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ABSTRACT
Traditionally, hypervisors, operating systems, and runtime systems
have been providing an abstraction layer over the bare-metal hard-
ware. Traditional abstractions, however, do not consider for non-
functional requirements such as system-level constraints or users’
objectives. As these requirements are gaining increasing impor-
tance, researchers are looking into making user-specified and system-
level objectives first-class citizens in the computer systems’ realm.

This paper describes the Autonomic Operating System (AcOS)
project; AcOS enhances commodity operating systems with an au-
tonomic layer that enables self-* properties through adaptive re-
source allocation. With AcOS, we investigate intelligent resource
allocation to achieve user-specified service-level objectives on ap-
plication performance and to respect system-level thresholds on
CPU temperature. We give a broad overview of AcOS, elaborate
on its achievements, and discuss research perspectives.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: Hardware/software in-
terfaces; System architectures; D.4.1 [Operating Systems]: Pro-
cess Management—Scheduling; D.4.8 [Operating Systems]: Per-
formance—Measurements; Modeling and prediction; Monitors

General Terms
Design, Management, Measurement, Performance

Keywords
Autonomic computing, Operating systems, Virtualization, Perfor-
mance management, Dynamic thermal management

1. INTRODUCTION
In the last decade, the failure of Dennard’s scaling law [11] de-

termined the inability to leverage single-threaded performance im-
provements in order to keep doubling integrated circuits perfor-
mance every two years, as stated by the established Joy’s law. Mean-
while, transistors density has kept its exponential increase, as pre-
dicted by Moore’s Law [22]. These two phenomena drove chip
manufacturers towards embracing parallelism, leading to the preva-
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lence of Chip-MultiProcessors (CMPs) and multi-processor system-
on-chips (MPSoCs) throughout most computing systems segments.

On the one hand, mobile and embedded systems feature het-
erogeneous MPSoCs specialized for efficiency. For instance, the
NVIDIA Tegra platform leverages the partner/companion core ap-
proach [20], while the ARM big.LITTLE chip implements the single-
instruction set architecture (ISA) heterogeneous computing approach,
coupling high-throughput and energy-efficient cores [17].

On the other hand, large-scale installations, like warehouse-scale
computers, build on nodes equipped with homogeneous CMPs of-
fering an increasing number of on-chip cores. For example, Tilera
already offers 64-core solutions for general-purpose processing [5],
while Intel and NVIDIA propose 100+thread solutions, like the In-
tel Xeon Phi and the NVIDIA Tesla, respectively, to accelerate em-
barrassingly parallel applications.

Thanks to Moore’s law, chip manufacturers equip each new gen-
eration of CMPs and MPSoCs with an increased amount of on-
chip resources (e.g., cores, caches, memory controllers). This un-
precedented availability of on-chip resources encourages workload
consolidation, realized by co-locating single and / or multi-threaded
applications onto the same chip. Co-located applications share on-
chip resources and require careful multiplexing in both space (i.e.,
placement on CPUs) and time (i.e., CPU bandwidth) to maintain
performance predictability despite contention over on-chip shared
resources [23]. The advent of virtualization and commodity hy-
pervisors for widespread ISAs [3] brings additional complexity, as
different users, with different service-level objectives (SLOs), can
own the co-located applications. This scenario opens new research
issues in the areas of resource allocation, which had settled on well-
established techniques for time-shared single-core processors.

With the Autonomic Operating System (AcOS) project, we target
these issues by looking for ways to automatize allocation of on-chip
shared resources. We aim at enabling users to easily state SLOs and
to automatically tune resource allocations in order to meet user-
specified SLOs, while enforcing system-level constraints.

We focus on a specific system-level constraint: maximum pro-
cessor temperature. This constraint is of primary concern for cur-
rent and future CMPs and MPSoCs, since recent lithographic tech-
nologies cannot keep up the down-scaling of supply voltage with
the up-scaling of clock frequency and transistor density, causing
power density to increase and therefore reducing the capacity of
packages of dissipating the resulting heat. Avoiding high processor
temperature means avoiding to impair performance [10], energy ef-
ficiency [29], and reliability [30] of integrated circuits.

With AcOS, we research cheap and efficient software techniques
to keep temperature within a system-specified threshold while min-
imizing the impact of this cap on performance.

The remainder of this paper first illustrates the high-level ap-
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Figure 1: Interaction of the autonomic components with the
computing system and the applications; these components real-
ize the observe, decide, and act phases of the ODA control loop.

proach and methodology we adopt in AcOS (Section 2) and then fo-
cuses on performance (Section 3) and thermal (Section 4) manage-
ment, going into details and validating AcOS through experimental
results. We conclude by discussing related research (Section 5) and
future directions and perspectives (Section 6). We provide further
details on more specific aspects in Appendices A to C.

2. FOUNDATIONS AND METHODOLOGY
AcOS derives its overall methodology from autonomic comput-

ing [18]. In the last decade, autonomic computing has grown from
a futuristic vision of computing systems autonomically taking care
of themselves and of their own complexity to a multifaceted and
pragmatic research field [9]. The aim of this research is automat-
ically exploiting runtime information to ease user interaction with
computing systems. From a theoretical standpoint, autonomic com-
puting has the goal of enhancing computing systems with self-*
properties, as analyzed by Salehie and Tahvildari [25], who also
propose a taxonomy for autonomic computing. According to this
taxonomy, AcOS is a closed, model-based solution employing con-
tinued monitoring, dynamic decision making, and external proac-
tive adaptation. AcOS extends commodity operating systems with
self-* properties at the software level (both within the operating
system and with a companion runtime system); more specifically,
it enables self-adaptive and self-managing properties. AcOS en-
ables these properties by employing feedback control to make ac-
tive use of runtime information. Different representations exist for
such control loops; in AcOS, we adopt the most compact of these
abstractions: the observe—decide—act control loop (ODA).

