
Adaptive Raytracing Implementation
using Partial Dynamic Reconfiguration

Gianluca Durelli1, Fabrizio Spada1, Riccardo Cattaneo1,

Christian Pilato2, Danilo Pau3, Marco D. Santambrogio1

1Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy,

fabrizio.spada@mail.polimi.it, {durelli,rcattaneo,santambr}@elet.polimi.it

2Columbia University, Department of Computer Science, New York, NY, USA,

pilato@cs.columbia.edu

3ST Microelectronics, Milano, Italy,

danilo.pau@st.com

Abstract—The continuous strive for improvements in visual
realism is progressively increasing the complexity of algorithms
for simulating light physics to produce very realistic scenes. As a
result, they are becoming more and more suitable for hardware
acceleration, even if they introduce new challenges due to the high
requirements in terms of resources. In this paper we propose a
hardware implementation of the raytracing algorithm, which is
a method for rendering 3D scenes. We exploit partial dynamic
reconfiguration to adapt the hardware to the specific part of the
image under analysis. This allows us to obtain up to 30% better
performance with respect to the software baseline implementation
on the AVNET ZedBoard platform.

Index Terms—Field Programmable Gate Arrays, Embedded
software, Image processing

I. INTRODUCTION

The problem of performing 3D rendering in an effective way

is becoming more and more important due to the continuous

strive for realistic images, as for instance in both movies and

video games industries over the recent years. The complexity

of simulating light behavior makes these algorithms very

computational intensive; for this reason, their implementations

are generally carried out exploiting Graphical Processing Units

(GPUs) or high-end General Purpose Processors. Harwdare

acceleration has been also investigated, especially for Field-

Programmable Gate Arrays (FPGAs), at the penality of a huge

amount of resources needed to implement the application. On

the other hand, Partial Dynamic Reconfiguration (PDR) [1] is

a promising technique to cope with limited resources, but it

requires the designer to have a high expertise to create the

final system.

Raytracing is one of these algorithms for 3D scenes render-

ing which is able to simulate the physics of a light ray and thus

can generate realistic results. The classical implementation

of the raytracing algorithm consists in defining a rendering

point in a 3D scene and shooting light rays from that point,

simulating their reflections and refractions when these rays

intersect objects in the scene. The objects are described as

a composition of geometric primitives (2D or 3D) such as

triangles, polygons, spheres, cones or other shapes. It is clear

that the computational complexity of a rendering scene is

proportional to the number and the nature of these primitives,

along with their positions in the scene itself.

Recently progress in High Level Synthesis (HLS) improved

the programmability of FPGAs, extending the range of design-

ers able to exploit such devices as accelerators for specific

application tasks. As an example of these HLS tools, we

can mention both academic ones (e.g. GAUT [2], LegUp [3],

DWARV [4], bambu [5]) and commercial ones (e.g. Xilinx’s

Vivado HLS [6], Cadence’s C-to-Silicon [7], Forte’s Cynthe-

sizer [8]).

This paper proposes an implementation of the raytracing

algorithm for a heterogeneous platform composed of an ARM

processor and an FPGA. We adopt Xilinx Vivado HLS to

realize the hardware cores and the corresponding interfaces

for the integration with the rest of the system, based on the

standard AXI bus. The proposed implementation exploits the

partial dynamic reconfiguration capability of such device to

adapt at run-time the hardware configuration of the board

to speed up the computation in specific parts of the input

scene, based on the nature of the primitives. A simple policy

is proposed to adapt the hardware to a single block under

analysis. This adaptation is done by monitoring, at run-time,

which the most used primitives at a certain moment and then

by configuring the hardware accordingly.

The remainder of the paper presents the related work in the

area (Section II), the general description of the algorithm and

the modification we apported (Section III), the implementa-

tion details about the hardware architecture (Section IV), the

description of the adaptation policy (Section V), a discussion

on the obtained results (Section VI), and finally presents the

conclusions introducing possible future extensions of the work

(Section VII).

