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Abstract. Local community detection aims at discovering a community from a
seed node by maximizing a given goodness metric. This problem has attracted a
lot of attention, and various goodness metrics have been proposed in recent
years. However, most existing approaches are based on the assumption that
either nodes or edges in network have equal weight. In fact, the usage of weights
of both nodes and edges in network can somewhat enhance the algorithmic
accuracy. In this paper, we propose a novel approach for local community
detection via edge weighting. In detail, we first design a new node similarity
measure with full consideration of adjacent nodes’ weights. We next develop an
edge weighting method based on this similarity measure. Then, we define a new
goodness metric to quantify the quality of local community by integrating the
edge weights. In our algorithm, we discover local community by giving priority
to shell node which has maximal similarity with the current local community.
We evaluate the proposed algorithm on both synthetic and real-world networks.
The results of our experiment demonstrate that our algorithm is highly effective
at local community detection compared to related algorithms.

Keywords: Local community detection � Community structure � Edge
weighting � Node similarity

1 Introduction

Network is a data structure composed of a series of nodes interconnected by edges, and
widely used to model many complex systems, such as social networks [6, 8, 20],
collaboration networks [13], the Internet [4], and E-mail networks [21]. A common
property of these networks is community structure. Community structure refers to the
division of network nodes into groups within which the edges are dense but between
which they are sparse [5, 6, 17, 18]. Community detection has many applications in the
field of analyzing online social networks, collaborative tagging systems, biological
networks [23].

Traditional community detection methods aim at discovering all communities in
network based on the global network structure [3, 6, 14, 16, 19, 21]. For some huge
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networks, such as social network and Web network, they are too huge to get the entire
network structure nowadays [7]. The global based methods do not work on these huge
networks. For solving this problem, local community detection was proposed.

Local community detection aims at discovering a community from a seed node
requiring only the information of local network structure, and several algorithms have
been proposed in recent years [1, 2, 7, 11, 12, 23]. These algorithms explore local
community by maximizing a certain goodness metric. However, most existing good-
ness metrics are based on the assumption that either nodes or edges in network have
equal weight. To ignore the weight of both nodes and edges in network is to throw out
a lot of data that could help us to detect local community more accurately.

In this paper, we first design a new node similarity measure with full consideration
of adjacent nodes’ weights. We next develop an edge weighting method based on this
similarity measure. Via edge weighting, every edge in network is assigned with a
weight which represents the similarity between two nodes associated with this edge.
Furthermore, we propose a new Closeness-Isolation metric to quantify the quality of a
local community by integrating the edge weights. Finally, we propose our local
community detection algorithm. We evaluate the proposed algorithm on both synthetic
and real-world networks with ground-truth community structure. The results of our
experiment demonstrate that our algorithm is highly effective at local community
detection compared to related algorithms.

The rest of the paper is organized as follows. Section 2 introduces the problem
definition of local community detection and reviews the existing methods. Section 3
introduces the edge weighting method and a novel local community quality metric
Closeness-Isolation. We describe our algorithm in Sect. 4 and report experimental
results in Sect. 5, followed by conclusions in Sect. 6.

2 Related Work

During the past decades, several local community detection algorithms have been
proposed, such as [1, 2, 7, 11, 12, 23]. Most existing algorithms discover local com-
munity from a seed node by maximizing a goodness metric. How to design the
goodness metric becomes a core problem in local community detection algorithms. In
this section, we first introduce the problem definition of local community detection in
network, and then review some representative goodness metrics.

2.1 Definition of Local Community in Network

In this subsection, we first give the definition of network, and then present the problem
of local community detection in network.