We specialize the ODA control loop to highlight interactions of
the autonomic layer provided by AcOS with the computing system
and with the applications. Figure 1 shows the three autonomic com-
ponents realizing the steps of the ODA control loop: (1) monitors
realize the observe phase; (2) adaptation policies provide the de-
cide phase; and actuators enact the act phase.

Monitors are components in charge of properly exposing runtime
information; they can be either passive or active elements, depend-
ing on how they gather information [16]. For instance, we use a
passive monitor to observe CPU temperature; this monitor simply
retrieves data from model-specific registers. Instead, to observe the
throughput of an application, we use an active monitor that imple-
ments an infrastructure to synthesize this metric, which is not di-
rectly available. Each monitor is also in charge of exposing an API
to allow setting SLOs on the specific measurement it provides.

Adaptation policies elaborate the measurements and SLOs ex-
posed by monitors to estimate the corrective action needed to drive
the measurements towards meeting the objectives. Each adapta-
tion policy uses a specific decision engine; we experimented with
heuristics, analytic modeling, and control theory.

Actuators provide mechanisms that adaptation policies can use,
through appropriate APIs, to enact corrective actions. For instance,
we implemented an idle cycle injection actuator that adaptation
policies can use to selectively preempt application threads in fa-

vor of the idle task with the goal of capping processor temperature
without unnecessarily harming performance.

Figure 1 highlights interactions of monitors, adaptation policies,
and actuators with the system as a whole and the applications.
Monitors retrieve information on both system-wide parameters and
application-specific measurements and SLOs. Adaptation policies
elaborate this information and use actuators to affect system and
application behavior. This paper illustrates how AcOS exploits this
structure to enhance commodity operating systems with perfor-
mance-aware resource allocation and temperature management.

Autonomic computing can be beneficial throughout the hard-
ware/software stack. However, since the operating system, coupled
with runtime systems, is traditionally in charge of managing sys-
tem resources and can control both the hardware and the applica-
tions, we argue that this is the level where these techniques are most
needed and can yield most benefits. Moreover, an operating system
with autonomic capabilities can both serve as a convenient base to
offer interfaces for autonomic applications and exploit additional
self-* properties offered at the hardware level. For these reasons,
we build AcOS as an extension to commodity operating systems.

3. PERFORMANCE MANAGEMENT
Modern computer architecture design follows the principle of

optimizing for the common case. For instance, caches, coupled with
prefetching, dramatically reduce memory latency for regular access
patterns. While this strategy continuously improves performance
for many applications, it also makes it unpredictable; this side effect
can make advanced architectural features unsuitable for embedded
systems, where what matters is often the worst-case execution time
(WCET). Moreover, the advent of CMPs and MPSoCs leads to on-
chip co-location of applications that must rely on shared hardware
resources; this scenario further impairs performance predictability.

We seek answer to the following question: can we leverage au-
tonomic computing to achieve predictable performance for appli-
cations co-located onto a multi-core processor? Well-established
techniques exist to estimate the WCET of single-threaded appli-
cations on single-core processors [31] and recent research focuses
on multi-core processors [12, 21]. This research relies on offline
profiling to provide strong guarantees for time-critical systems. In-
stead, we want to dispense from offline profiling and provide users
with an intuitive means of stating SLOs on execution time.

We tackle this challenge with Metronome [28] and Metronome++,
respectively a heuristic and model-based feedback control policy;
both these policies introduce performance-awareness in the Linux
kernel and rely on the Heart Rate Monitor (HRM) to provide per-
formance measurements and requirements.

3.1 Performance Metrics and Measurement
Our goal is to enforce a SLO defined on the execution time t̄ to

complete n̄ of units of work; for instance, a video encoder may be
required to process n̄ frames in t̄ seconds. In order to strike appro-
priate resource allocation without the need of offline profiling, we
need a metric to estimate the execution time of an application at
runtime. We leverage the known amount of units of work to define
a proxy for the execution time: the required throughput to attain the
SLO is ḡ = n̄/t̄. Equation (1) formalizes how we enforce the SLO:
given that after k control steps the application completed m units of
work, we keep the global throughput g(k) up to step k close to ḡ.

∀k, g(k)≡ ḡ where g(k) =
m
k

(1)

Global throughput is an application-specific high-level performance
metric that easily allows users to state meaningful SLOs [14, 15,



23, 28]. We leverage this metric for automatic goal-oriented re-
source allocation, dispensing users and administrators from the la-
borious process of analyzing application properties (e.g., scalabil-
ity) to manually determine resource allocations.

Application-specific high-level performance metrics require ap-
plication support; in our case, applications need to provide progress
information. For this reason, we developed HRM [28]: an active
monitoring infrastructure to synthesize throughput measurements
from heartbeats. Similarly to previous proposals [13], HRM ex-
ports a simple API for applications to emit a heartbeat whenever
they complete a unit of work. Based on the time stamps of these
signals, HRM efficiently provides adaptation policies with through-
put measurements expressed in heartbeats/s; these measurements
directly map to application-specific performance metrics such as
frames/s for a video encoder or decoder. HRM also exports API
calls for users to express SLOs, according to the methodology de-
scribed in Section 2. The major novelties of HRM are support for
both multi-threaded and multi-programmed applications, through
the definition of monitoring groups, and the system-wide (i.e., both
in user- and kernel-space) visibility of throughput measurements [28].
Appendix A, provides additional details regarding the usage of HRM
to instrument various flavors of multi-threaded applications.