II. RELATED WORK

The raytracing algorithm has been widely studied over the

recent years due to its great interest in computer graphics;

this technique can be, indeed, used in rendering of images for

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.31

236

movies or computer games. The optimization of the algorithm

execution time allows the designers to have a shorter time

to market for the movies or the possibility to increase the

graphical quality of a game without decreasing the number of

frames per second rendered by the hardware device. Different

implementations of the algorithm have been thus proposed

over the recent years. Most of the proposed approaches focus

on implementing this algorithm on GPUs due to the possibility

of programming them with frameworks such as CUDA [9]

and OpenCL [10]. For example, [11] proposes a technique

to implement a parallel version of the algorithm on GPUs,

overcoming the limitation posed by the recursive structures of

the algorithm which cannot be implemented in GPUs.

Other researches in the field of ray tracing focused in

creating customized computing platforms using FPGAs as

prototyping devices. These works present solutions that de-

ploy multiple processing pipelines to increase the processing

capabilities of the devices [12]–[14]. However, these works

feature a static hardware, without the possibility of adaptation

with respect to specific parts of the scene. For example, if in

one part of the scene we have only one type of geometric

primitives, it would be useful to have multiple hardware

cores to perform a parallel computation of the intersections

generated in that region. Furthermore, some of the proposed

approaches [15] relies on the fact the the input image is

composed only of triangles. Even if this is a common solution,

it would be useful to support different kinds of intersection

primitives in order to obtain a more realistic scene description

which will lead in turn to a more realistic rendered image.

Finally, the datastructures used to represent the scenes have

been also investigated. The literature proposes works focusing

on Grids [16], Bounding Volume Hierarchies (BHV) [17] and

KD-Trees [18]. However, there is not an optimal data structure

to represent the input scene, but this depends on the computing

platform adopted for the implementation of the algorithm.

III. RAYTRACER ALGORITHM

This section introduces the algorithm used in the work, its

potential limitations for hardware accelerator and the solutions

adopted for them.

A. General Characteristics

The raytracing algorithm adopted in this work starts from

a description of the scene as a composition of geometric

2D/3D primitives. In particular, the basic primitives that

are supported by the algorithm are the following: triangles,

spheres, cylinders, cones, toruses, and polygons. Each of these

primitives is described by a set of geometric properties such

as, for example, the position in the scene, the height of the

primitive or the rays of the circles composing the primitive.

The algorithm then performs the following steps:

1) the scene is divided in blocks, called voxels, and the

number of these voxels is one of the contributors to

determine the complexity of the algorithm; the more the

voxels there are, the more intersections between rays and

primitives have to be computed;

2) the algorithm generates a certain amount of rays from

the current rendering point of the image and it computes

the set of voxels traversed for each of these rays;

3) it then iterates all over these voxels and computes the

intersection between the primitives in the voxel and the

current ray;

4) the nearest intersection, if any, is considered and the

algorithm computes the reflection and refraction of the

light ray on the surface of the object;

5) the rays generated by this physic simulation continue to

be propagated into the image until a maximum number

of intersection (an input parameter of the application) is

reached or no intersection is found at all;

Analyzing the application, we found two major roadblocks

that may prevent us from efficiently porting the application

into hardware. First, the memory accesses to the objects stored

in the main memory do not follow a regular pattern, but

instead they depend on the path followed by the light ray

in the scene and its subsequent reflections which cannot be

predicted in advance. Accessing random memory locations

may cause slowdowns in the hardware implementation; the

hardware cores can be efficiently generated when data is

accessed with a fixed pattern, since data transfers between

the memory and the accelerator can be carried out through a

Direct Memory Access (DMA) mechanism. This exploits the

principles of locality by moving an entire block of data.

Second, one of the primitives, the polygon, is characterized

by a variable number of parameters, such as the number

of vertexes. For its hardware implementation we need to

determine in advance the amount of vertexes supported. On

the other hand, each computation performed by this accelerator

will require an amount of time which will be proportional to

the number of vertexes.

On one hand, we approach the first problem by restructuring

the flow of the application as described in the following

paragraph. On the other hand, we limited the computation of

the intersections with polygon primitives to be computed only

in software so that we do not have to constraint the core.