Definition 1 (Network). Let G = (V, E) be an undirected graph, V is the set of nodes
and E is the set of edges in G. n = |V| is the number of nodes in G. For two nodes, x,
y 2 V, (x, y) 2 E indicates there is an edge between nodes x and y. m = |E| is the number
of edges in G. The set of nodes adjacent to node x is denoted by C(x), C(x) = {y | y2V,
(x, y)2E}. The degree of node x is the number of nodes in C(x), denoted by kx.
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The problem of local community detection can be presented as: For a network
G = (V, E), given a goodness metric for local community quality, local community
detection starts from a seed node s (s 2 V), the work is to discover the community
D that s belongs to. As shown in Fig. 1, we can dynamically divide the entire network
into three parts: local community D, D’s shell node set N and the unknown node set U,
U = V − D − N. Each node in N has at least one adjacent node in D. D has two subsets:
the core node set C and the boundary node set B. The nodes in C are only connected by
nodes in D, but any node in B has at least one neighbor node in N.

During the process of detecting local community, we have perfect knowledge of the
connectivity of nodes in D [ N, but have no knowledge of the connectivity of nodes in
U. When local community detection algorithm starts, D = {s}, N = C(s). In general,
local community detection algorithm continuously starts from D and expand outward
by absorbing external nodes from N into D until the given goodness metric stops
improving [22]. Finally, D is the local community that node s belongs to. Similar
definitions of local community detection can be found in [2, 10, 22].

2.2 Goodness Metrics that Assume All Edges are Equal

This kind of goodness metrics assume that all edges in network have equal weight. The
representative goodness metrics are R and M.

Clauset [2] defined a local community quality metric called R by only considering
the linkage information of boundary nodes in B.

R ¼ Bin

Bin þBout
ð1Þ

where Bin is the number of inward edges that connect boundary nodes in B to other
nodes in D, while Bout is the number of edges that connect boundary nodes in B to nodes
in N. R measures the fraction of inward edges in all edges with one or more nodes in B.

D
N

U

Fig. 1. An illustration of division of a network into local community D (Core Node Set C (green
nodes) and Boundary Node Set B (black nodes)), D’s Shell Node Set N (white nodes) and
Unknown Node Set U (grey nodes) (Color figure online)
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Luo et al. [11] defined a local community quality metric calledM, which focuses on
the ratio of the number of internal edges and external edges.

M ¼ Ein

Eout
ð2Þ

where Ein is the number of edges with two nodes in local community D, while Eout is
the number of edges with one node in D and the other in N. M measures the fraction of
edges with both nodes in D in edges with one node in D and the other in N.

BothM and R assume that the edges in network have equal weight. In fact, the edge
weights are different due to the similarities between each pairs of connected nodes are
different. To ignore the edge weights is to throw out a lot of data that could help us to
discover local community structure better.

2.3 Goodness Metrics that Assume All Nodes are Equal

This kind of goodness metrics focus on the internal similarity and external similarity of
local community. For a local community D, the internal similarity of D is the sum of
similarities between any two adjacent nodes both in D, while the external similarity of
D is the sum of similarities between any two adjacent nodes with one node in D and the
other in N. The representative metrics are tightness and Compactness-Isolation.

Huang et al. [7] adopted the node similarity measure, as shown in Formula (3), to
evaluate the similarity between nodes x and y. Based on this measure, they introduced a
metric for local community quality called tightness, and present a local community
detection algorithm LTE via local optimization of the tightness measure.

sxy ¼ CðxÞ \CðyÞj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðxÞj j � CðyÞj jp ð3Þ

Ma et al. [12] introduced a d-neighbors based similarity measure called sdxy which

takes into account non-adjacent nodes within a distance away. sdxy is defined in Formula
(4). Based on this measure, they introduced a metric for local community quality called
Compactness-Isolation, and proposed a local community detection algorithm called
GMAC by maximizing Compactness-Isolation.

sdxy ¼
CðxÞd \CðyÞd
���

���

CðxÞd [CðyÞd
���

���
ð4Þ

C(x)d is a set of nodes whose shortest path length to node x is within d.
There are other node similarity measures, such as Common Neighbors and Jaccard

Index [25]. The measure of Common Neighbors is directly counting the number of
common neighbors two nodes have, while Jaccard Index is the ratio of the number of
their common neighbors to the number of their union. All these methods assume that
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all adjacent nodes have equal weight. In fact, for any node, it has different similarities
with its adjacent nodes.

