
Learning Distributed Representations
for Recommender Systems with a Network

Embedding Approach

Wayne Xin Zhao1,2(B), Jin Huang1,2, and Ji-Rong Wen1,2

1 School of Information, Renmin University of China, Beijing, China
{batmanfly,jin.huang,jrwen}@ruc.edu.cn

2 Beijing Key Laboratory of Big Data Management and Analysis Methods,
Beijing, China

Abstract. In this paper, we present a novel perspective to address rec-
ommendation tasks by utilizing the network representation learning tech-
niques. Our idea is based on the observation that the input of typical
recommendation tasks can be formulated as graphs. Thus, we propose to
use the k-partite adoption graph to characterize various kinds of informa-
tion in recommendation tasks. Once the historical adoption records have
been transformed into a graph, we can apply the network embedding
approach to learn vertex embeddings on the k-partite adoption network.
Embeddings for different kinds of information are projected into the same
latent space, where we can easily measure the relatedness between mul-
tiple vertices on the graph using some similarity measurements. In this
way, the recommendation task has been casted into a similarity evalu-
ation process using embedding vectors. The proposed approach is both
general and scalable. To evaluate the effectiveness of the proposed app-
roach, we construct extensive experiments on two different recommen-
dation tasks using real-world datasets. The experimental results have
shown the superiority of our approach. To the best of our knowledge,
it is the first time that a network representation learning approach has
been applied to recommendation tasks.

Keywords: Recommender systems · Network embedding · Item recom-
mendation · Tag recommendation

1 Introduction

In recent years, recommender systems have played an important role in helping
match users with information resources [4]. Various recommendation algorithms
have been developed in the past years [1], including collaborative filtering meth-
ods, content-based methods, and hybrid methods. Collaborative filtering meth-
ods build a model from a user’s past behaviors as well as decisions made by
other similar users. Content-based methods extract a set of important features
of an item in order to recommend new items with similar features. These two

c© Springer International Publishing AG 2016
S. Ma et al. (Eds.): AIRS 2016, LNCS 9994, pp. 224–236, 2016.
DOI: 10.1007/978-3-319-48051-0 17

Learning Distributed Representations for Recommender Systems 225

types of methods are often combined in practical systems to form the hybrid
methods. Although previous methods have been shown to be effective to some
extent, there exist several problems with these approaches. First, these methods
are usually task-oriented and cannot serve as a general solution to multiple rec-
ommendation settings. It may not be easy for existing methods to adapt to a
different recommendation setting. Second, existing recommendation algorithms
may not be scalable to large datasets. For example, the efficiency of classic item-
based KNN recommendation algorithms is largely limited by the construction
of the KNN graph [4]; matrix factorization involves eigen-decomposition of the
data matrix which is expensive and usually with approximation calculation [13].
Thus, how to balance generality and scalability has become an important prob-
lem in practice. The main research focus of our paper is to develop a general
and scalable recommendation framework.

To address this issue, our intuition is based on the observation that the input
of typical recommendation tasks can be formulated as graphs. For example, we
have presented two illustrative examples for top-N item recommendation and tag
recommendation respectively in Fig. 1. For item recommendation, we have two
sets of vertices, namely users and items; While for tag recommendation, we have
three sets of vertices, namely users, items and tags. Once we have built the graph
representation, the recommendation task can be considered as a relatedness or
relevance evaluation problem: given a or more query vertices, we would like to
identify the most related vertices. For example, for item recommendation, the
query vertex can be set to a specific user, while for tag recommendation, the
query vertices can be set to a combination of a user and an item. With such a
formulation, the difficulty lies in how to develop an effective way to evaluate the
relatedness on the graph.

Our approach is inspired by the recent progress in network representation
learning and deep learning [8,10,18]. Network representation learning charac-
terizes a vertex in a graph with a low-dimensional dense vector, a.k.a., embed-
ding vector. Embedding representations provide a promising way to represent
and extract structural patterns in the networks, and several pioneering works

(a) User-item bipartite net-
work.

(b) User-item-tag tripartite
network.

Fig. 1. Illustrative examples of bipartite and tripartite networks for recommendation
tasks.