We implemented HRM both on top of Linux and FreeBSD.1

Both implementations feature a split design where most of the in-
frastructure leaves in kernel-space and a small-footprint user-space
library, namely libhrm, exports an API for applications and user-
space adaptation policies. To pass information across address spaces,
we exploit shared memory to carefully map shared memory pages
and use cache-aligned data structures to avoid poor performance
due to caching issues such as false sharing [28].

3.2 Metronome
With Metronome, we introduce performance-awareness by means

of a non-invasive modifications to the Completely Fair Scheduler
(CFS), which is the default scheduling class for the Linux kernel
since version 2.6.23. CFS, as most schedulers in commodity oper-
ating systems, offers mechanisms (e.g., priorities and resource con-
tainers [2]) to allocate resources (e.g., CPUs and CPU bandwidth)
to applications; however, the task of determining appropriate set-
tings to respect SLOs is far from easy. To address this issue, Metro-
nome automates CPU bandwidth allocation based, at each schedul-
ing step k, on the performance error e(k) between the desired (ḡ)
and measured (g(k)) global throughput: ∀k, e(k) = ḡ−g(k).

Metronome leverages HRM to retrieve throughput measurements
and user-specified SLOs and uses this information to modify a sin-
gle parameter of the CFS scheduler: the virtual runtime (vruntime).
Since CFS picks tasks for execution in ascending order of vruntime,
modifying this value implicitly defines CPU bandwidth allocation.
Metronome uses a simple heuristic to tune the vruntime of tasks of
SLO-bound applications with a scaling factor s that depends, for
each SLO-bound application a, on the current performance error
ea(k). If ea(k)> 0, then a needs more CPU bandwidth and Metro-
nome will weight the vruntime of its tasks with a factor s = g(k)/ḡ.
Otherwise, if ea(k) <= 0, a is delivering sufficient throughput to
attain its SLO and Metronome will not affect the vruntime of its
tasks.2 Notice that, since in Linux and in most commodity oper-
ating systems the scheduler resides in kernel-space, HRM’s capa-
bility of exporting measurements system-wide is crucial for Metro-
nome to be effective despite using a very simple heuristic.

1We support versions 2.6.35 and 3.2 of the Linux kernel and ver-
sion 7.2 and 9.0 of the FreeBSD kernel.
2For additional details regarding design, implementation, and vali-
dation of HRM and Metronome, refer to [28].
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(a) Linux kernel vanilla.
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(b) Linux kernel enhanced with Metronome.
Figure 2: Relative throughput of facesim and ferret; 1 repre-
sents the throughput required to attain per-application SLOs.

We validate Metronome on a workstation with an Intel Core i7-
870 Processor (we disable Intel Hyper-Threading, Enhanced Speed-
Step, and Turbo Boost Technologies), 4GB of 1066MHz Single
Ranked DIMMs, and the Linux kernel 2.6.35 enhanced with HRM
and Metronome.2 We used two applications from the PARSEC 2.1
benchmark suite [6]: facesim and ferret. We measure the perfor-
mance of facesim in frames/s, as it is instrumented with libhrm to
emit a heartbeat per computed frame; facesim yields≈ 0.67frames/s
when running with 4 threads. We instrumented ferret to emit a
heartbeat per computed query; therefore, its performance reads in
in queries/s. When run with 4 threads, ferret yields≈ 30queries/s.

Figure 2 shows the dynamics of the global throughput of facesim
and ferret relative to the respective SLOs; we arbitrarily choose
a SLO of 0.22frames/s for facesim and 19queries/s for ferret.
Figure 2a shows the two applications scheduled by the unmod-
ified CFS. CFS partitions CPU time evenly among the applica-
tions till ≈ 150s, when ferret terminates. Since CFS is a work-
conserving scheduler, it never idles resources whenever there are
runnable tasks; therefore, when ferret terminates, facesim can use
the whole processor and its global throughput grows. Notice that,
since CFS is not aware of the SLOs, it does nothing to enforce
them: doing so would require manual intervention to increase the
relative priority of ferret. Metronome performs this action automat-
ically, as Figure 2b reports. The simple heuristic at the base of
Metronome is able to adjust the relative priorities of the two ap-
plications to keep both close to a normalized performance of 1,
which represents the respective SLOs. Metronome maintains all
the desirable properties of CFS (e.g., non-starvation) and also the
work-conserving behavior; therefore, facesim gets the full proces-
sor when facesim terminates, after approximately 130s.

3.3 Metronome++
Metronome demonstrates how a simple heuristic can be enough

to enable goal-oriented resource allocation by exploiting runtime
performance feedback. With Metronome++, we devise and eval-
uate a more advanced adaptation policy to dynamically allocate
CPUs to SLO-bound applications in a multi-core processor; again,
our goal is achieving performance predictability to meet SLOs.
Commodity operating systems provide various mechanisms (e.g.,



task pinning) to define the task to CPU mapping; however, just as
for task priorities, these mechanisms only provide knobs that ad-
ministrators are in charge of manually adjusting.

Similarly to other recent proposals [26], we estimate at runtime
the scalability characteristics of applications; however, our goal
is respecting SLOs and not maximizing performance. To estimate
scalability characteristics, we use the least squares algorithm to fit
a second order polynomial that correlates the number of allocated
CPUs and the throughput measurements provided by HRM; Ap-
pendix B justifies this methodology through experimental results.