B. Data access pattern

To achieve the best performance in terms of memory

accesses, we restructured the access pattern of the raytracing

algorithm. The original code computed the least amount of

intersections needed to determine if a ray intersects any

objects in the scene. It computes all the intersections until

one intersection is found. In this case, it stops searching in

the next voxels. We changed this behavior by precomputing

all the intersections that has to be computed along the path of

one light ray and we organized them in queues. These queues

are then sent to the hardware part and this requires only a linear

memory access, since it can be moved from main memory to

cores by using the DMA. After the intersections are computed

by the hardware core, the results are then collected by the

raytracer that merges the results and determines which is the

nearest intersection found. Note that, since the intersections

are computed in order, there is no need to perform any

computation to determine the nearest one. Indeed, only the

237

TABLE I
SUMMARY OF HLS RESULTS OF THE HW CORES. ALL THE CORES MEET

THE TARGET FREQUENCY OF 100MHZ.

Core LUT FF DSP BRAM

Cone 11702 7471 33 4

Cylinder 11021 7041 33 4

Sphere 7051 4763 15 2

Triangle 6168 3432 32 4

first one that has been found has to be considered, while the

following can be safely discarded.

IV. HARDWARE IMPLEMENTATION

The raytracing algorithm has been implemented on the

AVNET ZedBoard, that is a development board for the

Xilinx Zynq-7000 All Programmable SoC (AP SoC); this

SoC features a ARM Cortex-A9 dual-core processor and a

reconfigurable logic fabric. The computational cores have

been realized using Xilinx Vivado HLS tool starting from

the available C implementation and they have been integrated

using Xilinx Vivado Design Suite [6]. The raytracer code

which runs natively on the ARM processor has been adapted to

support hardware execution and to exploit the partial dynamic

reconfiguration of the device.

A. Realization of hardware cores

The hardware cores have been realized through Vivado HLS

which permits to generate an accelerator, along with its inter-

faces, that can be directly integrated in the development board

architecture. However, the C code that can be synthesized

using HLS presents some restrictions. As an example, pointers

or any pointer logic cannot be used as they are since they

require sophisticated mechanism to be executed in hardware,

whenever it is possible. Since pointers are generally used in

function interfaces, in order to realize the accelerators required

in this work, we rewrote the C functions implementing the

intersections with each of the primitives in order to remove the

input pointers and substitute them with explicit variables. The

interfaces of the cores have been then instructed to read data

from an input FIFO and feed the variables with the input data.

On the software side, a similar modification has been made.

Before executing a hardware function, the raytracer needs

to dereference the involved pointers and organize them in a

proper way in the main memory (in the same order which is

expected to be read from the input FIFO). Once completed, the

core can start the execution and fetch a region of memory to

process. The results of HLS process applied to the intersection

functions of the raytracer are reported in Table I. All the cores

meet the target frequency of 100 MHz, which is the one used

for the programmable logic, and they occupy around the 20%

of the FPGA resources.

B. Target architectures

All the architectures used for this work features the ARM

processor that can exploit application specific accelerators to

speed up some part of the application that it is running.

In order to demonstrate how partial dynamic reconfiguration

and adaptiveness can help while performing raytracing on an

embedded heterogeneous system, we realized two different

architectures reported in Fig. 1. The first one (Fig. 1-A)

consists in a pure architecture where only the ARM processor

(booting Linux) is used to perform the raytracing algorithm.

The second architecture (Figure 1-B) consists in a hetero-

geneous architecture composed of the ARM processor and

of three reconfigurable regions. The main memory is shared

between the ARM processor and the accelerators and data can

be moved by means of DMA cores interfacing each one of the

accelerators with the main memory. The connection between

the reconfigurable modules and the ARM is performed through

AXI bus using Xilinx AXI DMA modules with AXI Stream

protocol. The DMA core is not part of the reconfigurable

region and the DMA interface is the one which is kept costant

across all the reconfigurable cores. This allows reconfiguration

and also the possibility to implement the same core in all

of the reconfigurable modules without the need to design a

superset of the interfaces in order to keep it constant for each

single module. Furthermore since it is important to have a

fast data transfer rate between the ARM memory and HW

cores the DMA are interfaced with the ARM through the High

Speed AXI interfaces the Xilinx Zynq subsystem has. We

decided to have the maximum flexibility out of our design,

so each of the hardware accelerators may be configured at

run-time onto any regions. This implies that each region must

be able to implement the biggest of the cores and so only

three reconfigurable modules can fit into our architecture. In

fact, considering the data in Table I, one can argue that up

to four cores can fit into the programmable logic the design.