226 W.X. Zhao et al.

have shown the effectiveness of network embedding models [10,18]. Especially,
vertex similarity or relatedness can be well measured with the embedding vec-
tors. Following this point, our general solution to recommendation tasks has
been developed as a three-step procedure. In the first step, we build a k-partite
adoption network which is constructed with all the historical adoption records
(e.g., product purchase records). Here, the term of “adoption” has been used
because the recommendation task can be considered as modeling the adoption
process of a user. Second, we apply the network embedding techniques to learn
the embeddings for the vertices on the k-partite adoption network. Embeddings
from different vertices are projected into the same latent space, where simi-
larity measurements can be used to evaluate the relatedness between vertices
(e.g., cosine similarity). Finally, the recommendation task will be casted into a
similarity evaluation process. For example, given a user, we can directly rank
the candidate items by the cosine similarity values between the user and item
embeddings.

The proposed approach is both general and scalable. On one hand, our for-
mulation (i.e., k-partite adoption network) can be used to characterize multiple
recommendation settings with rich contextual information. When new contex-
tual information is needed to consider, we can simply discretize the contextual
information into discrete variables and represent them as new vertices. On the
other hand, our approach utilizes the neural network models to derive the vertex
embedding representations. In this case, the model is designed to optimize within
local neighborhoods instead of performing global computations. This allows us to
develop scalable algorithms such as stochastic gradient descent with weight sam-
pling [18]. To evaluate the effectiveness of the proposed approach, we construct
extensive experiments on two different recommendation tasks using real-world
datasets. The experimental results have shown the superiority of our approach.
To the best of our knowledge, it is the first time that recommendation task has
been addressed by a network representation learning approach.

2 Prelimenaries

Comparing to traditional recommendation algorithm, our goal is to provide a
unified approach to multiple recommendation tasks. In a general sense, the input
of the recommendation task corresponds to the adoption behaviors of users. The
main idea is to represent the adoption records using a k-partite network, and
then embedding representations are used to represent vertices on the graph.
With such representations, we can fulfill the recommendation task using simple
similarity measurements. Next we introduce the preliminaries for this paper.

Definition 1. k-Tuple Adoption Record. An adoption record can be modeled
as a k-tuple: 〈e1, . . . , ej , . . . , ek〉, where each entry ej (1 ≤ j ≤ k) refers to the
value for the j-th feature (a.k.a. attribute) in an adoption record. Here we require
that the value of each entry must be a positive discrete value.

Learning Distributed Representations for Recommender Systems 227

Such a formulation is general to model different recommendation tasks, even
with rich context information. For example, in top-N item recommendation, a
pair 〈u, i〉 is used to represent the record that user u has adopted item j. While
in top-N tag recommendation, a triplet 〈u, i, t〉 is used to represent the record
that tag t has been given by user u on item i. It is similar to the feature coding in
context-aware recommendation models such as SVDFeature [3] and libFM [11].

Definition 2. k-Partite Adoption Network. A k-partite adoption network
is a graph whose vertices are or can be partitioned into k different independent
sets: edges only exist in vertices from the same set. The edge weight is a real
number which indicates the importance of the corresponding link.

Given a set of k-tuple adoption records, it is easy to construct a k-partite
network. The values for the j-th attribute are characterized by the j-th vertex
set in the k-partite adoption network. With loss of generality, we next present
the construction of adoption graph with the settings of k = 2 and k = 3. These
two cases correspond to two classic and widely studied tasks, top-N item and tag
recommendation. Other cases with large values for k can be solved in a similar
way, and we leave it as future work. We assume that the k-partite network is an
undirected graph.

Definition 3. Bipartite User-Item (UI) Network. Let U denote the set of
all the users, and I denote the set of all the items. A bipartite user-item network
can be denoted by G(bi) = (V, E ,W), where the vertex set V = U ∪ I, the edge
set E ⊂ U × I, the weight matrix W stores the edge weights, and Wu,i denote
the link weight between a user u and an item i.

Definition 4. Tripartite User-Item-Tag (UIT) Network. Let U denote
the set of all the users, I denote the set of all the items, and T denote the set
of all the tags. A tripartite user-item-tag network can be denoted by G(tri) =
(V, E ,W), where the vertex set V = U ∪ I ∪ T , the edge set E ⊂

(
(U × I) ∪ (U ×

T) ∪ (I × T)
)
, and the weight matrix W stores the edge weights.