We build Metronome++ based on a user/kernel-space split de-
sign and manage cross-address space communication by careful
(i.e., cache-aware) sharing of mapped memory pages. The scala-
bility characteristics estimation runs in user-mode in order to take
advantage of linear algebra libraries, while the actuation (i.e., tasks
migration among run queues to) runs in kernel-mode, so as to avoid
the overhead of synchronous system calls and thus minimize run-
time impacts. We devise the kernel-space side of Metronome++ to
care for task migration minimization and load balancing.

Since changing the mapping of tasks to CPUs can be expensive
due to task migration, Metronome++ takes into account the history
of throughput measurements to avoid trashing a proper CPU allo-
cation due to noise in the data. The drawback of this choice is re-
duced reactivity in case applications go through different execution
phases. We address this issue by adding a prediction mechanism
for execution phase transitions as a second adaptation level. To de-
tect a transition, we use an exponential moving average of the ratio
between the throughput and the resource allocation. We describe in
more details and evaluate the prediction mechanism in Appendix C.

To evaluate Metronome++, we use the x264 application from
the PARSEC 2.1 benchmark suite [6] and co-locate two identical
instances of the application on a workstation with an Intel Xeon
Processor W3670 (we disable Intel Hyper-Threading, Enhanced
SpeedStep, and Turbo Boost Technologies), 12GB of 1333MHz
Single Ranked DIMMs, and the Linux kernel 3.2 enhanced with
HRM and Metronome++. We instrument x264 to emit a heartbeat
per encoded frame: we measure its performance in frames/s.

Figure 3 shows the dynamics of the two instances of x264 when
run on vanilla Linux and managed by Metronome++. An impor-
tant characteristic of x264 is the presence of input-dependent ex-
ecution phases: the native input of the PARSEC 2.1 benchmark
suite presents a lighter-weight (i.e., higher performance) phase be-
tween the 70-th and the 300-th frames. The execution phases of
x264 emerge from Figure 3a: the global throughput is far from
constant, even though the Linux kernel vanilla allocates resources
evenly between the two instances (marked x264a and x264b). Fig-
ure 3b shows the performance of the two instances when using Met-
ronome++ to dynamically allocate CPUs to match SLOs (we arbi-
trarily choose 8 and 12frames/s). These results show that Metro-
nome++ is able to drive both instances to respect their SLO, effec-
tively estimating scalability characteristics to strike proper CPU al-
location allocations and responding to execution phase transitions;
we validate our transition prediction mechanism in Appendix C.

Notice that Metronome++ does not expose the same work-con-
serving behavior of Metronome, as it does not over-allocate re-
sources. This feature potentially enables to activate power-saving
techniques on idle resources. The use of a more complex analytic
model with respect to Metronome makes Metronome++ slower in
converging to the desired global throughput due to the need to
“warm up” the scalability characteristics and execution phase pre-
diction; however Metronome++ improves upon Metronome in terms
of robustness to noise and response to execution phase transitions.
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(a) Linux kernel vanilla.
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(b) Linux kernel enhanced with Metronome++.
Figure 3: Throughput of two instances of x264; the green con-
stant lines represent the throughput required to attain SLOs.

4. TEMPERATURE MANAGEMENT
We argue that providing autonomic performance-aware resource

allocation is just one side of the coin with respect to the benefits
embedded systems can draw from autonomic computing; on the
other side is smart enforcement of system-level constraints. One of
the major emerging system-level constraints in modern computing
systems is capping CPU temperature. Maintaining CPUs cool is
crucial for energy efficiency [29] and reliability [30], as high tem-
perature increase of leakage power and leads to a reduction of the
MTTF. Furthermore, high temperature in embedded systems may
lead to usability issues (e.g, in hand-held devices).

Blindly enforcing temperature constraints, as done with clas-
sic dynamic thermal management (DTM) techniques, indiscrimi-
nately harms applications performance. With AcOS, we investigate
how to intelligently enforce system-level temperature constraints
while avoiding to break performance SLOs. For this purpose, we
devise and evaluate ADAptive Performance and Thermal ManagE-
ment (ADAPTME): a feedback control framework for dynamic per-
formance and thermal management. ADAPTME leverages control
theory and idle cycle injection [1, 4] to co-manage CPU tempera-
ture and performance of multi-programmed workloads.

For ADAPTME, we need to observe both performance and tem-
perature. We use HRM (see Section 3.1) for throughput measure-
ments and per-CPU machine-specific registers available in mod-
ern multi-core processors for temperature measurements: per-CPU
high-priority kernel-mode threads periodically sample and make
available temperature measurements.

ADAPTME uses an adaptation policy leveraging discrete-time
linear models for performance and temperature reported in Equa-
tions (2) and (3), respectively.

ri(k+1) = ri(k)+ηi · pi(k) (2)
Tj(k+1) = Tj(k)+µ j · I j(k) (3)

The model in Equation (2) assumes that performance ri(k+ 1)
of application i at control step k+1 can be derived through a linear
combination of its performance ri(k) and the priority pi(k) (e.g.,
nice value) of i’s tasks, weighted with a parameter ηi, at the pre-
vious step. Equation (3) states the same relation for temperature
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Figure 4: Average temperature for 5 consecutive runs of swap-
tions when capping with either Dimetrodon (50 % chance of in-
jecting idle time) or ADAPTME (55 ◦C temperature constraint).

Tj(k+1) of CPU j, where I j(k) is the fraction of idle time injected
during the previous control period.