However in order to implement reconfigurable regions we

need to partition the design limiting the amount of resources

available. It is not possible with the tested architecture to

implement all the four module as reconfigurable region due

to routing errors. Partial dynamic reconfiguration may affect

only the functions implemented in the accelerators while the

interface with DMA cores will remain the same for each of

the implemented cores.

V. DYNAMIC ADAPTATION

The concept of run-time adaptiveness proposed in the work

consists in the possibility of varying at run-time the core on

which the intersection with a particular primitive is computed.

Each of the potential intersection cores may be implemented

in software or in any of the available reconfigurable modules.

As a first idea, the designer can control the mapping of the

intersection primitives, whether they are computed in software

or in hardware, when a new rendering is requested on the basis

of the amount and types of primitives in the scene. As an

example, if the requested scene does not contain any sphere it

is useless to have a hardware core to compute the intersection

with a sphere while it may be useful to substitute it with a

core computing the intersection for one of the other primitives

present in the scene, especially the most used ones. However,

to maximize the performance, this approach requires to design

238

ARM DDR

ARM DDR

DMA DMA DMA

R
E

C
O

N
F

M
O

D
U

LE

R
E

C
O

N
F

M
O

D
U

LE

R
E

C
O

N
F

M
O

D
U

LE

(A) (B)

Fig. 1. Target architectures for the raytracing implementation. Fig. A reports the pure software architecture; Fig. B shows the architecture supporting partial
reconfiguration with three reconfigurable modules.

a new architecture for each new scene that is requested to be

analyzed by the raytracer algorithm.

For this reason, we envisioned an adaptation policy that

exploits partial dynamic reconfiguration and applies the same

concept, but at run-time (i.e., while a certain amount of inter-

sections to compute are collected into the queues that linearize

memory access). When one of the queues is full their content

is checked and the reconfigurable modules are configured

accordingly. If in a particular moment, there is only data in

the queue used for computing intersections with spheres, we

can configure the reconfigurable modules to parallelize the

intersections on all the available resources by configuring on

all of them to compute intersections with a sphere.

A. Run-time adaptation policy

The adaptation policy designed to optimize the raytracing

aims at exploiting the behavior of the algorithm. In particular,

using a grind as a representation of the scene, we have that rays

traveling towards the same direction are likely to traverse the

same regions of the image. The raytracing computation will be

then characterize by phases each one having a similar number

of intersections to compute for each primitives. As an example

we may have the chunks of computation reported in Table

II. If we analyze this table, we can see that we have a first

part of the computation where only polygons are computed

(chunks from 1 to 6) and then the second part combines

polygons and spheres. This property is maintained throughout

all the execution of the algorithm and the adaptation policy

tries to exploit this pattern issuing the reconfigurations when

it determines a change in the mix of the cores that are needed.

In this case, at step 7, the policy will issue the reconfiguration

for the polygon core while computing chunk 1 and then will

perform the configuration only of the cone, since the polygon

is already configured. This approach allows us to reduce as

much as possible the number of reconfigurations by reusing

the available cores. We want to highlight that the example

reported in Table II does not represent the regular behavior of

the system. For instance, it is not impossible to know for how

TABLE II
EXAMPLE OF CHUNKS OF INTERSECTIONS THAT HAVE TO BE COMPUTED

AT RUNTIME. FOR EACH CHUNK THE AMOUNT OF INTERSECTIONS FOR

EACH PRIMITIVE IS REPORTED.