In a bipartite UI network, we set the weight to the number that a user has
adopted an item. Different from a UI network, in a UIT network, there can be
three different types of edges consisting of vertices from two out of the three
vertex sets, which correspond to the edge weights Wu,i, Wu,t and Wi,t. To set
these weights, we use a simple counting method, We1,e2 is equal to the number
that e1 and e2 occur in all the adoption records.

With the above definitions, we can perform the recommendation task by
evaluating the relatedness between query vertices and candidate vertices. For
example, in top-N item recommendation, a given user will be treated as the
query vertex, and we search over the candidate item vertices to find out the
most related ones. Next, we introduce a network embedding approach.

228 W.X. Zhao et al.

3 A Network Embedding Approach to Recommendation
Tasks

Recently, networking representation learning is widely studied [10,18], and it
provides an effective way to explore the networking structure patterns using
low-dimensional embedding vectors. Not limited to discover structure patterns,
network representations have been shown to be effective to serve as important
features in many network-independent tasks, such as text classification [17]. In
our current task, we aim to learn low-dimensional representations for the vertices
on the k-partite adoption network. The embedding representation should encode
important topological information and the similarity can be evaluated by these
embedding vectors.

3.1 The General Network Embedding Model

Formally, we use a d-dimensional embedding vector ve ∈ R
d to denote the

embedding representation for a vertex e on the k-partite adoption network. We
first describe a general network embedding model.

Let us start with studying how to model the generative probability for an
undirected edge between two vertices es and et, formally denoted as P (es, et).
The main intuition is if two vertices vi and vj form a link on the network, their
networking representations should be similar. In other words, the inner product
v�
es · vet between the corresponding two networking representations will yield a

large similarity value for two linked vertices. We define the probability of a link
(es, et) by using a sigmoid function as follows

P (es, et) = σ(v�
es · vet) =

1
1 + exp(−v�

es · vet)
. (1)

The probability P (es, et) indicates that the link strength between two vertices
es and et. Recall that we also have the real weights for edges, i.e., the weight
matrix W. We can also derive an empirical estimation P̂ (es, et) as follows

P̂ (es, et) =
Wes,et∑

(es′ ,et′)∈E Wes′ ,et′
. (2)

Following previous study on networking representation learning [18], we min-
imize the KL-divergence of two probability distributions

L(G) = DKL(P̂ (·, ·)||P (·, ·)) ∝
∑

(es,et)∈E
Wes,et log P (es, et). (3)

This essentially models first-order proximity modeled in the LINE model [18].
Although we can also model the second-order proximity as in LINE, the empir-
ical results showed that the second-order did not perform well on tag recom-
mendation. A possible reason will be that the second-order proximity mainly
captures the shared contexts between vertices, and such an indirect modeling

Learning Distributed Representations for Recommender Systems 229

method does not work well on recommendation task. Thus, we only model the
first-order proximity of the k-partite adoption network in this work. We follow
the learning method in [18] to optimize Eq. 3, which applies stochastic gradient
descent with negative sampling and weight sampling. The running complexity is
about O(n · d · #neg · M), where n is the iteration number, d is the number of
latent factors, #neg is the number of negative samples and M is the number of
training instances.

3.2 Utilizing Embedding Representations for Recommendations

In the above, we have presented how to learn networking embeddings on the k-
partite adoption graph. After parameter learning, we can obtain the embeddings
for each vertex on the graph. Next, we will study how to make recommenda-
tions with these embeddings. We consider two tasks, namely the top-N item
recommendation and the top-N tag recommendation.

Top-N Item Recommendation with Bipartite Network Embedding.
Given a user u, the first task aims to produce a candidate list of N items based
on her adoption history. In this task, we have two kinds of entities in the recom-
mendation setting, namely users and items. We follow Definition 3 to construct
the bipartite user-item network G(bi) (See Fig. 1(a)). Then we run the network
embedding model shown in Sect. 3.1, and derive the embedding representations
for both users and items, denoted by vu and vi respectively. Given a query
vertex, i.e., a user, we would like to identify the most related item vertices.
Formally, the task can be fulfilled using the following ranking funciton

score(u, i) = v�
u · vi. (4)

Given a user u, we can rank the items using Eq. 4 to generate the recommen-
dations. Here, we do not consider repetitive adoption behaviors of users, it will
be easy to adapt to the case where repetitive adoptions are considered.

