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ABSTRACT
A priori determining the ideal number of component classi-
fiers of an ensemble is an important problem. The volume
and velocity of big data streams make this even more crucial
in terms of prediction accuracies and resource requirements.
There is a limited number of studies addressing this prob-
lem for batch mode and none for online environments. Our
theoretical framework shows that using the same number of
independent component classifiers as class labels gives the
highest accuracy. We prove the existence of an ideal num-
ber of classifiers for an ensemble, using the weighted major-
ity voting aggregation rule. In our experiments, we use two
state-of-the-art online ensemble classifiers with six synthetic
and six real-world data streams. The violation of providing
independent component classifiers for our theoretical frame-
work makes determining the exact ideal number of classifiers
nearly impossible. We suggest upper bounds for the number
of classifiers that gives the highest accuracy. An important
implication of our study is that comparing online ensem-
ble classifiers should be done based on these ideal values,
since comparing based on a fixed number of classifiers can
be misleading.
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1. INTRODUCTION
Online ensembles for data stream classification has gained

a great importance over the past few years in big data re-
search. Extensive empirical results show that combining a
suitable number of classifiers improves the accuracy of pre-
dictions, versus a single classifier [3, 4, 5, 14]. However,
increasing the number of component classifiers of an ensem-
ble results in greater computational resource requirements
in terms of time and memory. The high volume and veloc-
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ity of big data streams make this even more crucial in online
environments.

There is a limited number of studies for batch mode en-
sembles. Latinne et al. [12] propose a simple empirical pro-
cedure for limiting the number of classifiers based on the
McNemar non-parametric test of significance. Similar ap-
proaches [2, 8], suggest a range of 10 to 20 base classifiers
for bagging depending on its particular base classifier and
dataset. Oshiro et al. [13] cast the idea that, there is an ideal
number of component classifiers within an ensemble, which
exploiting more base classifiers would bring no significant
performance gain and would only increase computational
costs, using the weighted average area under the ROC curve
(AUC) and some dataset density metrics. Fumera et al. [7,
8] apply an existing analytical framework for the analysis
of linearly combined classifiers of bagging, using misclassifi-
cation probability. Hernández-Lobato et al. [10] suggest a
statistical algorithm for determining the size of an ensemble,
by estimating required number of classifiers for obtaining
stable aggregated predictions, using majority voting.

The contributions of our work are the following: (a) To the
best of our knowledge, we are first to study the number of
component classifiers of online ensembles using weighted ma-
jority voting; (b) We theoretically model online ensembles
for data streams using a geometric framework and prove that
for the highest prediction accuracy, the number of classifiers
should be the same as the number of class labels; (c) We ex-
perimentally examine our hypothesis, using two state-of-the-
art ensemble classifiers and several synthetic and real-world
data streams. We show the existence of the ideal number of
classifiers; however, the violation of providing independent
component classifiers makes exactly determining the ideal
number of classifiers nearly impossible; and (d) We suggest
an upper bound for the number of classifiers that gives the
highest accuracy. Our study also shows that comparing on-
line ensemble classifiers should be done based on these ideal
values, as comparing based on a fixed number of classifiers
can be misleading.

2. A GEOMETRIC FRAMEWORK
Motivation. We propose a framework for studying the

theoretical side of online ensemble classifiers over data stre-
ams, based on [6]. Its general schema is presented in Fig. 1.
Individual scores of component classifiers are modeled in a
spatial environment as vectors for establishing a relationship
between geometric features of vectors, and their correspond-
ing effectiveness. Euclidean norm is used as the loss function
for optimization purposes. According to [9], there are clear
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Figure 1: Schema of our geometric framework.

advantages of using the Euclidean norm for the LSQ solu-
tion. For aggregation, we use the weighted majority voting
rule.

Optimum Weight Assignment. As shown in Fig. 1, we
have an ensemble of component classifiers ξ = {CS1, CS2, · · ·
, CSm}. We assume that all CSj(1 ≤ j ≤ m) are indepen-
dent of each other. For continual updates of the weights, we
use the n latest instances I = {I1, I2, · · · , In}, as an instance
window, where In is the latest instance and all of the true
class labels are available, C = {C1, C2, · · · , Cp}. For each
instance Ii(1 ≤ i ≤ n), each component classifier CSj(1 ≤
j ≤ m) has a score-vector of sij =< S1

ij , S
2
ij , · · · , Sp

ij >.
Mapping all score-vectors of Ii into a p-dimensional space,
builds a polytope which we call the score-polytope of Ii. For
the true class label of Ii we have oi =< O1

i , O
2
i , · · · , Op

i >
as the ideal-point. We aim to find the optimum weight vec-
tor w =< W1,W2, · · · ,Wm >, to minimize the distance be-
tween the score-polytope and ideal-point. Using the squared
Euclidean norm as our measure of closeness for the linear
least squares problem (LSQ) results

min
w
||o− Sw||22 (1)