Based on these two models, we synthesize two deadbeat adaptive
controllers to respectively estimate priority and idle time required
by each SLO-bound application and CPU. We couple each SLO-
bound application with a priority controller and each CPU with an
idle time controller. Since the control context is variable, finding
static values for the parameters ηi and µ j for each application and
CPU is both impractical and ineffective. Therefore, we employ an
adaptive filter, in this case an exponential moving average, to esti-
mate parameters online.

Since idle cycle injection has the side effect of impairing appli-
cations performance, this action can conflict with the process of
adjusting priorities to respect SLOs. For this reason, to avoid insta-
bility, we need to define a policy to coordinate controllers. We use
a probabilistic solution: whenever a temperature controller requires
the injection of idle cycles and a performance controller requires
an application not to be preempted (which happens when the appli-
cation is not respecting its SLO), ADAPTME actually injects idle
time over that application with a tunable probability.3

We implemented ADAPTME in FreeBSD 7.2, which we also ex-
tend with a port of HRM. We use the swaptions applications from
the PARSEC 2.1 benchmark suite [6] as our reference application
to evaluate ADAPTME; we instrumented swaptions with HRM to
measure performance in swaptions/s. We realize two different ex-
periments to evaluate ADAPTME. First, we consider the tempera-
ture controller alone to test the ability of enforcing constraints; this
experiment allows us to compare against Dimetrodon [1]: a state-
of-the-art extension of FreeBSD 7.2 for preventive DTM. Second,
we evaluate coupled temperature and performance controllers. Ex-
perimental results were collected on the workstations described in
Sections 3.2 and 3.3, respectively.

Figure 4 shows the dynamics of average CPU temperature of
ADAPTME and Dimetrodon in the first experiment. Dimetrodon
employs probabilistic feedforward control and allows to specify
an idle cycle injection probability; however, it does not provide
any guarantee with respect to actual temperature capping. Instead,
ADAPTME exploits feedback control and allows to specify a tem-
perature constraint; moreover, ADAPTME is devised so as to mini-
mize the impact of idle cycle injection on performance. These char-
acteristics allow ADAPTME to attain better performance (i.e., faster
execution time) and keep lower temperature than Dimetrodon.

Figure 5 shows the results of the second experiment: we co-
locate four instances of swaptions running with 4 threads on an
infinite input dataset and set a SLO (i.e., 40000swaptions/s, which
is twice as much as each instance achieves by default) for one
them and a temperature constraint (i.e., 60◦C). Experimental re-

3For additional details regarding the design, implementation, and
validation of ADAPTME, refer to [4].
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sults show that ADAPTME is able to both cap temperature and pri-
oritize the SLO-bound application to attain its SLO.

5. RELATED WORK
With AcOS, we investigate how to leverage autonomic comput-

ing at the operating system and runtime level to ease the manage-
ment of computing systems. In this paper, we focus on performance-
aware resource allocation for multi-core processors (with Metro-
nome and Metronome++) and intelligent thermal capping (with
ADAPTME). The rest of this Section discusses related work, first
focusing on each of these two topics and then on wider projects.

Application Heartbeats [13] was an early proposal for a frame-
work allowing applications to easily export measurements and spec-
ify SLOs on their performance in high-level metrics. These ideas
gave momentum to initial work on HRM and Metronome [28]. HRM
improves Application Heartbeats in the observation phase, intro-
ducing the concept of groups and leveraging a design split across
user and kernel-space to improve efficiency and enable system-
wide visibility of throughput measurements. This last feature en-
ables Metronome to achieve performance-aware CPU bandwidth
allocation by means of a heuristic acting on applications vruntime.
Metronome++ shares the idea of performance-aware CPU alloca-
tion with PDPA [8] and the use of application scalability character-
istics estimates like SBMP [26]. However, both these works pursue
performance maximization, while Metronome++ aims for SLOs
satisfaction and performance predictability. Moreover, we leverage
a high-level application-specific performance metric, which leads
to the advantages discussed in Appendix B.

A relevant but orthogonal technique with respect to ADAPTME
is thermal-aware scheduling; relevant works are Heat-and-Run [24]
and ThreshHot [32]. Heat-and-Run [24] exploits simultaneous multi-
threading to place on the same core tasks requiring different func-
tional units and it manages tasks migration to balance temperature
across a CMP. ThreshHot [32] schedules tasks ordered from the
“hottest” (most CPU-intensive) to the “coldest” (most I/O-intensive);
this schedule guarantees to minimize temperature at the end of an
epoch. The goal of thermal-aware schedulers is minimizing temper-
ature without degrading performance. ADAPTME, which enforces
temperature requirements through DTM, is orthogonal to thermal-
aware scheduling: DTM tackles situations where minimizing tem-
perature is not enough and capping is necessary.