Top-N Tag Recommendation with Tripartite Network Embedding.
Given a user u and an adopted item i, the second task aims to produce a can-
didate list of N tags based on the tagging history. In this task, we have three
kinds of entities in the recommendation setting, namely users, items and tags.
We first follow Definition 4 to construct the tripartite user-item-tag network
G(tri) (See Fig. 1(b)). Then run the network embedding model (in Sect. 3.1) on
the tripartite network, and derive the embedding representations for both users,
items and tags, denoted by vu, vi and vt respectively. Formally, the task can be
fulfilled using the following ranking function

score(u, i, t) = v�
u · vt + v�

i · vt. (5)

Our ranking function follows the idea in [13], which models the three-way
data by using pairwise interaction factorization.

230 W.X. Zhao et al.

High-Order Recommendation with Network Embedding. In more com-
plex tasks, we can have multiple kinds of entities (i.e., attributes or features) to
consider. Our approach is quite general to incorporate arbitrary types of discrete
features into the recommendation setting. The procedure can be described as fol-
lows. We first construct the k-partite adoption graph, and then learn the embed-
ding representations for each vertex on the network. After obtaining the embed-
ding representations, we can define the score functions, such as Eqs. 4 and 5, to
rank candidate vertices for recommendation.

In what follows, we will call top-N item recommendation as item recom-
mendation, and call top-N tag recommendation as tag recommendation for
short.1 We refer to our method as Network Embedding based Recommendation
Model (NERM).

4 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness
of the proposed approach in two tasks, namely item and tag recommendation.

Table 1. Summary statistics of the two datasets for item recommendation.

Datasets #Users #Items #Records Sparsity

JD 94,440 46,573 2,767,366 0.063 %

MovieLens 198,155 17,505 22,290,822 0.6426 %

4.1 Evaluation on Top-N Item Recommendation

Dataset. We use two shared datasets for the evaluation of item recommenda-
tion: the JD dataset in [24] and the MovieLens dataset2. JD dataset is a large
product purchase collection, in which each adoption record consists of a user ID,
a product ID and an adoption timestamp. MovieLens dataset is a large movie
rating collection, in which each adoption record consists of a user ID, a movie
ID and an adoption timestamp.3 Table 1 summarizes the basic statistics of the
two datasets. We select these two datasets because they are large and represent
different data applications.

Evaluation Metrics. For item recommendation, we adopt four widely used
evaluation metrics, including Precision@K, Recall@K, Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR). Usually, only top ranked recommen-
dations are important to consider, thus we set K to 10 in the experiments.
1 A tag itself can be treated as an item, too. Here we follow the conventions in tag

recommendation which distinguishes between an item and a tag.
2 http://grouplens.org/datasets/movielens.
3 The dataset was originally used for rating prediction, and we use it for item recom-

mendation.

http://grouplens.org/datasets/movielens

Learning Distributed Representations for Recommender Systems 231

Table 2. Performance comparisons of the proposed method and baselines on item
recommendation.

Methods JD MovieLens

P@10 R@10 MAP MRR P@10 R@10 MAP MRR

BPR 0.171 0.360 0.337 0.564 0.097 0.169 0.148 0.195

DeepWalk 0.259 0.443 0.502 0.806 0.203 0.243 0.249 0.358

NERM 0.275 0.477 0.528 0.819 0.206 0.256 0.258 0.368

Experimental Setting. Since each adoption record is attached with a
timestamp, we consider a time-sensitive evaluation. We split the entire dataset
by timestamps: the first 80 % data is used as training data while the rest 20 %
data is used as test data.4

Baselines. We consider using the following methods as the comparison baselines

– BPR [12]. BPR is a Bayesian personalized ranking method for learning with
implicit feedback. It adopts a pairwise loss function which assumes that an
adopted item should be more weighted compared with an unadopted item.