Where for each instance Ii, S ∈ Rm×p is the matrix with
relevance scores sij in each row, w is the vector of weights
to be determined, and o is the vector of the ideal-point [9].
Since we have n instances in our window, we use the follow-
ing function for our optimization solution.

f(W1,W2, · · · ,Wm) =

n∑
i=1

p∑
k=1

(

m∑
j=1

(WjS
k
ij)−Ok

i )2 (2)

Taking a partial derivation over Wq(1 ≤ q ≤ m), setting
the gradient to zero ∇f = 0, and finding optimum points
give us the optimum weight vector. Letting the following
summations as aqj and dq

aqj =

n∑
i=1

p∑
k=1

Sk
iqS

k
ij , (1 ≤ q, j ≤ m) (3)

dq =

n∑
i=1

p∑
k=1

Ok
i S

k
iq, (1 ≤ q ≤ m) (4)

lead to m linear equations with m variables (weights). The
proper weights in the following matrix equation are our in-
tended optimum weight vector. Briefly, Aw = d, where A is

the coefficients matrix and d is the remainder vector.
a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm

×

W1

W2

...

Wm

 =


d1

d2

...

dm

 (5)

Discussion. According to Eq. 3, A is a symmetric square
matrix. If A has full rank, our problem has a unique solu-
tion. On the other hand, in the sense of a least squares
solution [9], it is probable that A is rank-deficient, and we
may not have a unique solution. Studying the properties of
this matrix lead us to the following theorem.

Theorem 1. If the number of component classifiers is
not equal to the number of class labels, m 6= p, then the
coefficient matrix would be rank-deficient, detA = 0.

Proof. Since we have p dimensions in our Euclidean
space, p independent score vectors would be needed for the
basis spanning set. Any number of vectors, m, more than
p is dependent on the basis spanning set, and any number
of vectors, m, less than p is insufficient for constructing the
basis spanning set.

The above theorem excludes some cases in which we can-
not find optimum weights for aggregating votes. In addition,
for cases where m = p, letting detA = 0 for the parametric
coefficient matrix results in some conditions that we have
vote agreement, and cannot find a unique optimum weight
vector. As an example, suppose that we have 2 component
classifiers for a binary classification task, m = p = 2. Letting
detA = 0, will result in following equations; S1

11+S2
12 = 1 or

S2
11 + S1

12 = 1, meaning the agreement of component classi-
fiers. This gives better insight for the commonly agreed upon
idea that “the classifiers should be different from each other,
otherwise the overall decision will not be better than the
individual decisions” [11]. Optimum weights can be reached
when we have the same number of independent and diverse
component classifiers as class labels.

Conclusion. This theorem supports the idea that there
is an ideal number of component classifiers for an ensemble,
with which we can reach the most accurate results. Increas-
ing or decreasing the number of classifiers from this ideal
point would deteriorate predictions. We refer to this situa-
tion as “the law of diminishing returns in ensemble construc-
tion.” Our framework suggests the number of class labels of
a dataset as the ideal number of component classifiers, with
the premise that they generate independent scores. How-
ever, real-world datasets and existing ensemble classifiers
do not guarantee this premise most of the time. Determin-
ing the exact value of this ideal point for a given ensemble
classifier, over a real-world data stream, is still a challenging
problem.

3. EXPERIMENTAL SETUP
In our experiments, we show the relationship between the

number of classifiers and number of class labels for 12 differ-
ent data streams and 2 online ensembles. We conduct our
experiments on Accuracy Updated Ensemble (AUE)[5] and
Leverage Bagging (LevBag)[3] ensembles using synthetic and
real-world data streams. For implementation, we used the
MOA framework; for evaluation, we used the Interleaved
Test-Then-Train approach [4].



(c) AUE - real-world data streams. (d) LevBag - real-world data streams. 
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(a) AUE - synthetic data streams. (b) LevBag - synthetic data streams. 
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Figure 2: Prediction behavior of AUE and LevBag ensembles, in terms of accuracy, with different number of
classifiers ranging from 20 to 29 by doubling at each step, for synthetic and real-world data streams.

Table 1: Summary of Real-world Data Streams

Dataset #Instances #Attr. #Class Labels
Sensor [1] 2,219,803 5 54
Powersupply [1] 29,928 2 24
PokerHand [4] 1× 107 10 10
Electricity [4] 45,312 8 2
Airlines [4] 539,383 7 2
HyperPlane [1] 1× 107 10 5

3.1 Data Streams
There are a few real-world data streams in the literature.

Finding proper data streams, where the number of class la-
bels is the only variant, is nearly impossible.

Synthetic Data Streams. We chose the popular Ran-
dom RBF generator, since it is capable of generating data
streams with an arbitrary number of features and class labels
[4]. Using this generator implemented in the MOA frame-
work, we prepared 6 different datasets, each containing 1
million instances with 20 attributes. The number of class
labels is chosen as 2, 4, 8, 16, 32, and 64. We reflect these in
the naming of our RBF data streams (RBF-2, RBF-4, etc.).