HybDTM [19] exploits the hot and cold tasks classification for
DTM: whenever temperature exceeds the threshold, it throttles “hot”
tasks first by lowering their priority. HybDTM is meant for single-
core processors and many of its considerations do not apply to
multi-core processors. Dimetrodon Bailis et al. [1] is a framework
on top of FreeBSD that leverages idle cycle injection to decrease
temperature with a probabilistic feedforward approach. We com-



pare ADAPTME against Dimetrodon in Section 4.
METE [27] is a control-theoretical framework for CMPs to meet

QoS by managing CPU, cache ways, and memory bandwidth allo-
cation for multi-threaded applications. AcOS focuses on only CPU
and CPU bandwidth allocation, but also considers temperature cap-
ping; taking into consideration automatic allocation of additional
resources is one of the future directions for AcOS. SEEC [14, 15] is
a runtime system that performs resource allocation to respect SLOs
by exploiting control theory and machine learning; SEEC focuses
on balancing performance and power consumption requirements,
while AcOS can balance performance and thermal requirements.
Tessellation [7] is an operating system for multi and many-core
processors and client computing systems based on the concept of
adaptive resource-centric computing (ARCC). Tessellation restruc-
tures the operating system around QoS-guaranteed resource con-
tainers called cells. AcOS is orthogonal to Tessellation: we focus
on feedback control, while Tessellation focuses on providing adap-
tation mechanism within the operating itself. AcOS could exploit an
operating system like Tessellation as a base for further research.

6. PERSPECTIVES
We started the AcOS project to seek an answer to a question:

can we enhance commodity operating systems with an autonomic
layer so as to respect user-specified SLOs and enforce system-level
constraints?

With the control loops (i.e., ODA loops) we propose and validate
in this paper, we contribute to moving a step towards an affirma-
tive answer. Metronome and Metronome++ demonstrate the ability
to respect user-specified SLOs on performance measurements by
means of CPU bandwidth and CPU allocation, while ADAPTME is
able to enforce a system-level temperature constraints while still ac-
counting for performance. However, several open problems require
further research before we can definitively answer this question.

An interesting direction is evaluating SLOs defined on different
performance metrics. For instance, instead of requesting a bound
on WCET, users may define the desired QoS on latency or real-
time constraints. Feedback control techniques to automatically at-
tain such requirements with on-chip shared resources may need
adaptation policies based on different mechanisms and algorithms.

Possibly, different QoS definitions may require the management
of a wider set of resources (e.g., cache ways, memory bandwidth,
file system cache, disk bandwidth, network bandwidth, etc.). One
of the challenges towards this direction is enabling mechanisms to
effectively manage such resources at runtime. If coordinate man-
agement of multiple resources was demonstrated in a simulation
environment [27], actual hardware and software mechanisms are
needed to experiment with similar adaptation policies on commod-
ity computing systems [7].

Having an increasing pool of resources to manage and an in-
creasing number of control loops leads to a third compelling chal-
lenge: properly orchestrating a large number of possibly conflict-
ing adaptation policies. With ADAPTME, we propose a probabilis-
tic heuristics to define the interaction of two conflicting adapta-
tion policies aimed at respecting performance SLOs and enforcing
a temperature constraint. A solution of this kind, however, does not
scale well with an increasing number of control loops: we need to
research a more systematic methodology.
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APPENDIX
A. HRM USAGE AND VALIDATION

HRM [28] is an active monitor providing: libhrm, which is a sim-
ple API to instrument parallel applications, and system-wide avail-
able application-specific throughput measurements and requirements
(i.e., SLOs). This section provides several use cases for libhrm,
which is employed to instrument parallel applications with diverse
multi-threading models, and demonstrates the efficiency of HRM
by evaluating its runtime impact.

A.1 Instrumenting Parallel Applications
HRM organizes instrumented applications in groups, where each

group is a set of tasks cooperating on a certain activity (e.g., en-
coding a video) that is bound to a SLO. Therefore, to properly use
libhrm, a multi-threaded application must: (1) attach its tasks (i.e.,
threads) to a group; (2) set the SLO;4 (3) emit one heartbeat upon
completion of a unit of work; and (4) detach its tasks from the group
upon termination.

We analyze the instrumentation of 11 out of 13 multi-threaded
applications from the PARSEC 2.1 benchmark suite [6] employing
diverse multi-threading models, which allows to show the flexibil-
ity and ease of use of libhrm.

We focus on the following applications: blackscholes, bodytrack,
canneal, dedup, facesim, ferret, fluidanimate, raytrace, streamclus-
ter, swaptions, and x264. These 11 applications can be grouped in
four categories according to their multi-threading model:
• category 1—blackscholes, canneal, fluidanimate, streamclus-

ter, and swaptions use “fork & join” of workers;
• category 2—bodytrack, facesim, and raytrace leverage pools

of workers running different jobs in parallel;
• category 3—dedup and ferret use a pipeline with pools of

workers serving the stages;
• category 4—x264 employs “spawn & kill” of workers to real-

ize a virtual pipeline.
For each category, we give additional details regarding the structure
and instrumentation of one application.

Applications in category 1 are straightforward to instrument, as
they use a simple multi-threading model. The sequence diagram
in Figure 6 shows the structure and instrumentation of these ap-
plications. The main thread of the applications is responsible for
forking (i.e., pthread_create(3)) the worker threads and join-
ing them (i.e., pthread_join(3)) when they terminate. The first
worker thread attaches to (and implicitly creates) the group, and it
sets the SLO; the other worker threads attach to the group and, just
like the first worker thread, start their computation. Figure 7 visual-
izes the typical structure of computation of a worker thread, which
runs in a loop terminating a unit of work, and subsequently emitting
a heartbeat for each iteration. When the application is terminating,
before re-joining, the worker threads detach from the group.

Applications in category 2 use a pool of worker threads running
parallel kernels; therefore, none of the threads completes a unit of
work alone. Figure 8 represents the common structure of these ap-
plications. The main thread, which acts as a dispatcher, is the first
to attach to the group. Due to the structure of these applications,
which is represented in Figure 9, the main thread emits heartbeats.
However, we still attach all the worker threads to the group to make
adaptation policies aware that they are actually relevant.