CHUNK POLYGON SPHERE CYLINDER CONE TRIANGLE

1 1004 0 0 0 0

2 1005 0 0 0 0

3 1002 0 0 0 0

4 1004 0 0 0 0

5 1004 0 0 0 0

6 1004 0 0 0 0

7 946 0 0 58 0

8 254 0 0 765 0

9 244 0 0 768 0

10 244 0 0 768 0

many chunks of computation the distribution of intersection to

compute remains stable and more importantly the algorithm is

unaware of the composition of the scene in term of primitives.

The code excerpt for the pseudo algorithm of the policy is

reported below.

function ADAPTHW(chunkDescription, HWconfig)

HWupdated← False
sortedChunk = sort(chunkDescription)
primitives = chunkToHWPrimitive(sortedChunk)
newConfig = getF irstThree(primitives)

for p ∈ primitives do
if p /∈ HWconfig then

HWupdated← True
end if

end for
if HWupdated then

newConfig = Reconf(HWconfig, newConfig)
end if
return newConfig

239

ARM
1 DMA
2 DMA
3 DMA
4 DMA

B
an

dw
id

th
 [M

B
/s

]

0

20

40

60

80

100

120

Data Moved [KB]

10−1 1 10 102 103 104 105

DMA Transfer Comparison

Fig. 2. Memory access performance. Comparison between memory access
from ARM and access performed by the cores using DMA.

end function
The function AdaptHW takes as inputs the chunk to

be computed and the current hardware configuration. At

first, it sorts the number of intersections to be computed

(sortedChunk) and extracts which are the primitives that

correspond to the sorted chunk (primitives). Since there is

the possibility to configure only 3 modules on the device at a

given time; the first three are selected and this is set to be the

new configuration (newConfig). This new configuration is

compared to the one in input (HWconfig) to check if there is

any difference. In case, reconfigurations are performed where

needed and the new configuration is returned.

VI. RESULTS EVALUATION

A. DMA Performance

As a first evaluation, we tested the performance of the

DMA cores when moving data between DDR memory and the

programmable logic. The DMA works using the AXI stream

protocol and an apposite driver have been realized in order to

use the DMA to move data from ARM DDR to the HW cores.

The test has been performed copying an increasing amount of

data up to 40MB blocks. Data is moved transferring at most

4KB at the time because that is the dimension of the FIFO

used by the DMA core. Data is then transferred in parallel

by using up to 4 DMAs. For each test, we measured the

time needed to complete the transfer and we computed the

transfer bandwidth in MB/s. For each test 10 measures have

been taken and we averaged the results. Fig. 2 reports the

results collected during this test and shows how the DMA

transfers to the cores outperform the memory usage from the

ARM processor when moving more than 40KB of data. This

is the starting point of the evaluation. This behavior justifies

the decision to accumulate the intersections to be computed

and send all of them in chunks to the hardware accelerators.

TABLE III
PERFORMANCE OF THE HARDWARE CORES AND COMPARISON WITH THE

CORRESPONDING SOFTWARE ONES. PERFORMANCE IS REPORTED AS THE

NUMBER OF INTERSECTIONS COMPUTED PER SECOND. FOR THE POLYGON

PRIMITIVE ONLY THE SOFTWARE IMPLEMENTATION IS AVAILABLE.

PRIMITIVE SW [intersect/s] HW [intersect/s] Speedup

CYLINDER 0.30× 106 40.13× 106 130×
CONE 0.13× 106 14.90× 106 110×

SPHERE 0.14× 106 15.97× 106 108×
TRIANGLE 0.30× 106 28.65× 106 93×
POLYGON 0.31× 106 - -

B. Core Evaluation
The cores generated with HLS have been tested and

compared with the corresponding software counterpart. The

software performance depends how the data is allocated into

the memory and how it is accessed during the computation,

while the hardware version streams data in a linear way

since they have been reorganized for computation as described

in Section III-B. For this reason, the software performance

has been measured on different situations and we picked the

best measured performance for each primitive as the nominal

performance of the core. Figures 4 report the comparison

between the hardware and software performance on the y-

axes (measured in intersections per second) against the number

of intersections requested. For the polygon, only the software

implementation is available as explained in Section III with

the performance reported in Table III. Despite of the different

performances, all the four graphs show the same behavior,

which is the one reflected also by 2. When a small number of

intersections have to be computed the software implementation

outperforms the hardware one of a 8× factor; while increasing

the number of intersections, the hardware implementation

greatly outperforms the software obtaining a speedup of up to

100×. In general, the break-even point for choosing between

software and hardware implementation is very low for our

solution; for each one of the cores, the hardware implemen-

tation starts to have a better performance than the software

one when a bunch of 10 intersections have to be computed.