Real-world Data Streams. We selected 6 different real-
world datasets used as data streams in the literature—they
all are available online for downloading [1, 4]. Table 1 gives
a summary of these data streams.

3.2 Ensemble Methods
We used 2 state-of-the-art ensemble classifiers: AUE and

LevBag that use the weighted majority voting and major-
ity voting aggregation rules, respectively, and have different
component classifier training strategies. We exploited Ho-
effding trees as base component classifiers for both ensembles
[4]. Ensemble sizes in terms of the number of base classifiers
grow exponentially from 20 to 29, by doubling at each step.
This range is chosen to show the behavior in a large-scale of
possibilities.

4. RESULTS AND DISCUSSION
Observations. Fig. 2 shows the impact of doubling the

ensemble sizes on the accuracy of predictions. We plot the
experimental results with the real numerical scale rather
than the logarithmic, since it provides a better exposition
of the results. In each plot, the existence of a peak point
in which an online ensemble reaches its maximum accuracy
is well-illustrated. For the ever-increasing cases, we believe
that there is a peak point out of our range. Computational
requirements, in term of CPU time and memory usage, are
roughly doubled with doubling ensemble size.

Following our theoretical expectations, AUE provides high-
er consistency compared to LevBag, as seen in Fig. 2-(a)
vs. (b) and (c) vs. (d). Since synthetic data streams have
a large number of attributes, 20, the possibility of training
independent and diverse component classifiers is high [11,



Table 2: Highest/Peak Accuracy Values in Percent-
age and the Corresponding Number of Component
Classifiers of Ensembles for Different Data Streams

AUE LevBag

Dataset Acc. #Classifiers Acc. #Classifiers

RBF-2 95.80 32 95.44 512
RBF-4 86.05 128 72.27 8
RBF-8 72.33 128 61.58 16
RBF-16 75.33 64 69.76 512
RBF-32 79.80 64 72.77 512
RBF-64 82.64 256 61.91 512

Sensor 84.99 4 87.99 4
Powersupply 16.74 1 16.34 8
PokerHand 91.30 256 73.82 4
Electricity 77.73 32 83.66 16
Airlines 62.63 128 62.43 256
HyperPlane 58.47 64 53.68 256

13]. For example, Fig. 2-(a) shows that for a lower num-
ber of class labels (RBF-2, -4, and -8) the results are highly
consistent with our theoretical expectations. On the other
hand, for larger number of class labels (RBF-16, -32, and -
64) we observe lower consistency. The impact of the number
of attributes and class labels is also true for real-world data
streams: PokerHand, HyperPlane, and Electricity provides
higher consistency than those of Sensor, Powersupply, and
Airlines.

Statistical Analysis. Table 2 shows the highest/peak
accuracy values and corresponding number of classifiers for
both ensembles. We conducted the Wilcoxon signed-ranks
test for further analysis of our results, with α = 0.05. Com-
paring the accuracy peaks of AUE and LevBag results in 10
positive and 2 negative differences. The two-tailed proba-
bility value, P = 0.027, is less than 0.05; it can be accepted
that the accuracy peaks of AUE are statistically significantly
higher than those of LevBag. Comparing the number of
component classifiers on these peak values results in 4 pos-
itive and 7 negative differences, with two-tailed probability
value, P = 0.147. While there is no statistically significant
difference between the numbers of component classifiers for
the two algorithms, AUE reaches higher peaks compared
to LevBag. Hence, comparing ensembles based on a fixed
number of component classifiers can be misleading. How-
ever, studies based on a fixed number of classifiers can be
acceptable since in such cases all ensemble methods can be
equally disadvantaged. For example, without ensuring fair-
ness, comparing the accuracy of AUE and LevBag ensembles
each with 8 or 16 base classifiers, which are in the range of
conventional comparisons [5, 14], results in no statistically
significant difference in our experiments.

We compared the observed peak accuracy values of both
ensembles using the non-parametric Friedman statistical test
with α = 0.05 and F (2, 22). The resulting two-tailed prob-
ability value, P = 0.032, rejects the null-hypothesis. The
multiple comparisons show that the theoretical number of
classifiers are statistically significantly different from the prac-
tical peak accuracy values of both algorithms. However,
multiplying these theoretical number of classifiers by a con-
stant value, in our case 2, makes the differences statistically
insignificant. This can be used for obtaining upper-bounds

of the ideal number of classifiers for a given data stream and
ensemble classifier.

5. CONCLUSION AND FUTURE WORK
Our model showed that: (1) Theoretically, using the same

number of independent component classifiers as class labels
gives the highest prediction accuracy; (2) Practically, due to
the violation of independency of component classifiers, de-
termining these peak values is nearly impossible. However,
upper bounds can be considered for this problem and that
needs further investigation. An important implication of our
study is that comparing online ensemble classifiers should be
done based on these peak values, since comparing based on
a fixed number of classifiers can be misleading.
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