3 Preliminaries

There are two subproblems in local community detection algorithm: how to design a
proper goodness metric for local community quality and how to choose node in N as a
member of D. The third problem hidden in these two subproblems is that how to
evaluate the edge weights more accurately. In this section, we focus on these three
subproblems, and give our solutions.

3.1 Edge Weighting

The weight of edge depends on the similarity between two nodes associated with this
edge. In this subsection, we first give a new node similarity measure based on weighted
neighbor nodes, and then introduce our edge weighting method.

Definition 2 (Node Similarity Based on Weighted Neighbor Nodes). Let G = (V,
E) be a network, for a node x, o 2 C(x), we define the weight of o as sxo. sxo can be
calculated by methods in Subsect. 2.3. For a pair of nodes, x, y 2 V, we define the
similarity between x and y based on weighted neighbor nodes as wsxy. wsxy is defined as
follows.

wsxy ¼

P
z2CðxÞ \CðyÞ

ðsxz þ syzÞ
P

u2CðxÞ
sxu þ

P
v2CðyÞ

syv
ð5Þ

where the numerator is the sum of their common neighbors’ weights, and the
denominator is the sum of their neighbors’ weights. The range of wsxy is [0, 1]. When
nodes x and y have no common neighbors, wsxy = 0, and while they share the same
neighbor nodes, wsxy = 1.

Based on the above node similarity measure, we introduce our edge weighting
method. For a pair of nodes, x and y, the similarity measure wsxy considers the weights
of their adjacent nodes, but neglects the fact that whether nodes x and y are directly
connected or not. Two nodes tend to have higher similarity if they are directly con-
nected. So our edge weighting method is given as follows.

Definition 3 (Edge Weighting). Let G = (V, E) be a network, for any edge (x, y) 2 E,
let w(x, y) denote the weight of edge (x, y). w(x, y) is defined as follows.
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wðx;yÞ ¼ wsxy þ kx � ky
2m

ð6Þ

For the weight of edge (x, y), on the basis of wsxy, we plus the probability of these
two nodes being connected to each other to w(x, y). Via edge weighting, we assign every
edge in network with a weight.

3.2 Our Local Community Quality Metric Closeness-Isolation

Inspired by [7, 11, 12], we propose a new local community quality metric Closeness-
Isolation (CI for short) based on the edge weights.

Definition 4 (Closeness-Isolation Metric). Let G = (V, E) be a network, the weight of
edge (x, y) is w(x,y). For a local community D with shell node set N, the Closeness-
Isolation Metric of D, denoted by CI(D), is defined as

CIðDÞ ¼

P
x;y2D;ðx;yÞ2E

wðx;yÞ

1þ P
u2D;v2N;ðu;vÞ2E

wðu;vÞ
ð7Þ

where the numerator is the sum of weights of all edges in D, and the denominator is one
plus the sum of weights of all edges with one node in D and the other in N.

Instead of assuming the edges with equal weights, CI takes into account the edge
weights, and is more reasonable than the other metrics. We use CI to measure local
community quality in our algorithm.

3.3 Similarity Between Shell Node and Local Community

We define the similarity between shell node and local community in weighted network
as follows.

Definition 5 (Similarity Between Shell Node and Local Community). Let G = (V,
E) be a network, the weight of edge (x, y) is w(x,y). For a local community D with shell
node set N, for a node z 2N, we denote the similarity between z and local community
D by sim(z, D). sim(z, D) can be calculated as follows.

simðz;DÞ ¼
X

v2CðzÞ \D

wðz;vÞ ð8Þ

sim(z, D) is the sum of weights of all edges connecting z and nodes in D. Inspired
by the fact that nodes in the same community are more likely to have higher similarities
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with each other, we choose the node in N which has highest similarity with local
community D as candidate node.

4 Discover Local Community via Edge Weighting

With the edge weighting based local community quality metric CI, we propose our
local community detection algorithm.