– DeepWalk [10]. DeepWalk is a recently proposed network embedding
method. It first generates multiple random paths based on a social network,
and further employs the word2vec [8] to deal with vertex sequences.

The BPR method was originally proposed to solve the item recommenda-
tion task, representing state-of-the-art. DeepWalk is also a network embedding
method and we incorporate it as a comparison. There can be several parame-
ters to tune in baselines and our method. We hold out 10 % of training data
as the development set for parameter optimization. For BPR, the number of
latent factors is set to 256, and the number of negative samples is set to 300. For
DeepWalk, the number of embedding dimensions is set to 1024 and we use the
hierarchal softmax algorithm to learn the parameters. For our method NERM,
the number of embedding dimensions is set to 1024, and the number of negative
samples is set to 8.

Results and Analysis. Table 2 presents the experimental results of the com-
pared methods on the task of item recommendation. Overall, we have made the
following observations. First, both network embedding methods are much bet-
ter than the competitive baseline BPR. Second, NERM is slightly better than
DeepWalk. These results indicate the effectiveness of the network embedding
approach. BPR employs a pairwise ranking function to learn the preference order
using implicit feedback, and each training case is a pair consisting a positive item
and a negative item. DeepWalk generates truncated random vertex sequences,

4 The number of items in both datasets is large, and it will be quite time-consuming
to consider all the unadopted items as candidate recommendations. We follow [24]
to pair each adopted item with 50 negative unadopted items to form the candidate
recommendation list.

232 W.X. Zhao et al.

and derive the embeddings by using a hierarchical softmax. Compared to these
two methods, NERM directly optimizes each edge (i.e., each user-item adoption
record) in the network and adopt the negative sampling as the optimization
method.

4.2 Evaluation on Top-N Tag Recommendation

Dataset. We use two shared datasets in [13] for the evaluation of tag recom-
mendation. These two datasets have been widely used for tag recommendation.
Different from [13], we do not perform p-core filtering. Table 3 summarizes the
basic statistics of the two datasets.

Table 3. Summary statistics of the two datasets for tag recommendation.

Datasets #Users #Items #Tags #Records

Last.fm 1,893 12,524 9,750 186,479

Bookmarks 1,868 69,224 40,898 437,593

Experimental Setting. For tag recommendation, we following the same exper-
imental setting in [13] for evaluation. We adopt Precision@K, Recall@K and
F@K as the evaluation metrics. For each user, we take the last annotated item
together with the attached tags as the test data, while the rest tagging records
are used as training data.
Baselines. We consider using the following methods as the comparison baselines

– PITF [13]. PITF is a factorization model for tag recommendation, that explic-
itly models the pairwise interactions (PITF) between users, items and tags.
The model is learned with an adaption of the Bayesian personalized ranking
(BPR) criterion which originally has been introduced for item recommenda-
tion.

– DeepWalk [10]. It is similar to that is described in previous experiments on
item recommendation.

PITF represents a competitive baseline for tag recommendation5. As shown
in [13], PITF is better than FolkRank [5] on the two datasets, thus we do not

Table 4. Performance comparisons of the proposed methods and baselines on tag
recommendation.

Methods Last.fm Bookmarks

P@1 R@1 F@1 P@5 R@5 F@5 P@1 R@1 F@1 P@5 R@5 F@5

PITF 0.305 0.125 0.178 0.189 0.351 0.245 0.381 0.132 0.197 0.204 0.304 0.244

DeepWalk 0.088 0.044 0.059 0.040 0.099 0.057 0.064 0.024 0.035 0.038 0.074 0.050

NERM 0.327 0.165 0.220 0.182 0.370 0.244 0.396 0.135 0.201 0.228 0.323 0.267

5 We do not compare with other methods with item contents or temporal information.

Learning Distributed Representations for Recommender Systems 233

Fig. 2. Varying the number of embedding dimensions for item recommendation on JD
dataset.

compare with FoldRank here. We hold out 10 % of items in the training set
as the development set for parameter optimization. For PITF, the number of
latent factors is set to 256, and the number of negative samples is set to 200. For
DeepWalk, the number of embedding dimensions is set to 128 and we use the
hierarchal softmax algorithm to learn the parameters. For our method NERM,
the number of embedding dimensions is set to 128, and the number of negative
samples is set to 200.

