity (32) on test
sets. The lower perplexity means the better performance. All ex-

periments are carried out on a server with two Intel Xeon X5690
3.47G processors and 140G memory. For a fair comparison, only
one CPU core is activated and only 256KB L2 cache is available.
All algorithms are implemented using C++ [9, 22, 12], and VB or
EM uses single-precision floating-point computation [13].

4.1 Results on Prior
We study the effect of hyperparameters {α∗, β∗} and K on pre-

dictive performance of EM, VB and GS. We repeat experiments
three times from three random initializations and report the aver-
age results. For each experiment, EM, VB and GS start from the
same random initialization. For simplicity, we set α∗ = β∗ and use
grid search with fine-grained step size 0.001 for the best values.
The first line of Fig. 3 (fixing K = 300) shows that the entropy

of predictive word distribution H(x̂) first goes down and then goes
up when the hyperparameters {α∗, β∗} increase from zeros with
small steps on four datasets. The second line of Fig. 3 confirms
that the perplexity changes similarly with H(x̂). The minimum
perplexity of EM is much lower than those of VB and GS for much
better predictive performance. Also, we find that α∗ = β∗ = 0
does not produce the lowest perplexity. For example, on ENRON,
EM has 1678 perplexity value when α∗ = β∗ = 0, and achieves
the minimum 1180 perplexity value when α∗ = β∗ = 0.001. This
result reconfirms that LDA indeed has a better generalization abil-
ity than PLSA by adding Dirichlet prior constraints. Moreover, EM
has much smaller best hyperparameters than both VB and GS based
on the grid search. For example, on ENRON, the best hyperparam-
eters for EM, VB and GS are 0.001, 0.01 and 0.008, respectively.
The major reason is that EM can fit the observed word distribu-
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Figure 6: The number of active topics decreases significantly after a few training iterations.

tion x better (measured by the cross entropy) than VB and GS, so
that EM does not need much Dirichlet constraints to improve the
generalization ability. GS can be viewed as a hard version of in-
cremental EM, so it needs slightly smaller hyperparameters than
VB for the lowest predictive perplexity. When the hyperparame-
ters increase to bigger values, GS may have even better predictive
performance than EM, because bigger hyperparameters will over-
smooth the multinomial parameters generated by EM. Since VB
approximates EM when K and W are small, it needs slightly big-
ger hyperparameters than EM and GS for the best performance.
Our conclusion is that different inference algorithms may have dif-
ferent hyperparameters to achieve their own best predictive perfor-
mance. EM needs smaller hyperparameters than VB and GS, and
always achieves the lowest predictive perplexity because it directly
minimizes (32). All results are consistent on four different small
datasets, and reconfirm our hypotheses in Section 3.2.
Fig. 4 (fixing K = 300) shows that if we increase steadily the

number of training documents Dtr , the best hyperparameters val-
ues {α∗ = β∗} decrease to almost zeros based on grid search for
EM, VB and GS. For example, on PUBMED (subset), the best
hyperparameters are {0.1, 0.34, 0.27} for EM, GS and VB when
Dtr = 104, and decrease to {0.00006, 0.0007, 0.0003} when train-
ing data increase to Dtr = 105. In anticipation, this trend remains
as Dtr → ∞, the best {α∗, β∗} → 0. This finding reconfirms that
big data will make LDA reduce to PLSA without Dirichlet prior
constraints in Section 3.2. In Bayesian theory, the data-driven like-
lihood plays more important roles than the prior information when
training data are sufficiently big.
Fig. 5 shows that increasing the number of topics K will always

decrease the predictive perplexity for all three algorithms. We in-
crease from K = 50 with step size 25 until K = 500. In each
experiment, for a fair comparison, we fix different best hyperpa-
rameters (grid search when K = 300) for EM, VB and GS on
different datasets. For example, on WIKI, we fix α∗ = β∗ =
{0.0005, 0.003, 0.001} for EM, VB and GS, respectively. On NY-
TIMES (subset), we fix α∗ = β∗ = {0.0004, 0.001, 0.0009} for
EM, VB and GS, respectively. Consistent with Fig. 3, we see that

EM yields the lowest predictive perplexity, while VB has the high-
est predictive perplexity. For example, on NYTIMES (subset), EM
has perplexity value 1434, VB 4589, and GS 1800 whenK = 500,
respectively. Likewise, on PUBMED (subset), EM has perplexity
value 597, VB 3389, and GS 700 when K = 500, respectively.
These results confirm that there is a big accuracy difference be-
tween VB and EM/GS, because VB cannot approximate EM when
K and W are very large. Note that previous work [3, 23] shows
that VB has comparable accuracy with both EM and GS just be-
cause the dataset has small W ≤ 3 × 104 and the experimental
setting uses small K ≤ 100. Similar to Fig. 3, increasing K can
also decrease the entropy of predictive word distribution H(x̂) as
well as the predictive perplexity values, reconfirming our hypothe-
sis in Section 3.2.