Considering the number of primitives that we have on the

scenes under evaluation, we obtained in average a speed up

of about 20× for the primitives executed in hardware. Since

this break-even point is so small, in the adaptive algorithm

we do not include this information into the algorithm and we

assume that, if there is any intersections to be computed for a

primitive in a chunk, it is always worth the use of the hardware

version of the primitive. It is worth noting that, if the break-

even point was bigger, the adaptive policy could be slightly

modified in order to include this information and decide which

implementations have to be use accordingly. Finally, Table III

reports the maximum performance achieved with the hardware

cores designed in this work through HLS and the speed up

with respect to the corresponding software implementations.

C. Adaptive Raytracing
The adaptive raytracing algorithm has been tested on the

test scene in Fig. 3. The scene is composed of a set of

240

Fig. 3. Raytracer test scene under evaluation by the adaptive policy.

primitives and the raytracer was set up to create a 32x32x16

grid of voxels and render a 400x400 pixels output image.

The maximum number of reflections of a ray in an image

was set to 2. The part of the raytracer algorithm which

traverses the grid and issues the intersections to be computed

is executed on the ARM processor along with the adaptive

policy. The reconfiguration is managed by the driver available

in the Xilinx Linux distribution for the Zynq platform and

is performed by writing the bitstream to the proper device

file. The reconfiguration time of a single core in the archi-

tecture takes about 9 ms. The chunks used in the experiment

are composed of 1,000 intersections in order to prevent an

excessive memory occupation by the data to be arranged for

the hardware accelerators.

The rendering test performed with this configuration al-

lowed us to render the image computing 2,421 chunks per-

forming only 7 reconfiguration throughout the execution.

Considering the time required to compute the intersections,

the speed up obtained with this configuration is of 31.8%

and the algorithm spent 9% of the execution time waiting

for reconfigurations to complete. Considering the number of

intersections to be computed for the primitives for each chunk,

even if the theoretical speed up (shown in Fig. 4) is in the

order of 20×, the effective speed up is much less due to 1) the

reconfiguration overhead, 2) the fact that not all the cores have

been ported to hardware and 3) the need to linearize the inputs

of the cores before sending the data. On one hand, this step

is faster than the software implementation. On the other hand,

it suffers from the low memory access bandwidth illustrated

in Fig. 2. A possible solution to this limitation could be a

refactoring of the data structures, now based on pointers, to

use arrays such as the FIFOs set up to accumulate intersections

starting from the beginning of the algorithm.

VII. CONCLUSIONS AND FUTURE WORK

This work proposes an adaptive implementation of the

raytracing algorithm. The proposed solution dynamically con-

figures the hardware at runtime in order to reflect the current

need of the algorithm, exploiting the fact that a single block of

the scene under analysis is likely to need the similar hardware

cores to be processed. The policy designed to control the

partial reconfiguration minimizes the number of reconfigu-

rations needed by reusing the cores that have been already

configured. Using this algorithm, it has been possible to obtain

a speed up in computing intersections between light rays and

primitives, up to 30% with respect to the baseline software

implementation using the AVNET ZedBoard as a target device.

Future directions of research that stem from this work may

focus on two sides. The first one consists in further optimizing

this algorithm by working on the data structures used to

represent the scene and optimizing them for the hardware

cores used for the computation. The second one will try to

investigate which algorithms may express a behavior similar to

the one shown in Table II in order to apply the same adaptation

policy to them in order to optimize their execution.

Acknowledgments

This work was partially funded by the European Commis-

sion in the context of the FP7 FASTER project (#287804).