Results and Analysis. Table 4 presents the experimental results of the com-
pared methods on the task of tag recommendation. Overall, we have made the fol-
lowing observations. First, the proposed method NERM nearly performs best for
all the entries, slightly worse than the state-of-the-art method PITF on Last.fm
in terms P@5 and F@5. Second, the network embedding method DeepWalk per-
forms poorly on the tag recommendation task. By combining the results on
item recommendation, we can conclude that NERM is effective to deal with rec-
ommendation tasks as a general method. DeepWalk does not perform well on
tag recommendation, a possible reason is that it may require more principled
random walk methods on k-partite graphs. Currently, we follow [10] to use a
uniform sampling method, however, such a method may not be suitable to k-
partite graphs. For example, it is likely that vertices in some independent set
cannot be well covered even with many random paths. We will investigate into
it as a future work.

4.3 Parameter Tuning

In our model NERM, an important parameter to tune is the number of embed-
ding dimensions. We vary it in the set {32, 64, 128, 256, 512, 1024} and see how
it affects the performance. The tuning results are shown in Figs. 2 and 3. As we
can see that, for item recommendation, we need to set a large number; While
for tag recommendation, the optimal number is set to 128. The major reason is
that the two datasets used for item recommendation are much larger than those
used in tag recommendation.

234 W.X. Zhao et al.

Fig. 3. Varying the number of embedding dimensions for tag recommendation on Book-
marks dataset.

5 Related Work

Recommender Systems. In the literature of recommender systems, two widely
studied tasks are rating prediction and top-N recommendation. Rating predic-
tion aims to predict the ratings from users to items, while top-N recommenda-
tion aims to generate a short list of recommendations for users [4]. Our focus
in this paper is top-N recommendation. There are three typical approaches for
top-N recommendation. First, rating prediction methods were directly applied
where the predicted rating value was used for ranking [9,23]. Second, implicit
feedback information was utilized to improve the recommendation performance,
such as the weighting-based method [6]. Thirdly, specific loss function in the
optimization objective was developed, including AUC-based loss function [7,12]
and MAP-based loss function [14]. Tag recommendation can be considered as a
special task for top-N recommendation, where tag are recommended to a user on
a specific item. Various methods have been proposed for tag recommendation,
including random walk methods [5], time-sensitive methods [15], higher order
singular value decomposition [16], and pairwise interaction tensor factorization
[13]. Recently, several context-aware models have been also proposed in order
to utilize complex contextual information for rating prediction [3,11]. Different
from previous studies, we aim to build a general and scalable recommendation
framework for top-N recommendation, and present a new perspective by apply-
ing the network embedding techniques.

Distributed Representation Learning. Recent years have witnessed the
great success of distributed representation learning and neural networks. It pro-
vides an effective way to represent and extract useful knowledge in many tasks,
including text classification [17], knowledge graph mining [22] and recommender
systems [21]. Especially, a promising direction is network embedding with dis-
tributed representation learning [10,18]. For example, DeepWalk [10] adapted
Skip-Gram [8], a widely used language model in natural language processing
area, for network representation learning on truncated random walks. LINE [18]
is a scalable network embedding algorithm which modeled the first-order and
second-order proximities between vertices. More recently, heterogenous network

Learning Distributed Representations for Recommender Systems 235

embedding [2] or focus on deep network embedding [19] have been studied. We
are also aware that several works have applied distributed representation learn-
ing [20] or neural network models [21] to recommendation tasks. Our work is
highly built on these studies. The novelty lies in the idea which casts the recom-
mendation task into a network embedding task. To our knowledge, it is the first
time that network embedding methods have been applied to recommendation
tasks.