Applications of category 3 employ many pools of worker threads
organized in a pipeline. In these applications, the main thread is
responsible for forking the pools of worker threads and waiting for

4We also allow users and administrators to change the SLO.
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them to join upon application completion. All the spawned threads
attach to the group (the first thread automatically creates the group
and sets the SLO); Figure 10 shows the general structure of these
applications. The worker threads contained in the n-th pool (i.e., the
last stage of the pipeline) are the ones committing each unit of work
and are responsible for emitting heartbeats, as Figure 11 illustrates.

The last category, i.e., category 4, contains only one application,
namely x264. x264 creates a virtual pipeline based on a “spawn
& kill” multi-threading model, which makes the instrumentation
straightforward. Figure 12 illustrates the structure of the instrumen-
tation of x264. The main thread is responsible for creating and at-
taching to the group. Figure 13 focuses on the computation phase:
the main thread spawns many different worker threads that re-join
when their computation ends. The main thread maintains the no-
tion of advancement (i.e., encoding of frames in x264); hence, it is
responsible for emitting heartbeats. Just as for applications in cate-
gory 2, we still attach all the worker threads to the group to inform
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Figure 13: Computation of the applications in category 4.

adaptation policies about their relevance.

A.2 Evaluating the Runtime Impact
We evaluate the overhead of HRM on all the applications we

instrumented from the PARSEC 2.1 benchmark suite.
Table 1 reports average execution time and its standard deviation

of 100 consecutive runs of unmodified (i.e., vanilla) and instru-
mented applications with the native input and the computed run-
time impact (i.e., overhead).

Experimental results where collected on a workstation with an
Intel Xeon Processor W3570 (we disable Intel Hyper-Threading,
Enhanced SpeedStep, and Turbo Boost Technologies), 12GB of
1333MHz Single Ranked DIMMs, and the Linux kernel 3.2 en-
hanced with HRM. We configured HRM to compute throughput
measurements every 100ms.

The highest runtime impact we measured is 2.80% for dedup;
with the exception of x264, higher runtime impacts (e.g., bodytrack
and dedup) coincide with short execution times and we argue this
is due to “non-amortized” costs of creating the group and attaching
worker threads, which are the most expensive operations. Accord-
ing to experimental results we can state that HRM is efficient and
imposes negligible runtime impact.

Table 1: Comparison between vanilla and instrumented appli-
cations from the PARSEC 2.1 benchmark suite

category application vanilla instrumented overheadavg. (ms) std. (ms) avg. (ms) std. (ms)

1

blackscholes 68731.67 1998.33 68902.53 221.21 0.25%
canneal 96405.94 1846.36 96913.76 488.74 0.53%

fluidanimate 95785.44 627.38 96077.83 103.19 0.31%
streamcluster 147536.15 2393.04 147460.57 333.19 -0.05%

swaptions 75308.29 308.39 75508.16 249.35 0.27%

2
bodytrack 52849.39 412.03 53732.33 878.61 1.67%

facesim 145175.15 2256.19 145408.80 787.26 0.16%
raytrace 124036.75 901.47 124441.34 750.43 0.33%

3 dedup 33509.96 955.21 34448.43 1187.31 2.80%
ferret 113626.21 527.36 114106.41 218.52 0.42%

4 x264 32657.13 252.06 32713.23 255.53 0.17%
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Figure 14: Scalability characteristics of 6 out of 13 applications from the PARSEC 2.1 benchmark suite showing sub-linear behavior.

B. SCALABILITY CHARACTERISTICS
This section elaborates on scalability characteristics and justifies

our model exploiting a second order polynomial.
Figure 14 displays the scalability characteristics of 6 out of 13

applications from the PARSEC 2.1 benchmark suite [6]. The x-axes
indicate the number n of allocated CPUs (in each experiment, we
execute applications with n threads); y-axes indicate the relative
(to the minimum) throughput measurements. Experimental results
were collected on the workstation described in Section 3.3.

Most applications (i.e., canneal—Figure 14b, ferret—Figure 14e,
and raytrace—Figure 14f) show quasi-linear scalability character-
istics, with more than 5× speedup with 6 CPUs. However, other
applications (i.e., dedup and facesim—Figure 14c and d) present
sub-linear scalability characteristics even with a relatively small
number of CPUs. Previous research [26] analyzed an intersecting
subset of applications reported that scalability characteristics bend
drastically with 12 or more CPUs.

Previous work [8, 26] describes scalability characteristics through
variations of Amdahl’s law trying to account for the overheads in-
troduced by synchronization primitives. Instead, we model scala-
bility characteristics through a second order polynomial that puts in
direct relationship the number of allocated CPUs with the through-
put measurement. We justify our choice by fitting the data in Fig-
ure 14 with first and second order polynomials. Each data point is
the average over experiments repeated until the width of the 95%
confidence interval was below 1%. Fitting with a second order
polynomial (i.e., our model) yields, for all applications, a coeffi-
cient of determination R2 ≥ 0.99; instead, the same metric with
a first order polynomial, which is comparable to using Amdahl’s
law, varies more (e.g., down to R2 ≈ 0.94 for dedup). Therefore,
our choice is justified for the applications we consider.

AcOS exploits this model with Metronome++ (see Section 3.3),
which estimates scalability characteristics at runtime by periodi-
cally collecting high-level throughput measurements through HRM
and fitting them with the least squares algorithm. Conversely to pre-
vious research [26], we use high-level application-specific metrics
instead of machine-specific metrics such as the number of retired
instructions; this choice derives from two main reasons. First, high-
level application-specific metrics are meaningful to users, who can
easily state SLOs (see Section 3.1). Second, the number of retired
instructions is not constant across different CPU allocations [26]
and is also sensitive to applications employing non-sleeping syn-

chronization primitives (e.g., spinlocks); instead, the number of
heartbeats an application emits is constant across different CPU
allocations for a given dataset size.