4.1 Our Local Community Detection Algorithm

Our local community detection algorithm starts from a given node s without any manual
parameters. The pseudo code is described in Algorithm 1. Firstly, initialize D = {s} and
N = C(s) (line (1)). In the while-loop (lines (2)–(16)), our algorithm keeps choosing the
node a 2 N which has maximal similarity with local community D as candidate node
(lines (3)–(10)), the similarity between node in N and local community D is calculated
by Formula (8). If agglomerating the candidate node into D will cause an increase in CI,
then add it to D and update N, otherwise, remove it from N (lines (11)–(15)), repeat until
N is empty. Finally, return D as the local community of s (line (17)).
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4.2 Time Complexity Analysis

In our algorithm, each node in network is denoted by a unique identifier. A network is
stored by a hash table of nodes in the graph, and each node associates with a vector of
its adjacent nodes. The values in vectors are sorted for faster access.

The running time of our algorithm depends on the size of the union of local com-
munity and its shell node set rather than that of the entire graph. Let t denote the size of
D [ N, Ein denote the number of edges with two nodes in D, Eout denote the number of
edges with one node in D and the other in N, k denote the mean node degree of nodes in
D [ N. The computational cost of our algorithm mainly consists of two parts: calcu-
lating the weight of edges with one or more node in D and choosing a node in N as
candidate node. For calculating the weight of edges, we need to compute t nodes’
neighbor nodes, the weight of neighbor nodes of t nodes, and then compute (Ein + Eout)
edges’ weights. Their time complexity is O(k � t), O(k2 � logk � t) and O(k � logk �
(Ein + Eout)) respectively. Adding these together, the time complexity is O((k + k2 �
logk) � t + k � logk � (Ein + Eout)). The most computational expensive steps is in lines
(4)–(9), which is the time to find a 2 N having the maximal similarity with the current
local community D. In each while-loop, the time complexity is O(|N| � |D| � logk).

5 Experiments

In this section, we evaluate the effectiveness of our algorithm on synthetic as well as
real-world networks.

5.1 Related Methods and Evaluation Criteria

We compare our algorithm with three representative local community detection algo-
rithms: (1) Clauset’s algorithm [2] is a classic algorithm by maximizing metric R. Note
that the same as [12, 22], we improve its stopping criteria by detecting changes in R. (2)
Luo et al.’s algorithm [11] (LWP for short) is a famous algorithm to find the sub-graph
with maximum metric M. (3) GMAC algorithm [12] is the most popular algorithm
which uses d-neighbors to represent node. We fix d = 3 as suggested by authors. Our
algorithm uses Jaccard Index to calculate neighbor nodes’ weights.

We use three evaluation measures to compare algorithmic performance: precision,
recall and F-score, which are widely adopted by other community detection methods
[10, 12]. The precision and recall are calculated as follows.

Precision ¼ CF \CRj j
CFj j ð9Þ

recall ¼ CF \CRj j
CRj j ð10Þ
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where CR is the set of nodes in real local community which contains the given node and
CF is the set of nodes discovered by local community detection algorithm which starts
from the given node.

F-score is the harmonic mean of precision and recall. Its formula is as follows.

F � score ¼ 2� precision� recall
precisionþ recall

ð11Þ

5.2 Evaluation on Synthetic Networks

For comparing the performance of various local community detection algorithms, we
first generate 10 synthetic networks with ground-truth community structure. There are
5000 nodes in every network.