REFERENCES

[1] M. Santambrogio and D. Sciuto, “Design methodology for partial
dynamic reconfiguration: a new degree of freedom in the HW/SW
codesign,” in Proc. of IPDPS, Apr. 2008, pp. 1–8.

[2] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and E. Martin,
“GAUT: A high-level synthesis tool for DSP applications,” in High-
Level Synthesis. Springer, 2008, pp. 147–169.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp: An Open-source High-level
Synthesis Tool for FPGA-based Processor/Accelerator Systems,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 2, pp. 1–27, Sep. 2013.

[4] R. Nane, V. M. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels,
“DWARV 2.0: A CoSy-based C-to-VHDL hardware compiler,” in Proc.
of FPL, Aug. 2012, pp. 619–622.

[5] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high
level synthesis of memory-intensive applications,” in Proc. of FPL, Sep.
2013, pp. 1–4.

[6] T. Feist, “Vivado design suite,” White Paper, 2012.
[7] Cadence, “C-to-Silicon Compiler,” http://www.cadence.com, 2013.
[8] Forte, “Cythesizer,” www.forteds.com, 2013.
[9] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel

programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.
[10] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming

standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, p. 66, 2010.

[11] A. Segovia, X. Li, and G. Gao, “Iterative layer-based raytracing on
cuda,” in Proc. of the Int.l Performance Computing and Communications
Conference (IPCCC), Dec. 2009, pp. 248–255.

[12] C. B. Cameron, “Using FPGAs to supplement ray-tracing computations
on the Cray XD-1,” in Proc. of the DoD High Performance Computing
Modernization Program Users Group Conference, Jun. 2007, pp. 359–
363.

[13] J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and P. Slusallek,
“Realtime ray tracing of dynamic scenes on an FPGA chip,” in Proc. of
the Conf. on Graphics hardware, Jul. 2004, pp. 95–106.

[14] S. Woop, J. Schmittler, and P. Slusallek, “Rpu: a programmable ray
processing unit for realtime ray tracing,” in ACM Transactions on
Graphics (TOG), vol. 24, no. 3, 2005, pp. 434–444.

[15] A. S. Nery, N. Nedjah, and F. Frana, “GridRT: A Massively Parallel
Architecture for Ray-Tracing Using Uniform Grids,” in Proc. of DSD,
Aug. 2009, pp. 211–216.

[16] S. Guntury and P. Narayanan, “Raytracing Dynamic Scenes on the GPU
Using Grids,” IEEE Trans. on Visualization and Computer Graphics,
vol. 18, no. 1, pp. 5–16, 2012.

[17] J. Gunther, S. Popov, H.-P. Seidel, and P. Slusallek, “Realtime ray tracing
on GPU with BVH-based packet traversal,” in IEEE Symp. on Interactive
Ray Tracing, Sep. 2007, pp. 113–118.

[18] T. Foley and J. Sugerman, “KD-tree acceleration structures for a GPU
raytracer,” in Proc. of the Conf. on Graphics hardware, Jul. 2005, pp.
15–22.

241

Cone HW
Cone SW

P
er

fo
rm

an
ce

 [I
nt

er
se

ct
io

ns
/s

ec
on

d]

104

105

106

107

Number of intersections

1 10 102 103 104 105

Cone Intersect Performance

Cylinder HW
Cylinder SW

P
er

fo
rm

an
ce

 [I
nt

er
se

ct
io

ns
/s

ec
on

d]

105

106

107

Number of intersections

1 10 102 103 104 105

Cylinder Intersect Performance

Sphere HW
Sphere SW

P
er

fo
rm

an
ce

 [I
nt

er
se

ct
io

ns
/s

ec
on

d]

105

106

107

108

Number of intersections

1 10 102 103 104 105

Sphere Intersect Performance

Triangle HW
Triangle SW

P
er

fo
rm

an
ce

 [I
nt

er
se

ct
io

ns
/s

ec
on

d]

105

106

107

Number of intersections

1 10 102 103 104 105

Triangle Intersect Performance

Fig. 4. Performance of hardware cores compared to the corresponding software ones. Performance is measured as the number of intersections per second
against number of intersections to be computed.

242