To estimate scalability characteristics, Metronome++ initially
allocates 1 CPU to each instrumented application and collects the
first data point (i.e., the number of allocated CPUs, throughput
measurement pair). Then, it varies the allocations to collect two
additional data points in order to have the three initial data points
required to run the least squares algorithm and fit the second order
polynomial reported in Equation (4).

r = c+b ·p+a ·p2 where a < 0 (4)

We model the throughput measurement r of an application as a
quadratic function of the number p of allocated CPUs; a, b, and
c are parameters describing the scalability characteristic. The ini-
tial quasi-linearity of scalability characteristics is captured by b,
while the final flattening is captured by a, whose influence becomes
stronger as number of allocated CPUs grows.

Metronome++ adjusts the fitting with additional data points when-
ever the “environment” changes (i.e., the number of instrumented
applications grows or shrinks); in this way, it can catch the effects
of contention over on-chip shared resources. It is worth noticing
that, even though Metronome++ employs a second order polyno-
mial for modeling purpose, there exists a single feasible solution p̄
given a throughput requirement r̄, which substitutes r when Equa-
tion (4) is used to predict the right CPU allocation p̄.

C. EXECUTION PHASES
Two different events can trigger Metronome++ to adjust CPU

allocation. The first event (as already mentioned in Appendix B)
is a change in the multi-programmed workload due to an instru-
mented application starting or finishing. This behavior is natural
since changing the “environment” may alter the way co-located ap-
plications interact with on-chip shared resources. The second event
triggering CPU allocation adjustment is a change in the execu-
tion phase of an application. Applications can go through execu-
tion phases with different scalability characteristics (e.g., CPU and
I/O-bound execution phases have dramatically different scalability
characteristics) or different performance for a given resource allo-
cation. Metronome++ attempts to address both of these issues.

To address the first issue, Metronome++ re-evaluates the scala-
bility characteristics of instrumented applications when their through-
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Figure 15: Scalability characteristics of the different execution phases of x264 from the PARSEC 2.1 benchmark suite.
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Figure 16: Relative ratio between the window throughput (100 ms) and the CPU allocation for different runs of x264 with 2 to 6
threads; the ratio remains roughly constant across CPU allocations, making it a robust metric to detect execution phases.

put measurements and requirements diverge, even though the “en-
vironment” did not change. It archives the previous the scalabil-
ity characteristic and starts over as if the diverging application has
just started. Metronome++ addresses the second issue by weighing
CPU allocations by means of a workload predictor to consider for
changing execution phases.

The x264 application in the PARSEC 2.1 benchmark suite [6] is
a representative application presenting input-dependent execution
phases. Figure 15a, b, and c show three execution phases, which
x264 goes through with the native input. The x-axes indicate the
number n of allocated CPUs (in each experiment, we execute appli-
cations with n threads); y-axes indicate both the absolute (left) and
relative (to the minimum, right) throughput measurements. Each
data point is the average over experiments repeated until the width
of the 95% confidence interval was below 1%. Experimental re-
sults were collected on the workstation described in Section 3.3.

The relative throughput measurements show that the scalability
characteristics of x264 do not change significantly across execu-
tion phases, thus leaving Equation (4) fitting stable. However, the
absolute throughput measurements show a sharp performance in-
crease in the second execution phase suggesting the presence of
input-dependent execution phases.

To further analyze the execution phases of x264, we collect its
frame-by-frame window (100ms) throughput measurements; HRM
provides such metric [28]. The window throughput metric is more
sensitive (depending on the window length) to short-term trends
than the global throughput metric and can highlight execution phase
transitions. Figure 16 shows the frame-by-frame relative (to the ini-
tial) ratio between the window throughput measurements and the
number of allocated CPUs for five different runs of x264 from 2 to
6 threads. Experimental results were collected on the workstation
described in Section 3.3.

The relative ratio increases sharply at the 70-th frame and de-
creases with similar intensity at the 300-th frame. The rising edge
of the ratio indicates a transition from a high complexity subset
to a low complexity subset of the dataset, while the falling edge
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Figure 17: Window (1 s) predicted throughput for x264 running
with 4 threads.

represents the opposite. Since the characteristics of the ratio (i.e.,
“shape” and “intensity”) are roughly the same across the different
CPU allocations, this metric proves to be a good proxy for execu-
tion phase detection, regardless of the current allocation.

For this reason, Metronome++ uses an exponential moving av-
erage5 of the values of this relative ratio as a workload predictor to
detect execution phase transitions. Metronome++ weighs through-
put requirements with the workload predictor to realize the second
adaption level (i.e., execution phase adaptation); the result goes
through the first adaptation level that instead leverages the scala-
bility characteristic as described in Appendix B.

We conclude with the evaluation of the accuracy of the work-
load predictor for a run of x264 with 4 threads. Figure 17 shows the
frames on the x-axis and both the window (1s) and the predicted
throughput on the y-axis. Experimental results were collected on
the workstation described in Section 3.3. The predicted through-
put, which is computed multiplying the workload predictor with the
output of the scalability characteristic of the first execution phase,
tracks almost perfectly the window throughput proving the accu-
racy of our approach.

5The use of an exponential moving average helps smoothing the
occasional noise in the window throughput.