LFR benchmark networks, introduced by Lancichinetti et al. [9], are widely used to
test community detection methods [7, 12]. The important properties of this network
generating model are defined as follows: the number of nodes is denoted by n, the
average degree of nodes is denoted by k, the maximum degree is denoted by kmax,
mixing parameter is denoted by l, minus exponent for the degree sequence is denoted
by t1, minus exponent for the community size distribution is denoted by t2, number of
overlapping nodes is denoted by on, number of memberships of the overlapping nodes
is denoted by om, minimum for the community sizes is denoted by minc, maximum for
the community sizes is denoted by maxc. The parameters are set as follows: n = 5000,
k = 10, kmax = 50, others except l use default values. Mixing parameter u is the
fraction of edges of each node outside its community, which is used to control the
difficulty of community detection [19]. So we generate 10 networks with different
mixing parameter l ranging from 0.05 to 0.5 with a span of 0.05. These LFR
benchmark networks are generated together with ground-truth community structure.

For every network in our experiments, we use each node in this network as a seed
node once, and repeat the local community detection experiments for 5000 times which
start from different node every time, then report algorithmic average precision, recall
and F-Score on this network. Figure 2 shows the comparison results of precision,
recall, F-score for four algorithms on these networks, respectively.

We discuss the experiments result in detail. Firstly, along with l becomes larger, all
the four algorithms suffer varying degrees of performance degradation and become
ineffective to detect community structure. This is because the higher the mixing
parameter u of a network, the weaker community structure it has.

Secondly, along with l becomes larger, the performance of both LWP and Clauset
drops rapidly, meanwhile GMAC and our algorithm drop slowly. This is because both
LWP and Clauset simply depend on the number of edges incident to the node, neglect
the fact that the weight of external edges are smaller than the internal edges.

Thirdly, our algorithm takes node weights in account, so it outperforms GMAC
algorithm which neglects the node weights.

The precision, recall, and F-score of the LWP algorithm is zero or nearly zero
when l � 0.35. This is because all the local communities discovered by LWP
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algorithm satisfy M > 1, which means the number of internal edges should be more
than the number of external edges. However, almost no local community can satisfy
M > 1 when l � 0.35, so LWP algorithm performs badly in this case. This conclusion
is in accordance with the results reported in Ref. [7].

In general, because our algorithm takes into account the weight of nodes and edges,
it performs best on LFR benchmark networks.

5.3 Evaluation on Real-World Networks

So far, we have presented the experimental results of the proposed algorithm on
synthetic networks. In this subsection, we use additional three real-world networks to
evaluate the performance of our algorithm. (1) The first network is Zachary Karate
Club Network (Karate for short) [24], in which n = 34 and m = 78. It describes the
friendships among 34 members of a karate club at a US university. (2) The second is
NCAA football network (NCAA for short) [6], in which n = 115 and m = 613. It
describes American football games between Division IA colleges during regular season
Fall 2000. (3) The third is Books about US politics (Polbooks for short) [15], in which
n = 105 and m = 441. It is a network of books about US politics published around the
time of the 2004 presidential election and sold by Amazon.com. All of them are
available at http://www-personal.umich.edu/*mejn/netdata/.

In our experiment, we use every node in these network as a seed node once, and
repeat the local community detection experiments for n times which start from different
node every time, where n is the number of nodes in this network, and report algorithmic
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average precision, recall and F-Score on this network. The comparison result on
real-world networks is reported in Fig. 3. Compared with the other three algorithms,
our algorithm has highest precision, recall, and F-score at the same time on these
real-world networks. Our algorithm makes use of the weight of both nodes and edges in
network, and enhances the algorithmic accuracy. So it outperforms the other algorithms
on real-world networks.

6 Conclusion and Future Work

Discovering local community is an important work in network analysis and many
algorithms have been proposed to identify local community from a given node. Dif-
ferent from the existing local community detection methods that neglect the weight of
both nodes and edges, we take into account the information to enhance the algorithmic
accuracy. In this paper, we first propose an edge weighting method based on a new
node similarity measure. Then, we introduce a framework for local community
detection based on the edge weights. This framework opens a rich space for research,
all algorithms can be embedded into this framework differing only in the similarity
measures. Compared with other related algorithms, our algorithm doesn’t need any
manual parameters, and achieves good performance on both synthetic and real-world
networks.

In future, we will apply our algorithm on real-world networks to discover local
community and also study the community detection problem in heterogeneous
networks.
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