6 Conclusion and Future Work

In this paper, we made the first attempt that utilized the network represen-
tation learning techniques for recommendation tasks. We first transformed the
adoption records into a k-partite adoption network, then learned distributed
representations for the vertices, and finally calculated the embedding similarity
for recommendation. To evaluate the effectiveness of the proposed approach, we
constructed extensive experiments on two different recommendation tasks using
real-world datasets. The experimental results have shown the superiority of our
approach. To the best of our knowledge, it is the first time that a network rep-
resentation learning approach has been applied to recommendation tasks. Cur-
rently, we adopt a simple network architecture for efficient parameter learning.
In the future, we consider employing more complex deep neural networks [2,19]
for recommender systems. We will also test how the current framework performs
on context-aware recommendation which involves multiple kinds of contextual
information, such as users’ demographics and items’ reviews.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
and constructive comments. The work was partially supported by National Natural
Science Foundation of China under the grant number 61502502 and Beijing Natural
Science Foundation under the grant number 4162032.

References

1. Bobadilla, J., Ortega, F., Hernando, A., GutiéRrez, A.: Recommender systems
survey. Know. Based Syst. 46, 109–132 (2013)

2. Chang, S., Han, W., Tang, J., Qi, G., Aggarwal, C.C., Huang, T.S.: Heterogeneous
network embedding via deep architectures. In: SIGKDD, pp. 119–128 (2015)

3. Chen, T., Zhang, W., Lu, Q., Chen, K., Zheng, Z., Yu, Y.: Svdfeature: a toolkit for
feature-based collaborative filtering. J. Mach. Learn. Res. 13, 3619–3622 (2012)

4. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM
Trans. Inform. Syst. (TOIS) 22(1), 143–177 (2004)

5. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Folkrank: a ranking algorithm
for folksonomies. In: LWA 2006, pp. 111–114 (2006)

6. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: ICDM, pp. 263–272 (2008)

7. Kabbur, S., Ning, X., Karypis, G.: Fism: factored item similarity models for top-n
recommender systems. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 659–667. ACM (2013)

236 W.X. Zhao et al.

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: NIPS (2013)

9. Ning, X., Karypis, G.: Slim: sparse linear methods for top-n recommender systems.
In: IEEE 11th International Conference on Data Mining, pp. 497–506. IEEE (2011)

10. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of SIGKDD (2014)

11. Rendle, S.: Factorization machines with libfm. ACM TIST 3(3), 57 (2012)
12. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian

personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)
13. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for per-

sonalized tag recommendation. In: WSDM, pp. 81–90 (2010)
14. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., Oliver, N.: Tfmap:

optimizing map for top-n context-aware recommendation. In: Proceedings of the
35th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 155–164. ACM (2012)

15. Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W., Giles, C.L.: Real-time
automatic tag recommendation. In: SIGIR, pp. 515–522 (2008)

16. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based
on tensor dimensionality reduction. In: RecSys (2008)

17. Tang, J., Qu, M., Mei, Q.: Pte: Predictive text embedding through large-scale
heterogeneous text networks. In: SIGKDD (2015)

18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding. In: WWW (2015)

19. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: SIGKDD
(2016)

20. Wang, H., Wang, N., Yeung, D.: Collaborative deep learning for recommender
systems. In: SIGKDD, pp. 1235–1244 (2015)

21. Wang, P., Guo, J., Lan, Y., Xu, J., Wan, S., Cheng, X.: Learning hierarchical
representation model for nextbasket recommendation. In: SIGIR (2015)

22. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning
with rich text information. In: IJCAI (2015)

23. Yang, X., Steck, H., Guo, Y., Liu, Y.: On top-k recommendation using social
networks. In: Proceedings of the Sixth ACM Conference on Recommender Systems,
pp. 67–74. ACM (2012)

24. Zhao, W.X., Wang, J., He, Y., Wen, J., Chang, E.Y., Li, X.: Mining product
adopter information from online reviews for improving product recommendation.
TKDD 10(3), 29 (2016)

	Learning Distributed Representations for Recommender Systems with a Network Embedding Approach
	1 Introduction
	2 Prelimenaries
	3 A Network Embedding Approach to Recommendation Tasks
	3.1 The General Network Embedding Model
	3.2 Utilizing Embedding Representations for Recommendations

	4 Experiments
	4.1 Evaluation on Top-N Item Recommendation
	4.2 Evaluation on Top-N Tag Recommendation
	4.3 Parameter Tuning

	5 Related Work
	6 Conclusion and Future Work
	References