4.2 Results on Convergence
All experiments on convergence are repeated three times with

three different random initializations, and the average results are re-
ported. For the same experiment, all algorithms start from the same
random initialization. For a fair comparison, the hyperparameters
{α∗ = β∗} are carefully tuned based on grid search for the best
predictive performance. If the difference of predictive perplexity
< 10 between two successive iterations, we assume the algorithm
achieves the convergence state.
Fig. 6 shows the average number of active topics K∗ in (37)

for all documents as a function of number of training iterations
(α∗ = β∗ = 0.01, K = 1000). We change the tunable param-
eter η = {0.1, 0.2, 0.4, 0.6, 0.8, 1} and calculate the predictive
perplexity curves on NIPS and KOS datasets. When η = 1, we
get K∗ = K = 1000 for scanning all topics in all documents. In
this case, AEM has the same predictive perplexity as EM. When
η = {0.8, 0.6}, we find that the average K∗ drops significantly
to 60 in less than 15 iterations, and the predictive perplexity keeps
almost the same with EM at the convergence point. For example,
AEM (η = 0.6) converges at {991, 717}, while EM converges at
{971, 713} on NIPS and KOS. However, if η = 0.1, though the av-
erage K∗ drops to 10 in 5 iterations, the predictive perplexity has
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an obvious loss when compared with EM at the convergence point.
For example, AEM (η = 0.1) converges at {1702, 1283}, far from
those of EM. Therefore, we set the parameter of AEM η = 0.6 in
the following experiments.
Fig. 7 shows the predictive perplexity as a function of training

time (minutes) of batch/online AEM, FEM and EM on small (first
line for batch algorithms on ENRON, K = {50, 100, 300, 500},
α∗ = β∗ = 0.001) and big (second line for online algorithms on
NYTIMES, K = {50, 500, 1000, 1500}, α∗ = β∗ = 0.0004)
datasets as well as models. The experimental setting of online al-
gorithms for big data exactly follows that described in [24] with de-
fault parameters, including the mini-batch size Ds = 5120 and the
stop condition that the delta training perplexity at two successive
iterations < 10 for scanning each mini-batch. In the first line on
ENRON, batch AEM converges around 30% ∼ 100% faster than
batch FEM, and around 6 ∼ 10 times faster than batch EM. When
K increases to the maximum 500 in our experiment, batch AEM
achieves the maximum 14 times speedup over batch EM. Note that

the convergence time of AEM increases slowly with the increase of
K. For example, from K = 50 to K = 500, the convergence time
of AEM increases from 4.5 to 26 minutes, while the convergence
time of EM increases from 27 to 356minutes. In anticipation, when
K increases to a very large value, AEMwill have almost a constant
convergence time. In the second line on NYTIMES, online AEM
saves around 12% and 96% convergence time of online FEM and
EMwhenK = 1500. All the perplexity curves of batch/online EM
locate left-bottom to those of batch/online FEM and EM, showing
significant convergence speedup. Generally, AEM converges at a
slightly lower level than FEM, which implies that the adaptive sub-
set cardinality in AEM can produce a higher topic modeling accu-
racy than the fixed subset cardinality in FEM.
Fig. 8 shows the predictive perplexity as a function of training

time (minutes) of batch/online AEM, VB, SparseLDA (GS) and
AliasLDA (GS) on small (first line for batch algorithms on WIKI,
K = {50, 100, 300, 500}, α∗ = β∗ = 0.0005, 0.003, 0.001
for batch AEM, VB and GS, respectively) and big (second line



for online algorithms on PUBMED, K = {50, 500, 1000, 1500},
α∗ = β∗ = 0.00006, 0.0007, 0.0003 for online AEM, VB and
GS, respectively) datasets as well as models. In the first line on
WIKI, AliasLDA is around 10% ∼ 30% faster than SparseLDA
for different K, but it often converges at a higher perplexity value.
The major reason is that SparseLDA is a lossless GS algorithm but
AliasLDA is a lossy implementation due to approximate alias ta-
bles. For different K, AEM on average is around 10% ∼ 20%
faster than AliasLDA, and converges at a much lower perplexity
value. First, for each iteration AEM scans NNZ but AliasLDA
scans N elements, where NNZ 	 N in Table 2. Second, AEM
directly minimizes the cross entropy (20) for a lower perplexity
value. VB performs the worst among these algorithms either on
convergence speed or on predictive performance. In the second line
on PUBMED, online AEM (5923 minutes) converges significantly
faster than online AliasLDA (8531 minutes) when K = 1500.
Also, online AEM reaches the predictive perplexity value 1840,
while online AliasLDA converges at a much higher value 2600.
Likewise, all the perplexity curves of batch/online AEM locate left-
bottom to those of other algorithms, which confirms a salient con-
vergence speedup.

5. CONCLUSIONS
In this paper, we revisit three major inference algorithms of LDA

from the entropy view, and find answers to three important ques-
tions raised in Section 1:

• EM can achieve the best predictive performance because it
directly minimizes the cross entropy between the observed
word distribution and the predictive word distribution gener-
ated by LDA.

• Hyperparameters can change the entropy of the predictive
word distribution produced by LDA, and thus improve the
predictive performance for unseen corpus. When the training
data become big, hyperparameters play an unimportant role
in tuning the predictive performance. Also, more topics in
LDA can yield better predictive performance in terms of the
perplexity metric.

• Empirically, the proposed batch/online AEM algorithm con-
verges the fastest to the local optimum of LDA objective
function. The idea of updating only a varying subset of active
topics may inspire more efficient topic modeling algorithms
such as HDP [17] or efficient EM for other latent variable
models [14]. Future work may parallelize AEM in multi-
core [13] and multi-machine [19] systems for real-world con-
tent analysis applications.
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